1
|
Jia M, Yue H, Wang X, Zong A, Xu T, Xu YJ, Liu Y. Medium-chain triglyceride attenuates obesity by activating brown adipose tissue via upregulating the AMPK signaling pathway. J Nutr Biochem 2025; 141:109914. [PMID: 40179992 DOI: 10.1016/j.jnutbio.2025.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Medium-chain triacylglycerol (MCT) is a healthy lipid mainly composed of medium-chain fatty acids (MCFA), which has been proven to have physiological activities in improving metabolic disorders, reducing blood cholesterol, and controlling weight. Brown adipose tissue (BAT) has been regarded as a potential organ to fight obesity due to the function of thermogenesis and energy dissipation. Previous reports found that a diet rich in MCT contributed to the activation of BAT. However, the potential mechanism between MCT and BAT remains unknown. In the current study, MCFA was applied on C3H/10T1/2 cells differentiated brown adipocytes, and MCT was applied on high-fat diet (HFD) induced obese mice. The results showed that MCFA and MCT induced browning of adipocytes and activation of BAT, significantly increased the enrichment of mitochondria, and significantly reduced intracellular lipid accumulation and body weights in vivo and in vitro. Mechanically, MCT significantly increased the level of UCP1, AMPK, and the downstream signaling factors of Pgc1α and Ulk1, further significantly elevated the brown differentiation factor of Pparγ. Moreover, The AMPK inhibitor dorsomorphin partially impaired the beneficial effects caused by MCT. In conclusion, this study proved that AMPK is the potential target of MCT to induce BAT activation and provided theoretical evidence for the application of MCT in the future.
Collapse
Affiliation(s)
- Min Jia
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Hao Yue
- Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiuxiu Wang
- Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Aizhen Zong
- Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Tongcheng Xu
- Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yong-Jiang Xu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuanfa Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Gai Y, Ma G, Yang S, Hu Z, Ma Y, He R, Zhang Y, Huang S, Azzaz HH, Gu Z, Mao S, Ghaffari MH, Chen Y. Effects of maternal blood beta-hydroxybutyrate on brown adipose tissue functions and thermogenic and metabolic health in neonatal calves. J Dairy Sci 2025; 108:6439-6454. [PMID: 40222674 DOI: 10.3168/jds.2024-26123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/12/2025] [Indexed: 04/15/2025]
Abstract
Maternal metabolic health, particularly during late pregnancy, plays a crucial role in fetal development and postnatal metabolic function. Elevated levels of BHB in dry cows, commonly observed in late gestation, may affect offspring development, but the effects on brown adipose tissue (BAT) and metabolic health remain unclear. In this study, 60 pregnant Holstein dairy cows were categorized into 2 groups based on serum BHB concentrations measured at 1, 3, 5, and 7 wk after dry-off: maternal low BHB (n = 30; mean ± SEM, 0.21 ± 0.005 mM) and maternal high BHB (n = 30; mean ± SEM, 0.64 ± 0.02 mM). Blood metabolites, including BHB, nonesterified fatty acids, and glucose, were monitored throughout the dry period. Calves born from these cows were evaluated for body growth, body temperature, glucose sensitivity, fecal, and cough score during the first month of life, with perirenal BAT and skin samples collected for analysis of thermogenic gene expression. Expression of stress genes, including CIRBP, HSP70, and HSBP1, was analyzed in skin tissue. Expression of thermogenic genes, including UCP-1, CREBP4, and CPT1B, and protein contents of UCP-1, PGC-1a were analyzed in BAT. In vitro, stromal vascular fractions were also isolated in calf's BAT, and further induced for brown adipocyte formation with dosed BHB supplementation. Results showed no differences in birth weight, body size, and body temperatures of calves born to maternal high BHB cows compared with calves born to maternal low BHB cows. However, the calves from the maternal high BHB group had higher expressions of stress genes in the skin, and decreased BAT mass and expression of thermogenic genes. Compared with the maternal low BHB group, 1-mo-old calves in the maternal high BHB group also showed significantly lower BAT mass, decreased expression of thermogenic genes, such as UCP-1, CREBP4, and CPT1B, and decreased mitochondrial density, indicating impaired BAT development. In addition, the calves from the maternal high BHB group showed reduced glucose sensitivity, as evidenced by their inability to maintain stable blood glucose levels during a glucose tolerance test. Protein concentrations of UCP-1 and PGC-1a were significantly lower in the BAT of calves born to maternal high BHB cows. In vitro, BHB supplementation inhibited brown adipocyte differentiation and thermogenesis, supporting the elevated maternal BHB impairs brown adipogenesis and mitochondrial biogenesis. Overall, this study demonstrates that calves born from elevated maternal BHB levels (∼0.64 mM) within the normal physiological range in the dry period significantly had impaired perinatal BAT development, thermogenesis, and glucose metabolism, highlighting the roles of maternal metabolic health in programming metabolic and thermoregulatory capacity in offspring.
Collapse
Affiliation(s)
- Yang Gai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiling Ma
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuyan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Hu
- College of Animal Science, Shandong Agricultural University, Taian 21018, China
| | - Yulin Ma
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Rui He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shilong Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hossam H Azzaz
- Dairy Department National Research Center, Giza, Cairo 12622, Egypt
| | - Zhaobing Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Yanting Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095 China.
| |
Collapse
|
3
|
John S, Bhowmick K, Park A, Huang H, Yang X, Mishra L. Recent advances in targeting obesity, with a focus on TGF-β signaling and vagus nerve innervation. Bioelectron Med 2025; 11:10. [PMID: 40301996 PMCID: PMC12042417 DOI: 10.1186/s42234-025-00172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/31/2025] [Indexed: 05/01/2025] Open
Abstract
Over a third of the global population is affected by obesity, fatty liver disease (Metabolic Dysfunction-Associated Steatotic Liver Disease, MASLD), and its severe form, MASH (Metabolic Dysfunction-Associated Steatohepatitis), which can ultimately progress to hepatocellular carcinoma (HCC). Recent advancements include therapeutics such as glucagon-like peptide 1 (GLP-1) agonists and neural/vagal modulation strategies for these disorders. Among the many pathways regulating these conditions, emerging insights into transforming growth factor-β (TGF-β) signaling highlight potential future targets through its role in pathophysiological processes such as adipogenesis, inflammation, and fibrosis. Vagus nerve innervation in the gastrointestinal tract is involved in satiety regulation and energy homeostasis, and vagus nerve stimulation has been applied in weight loss and diabetes. This review explores clinical trials in obesity, novel therapeutic targets, and the role of TGF-β signaling and vagus nerve modulation in obesity-related liver diseases and HCC.
Collapse
Affiliation(s)
- Sahara John
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Krishanu Bhowmick
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Andrew Park
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Hai Huang
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Xiaochun Yang
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Lopa Mishra
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- Department of Surgery, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
4
|
Herz CT, Kulterer OC, Prager M, Marculescu R, Prager G, Kautzky-Willer A, Hacker M, Trajanoski S, Köfeler HC, Gallé B, Haug AR, Berry D, Kiefer FW. Bariatric surgery promotes recruitment of brown fat linked to alterations in the gut microbiota. Eur J Endocrinol 2025; 192:603-611. [PMID: 40366070 DOI: 10.1093/ejendo/lvaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/10/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVE The mechanisms of bariatric surgery-induced weight loss and metabolic improvements are still incompletely understood and reach beyond malabsorption or calorie restriction. We sought to investigate the effect of bariatric surgery on brown adipose tissue (BAT) activity and a potential connection with changes in energy metabolism, the gut microbiota, and short-chain fatty acid (SCFA) composition. METHODS We included 32 subjects (25 females) with morbid obesity and analyzed their metabolic profile, gut microbiota composition, circulating SCFAs, energy expenditure, and cold-induced BAT activity using [18F]Fluorodeoxyglucose-positron emission tomography-computed tomography before and up to 1 year after bariatric surgery. RESULTS Twelve months after surgery, the percentage of individuals with active BAT had increased from 28% to 53%. The BAT-negative (BATneg) individuals who had an adverse metabolic profile at baseline compared with subjects with active BAT (BATpos) showed a greater metabolic benefit after surgery. While no changes in overall gut bacterial diversity were observed between BATpos and BATneg, the abundance of 3 specific bacterial families, including Akkermansiaceae, Pasteurellaceae, and Carnobacteriaceae, was distinctly regulated between BAT groups. The bacterial genera most strongly increased in BATpos vs BATneg subjects were all positively correlated with BAT volume and BAT activity. Finally, circulating concentrations of the SCFAs acetate, butyrate, and propionate rose after bariatric surgery and were related to bacterial genera such as Akkermansia, Dialister, and Lachnospiraceae FCS020 group, all known SCFA producers. CONCLUSIONS Bariatric surgery helps recruit active BAT in individuals with obesity and is linked to distinct alterations in the gut microbiome and SCFA composition. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT03168009).
Collapse
Affiliation(s)
- Carsten T Herz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Oana C Kulterer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marlene Prager
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerhard Prager
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Birgit Gallé
- Core Facility Molecular Biology, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Alexander R Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Li Y, Shi HX, Li J, Du H, Jia R, Liang YH, Huang XY, Gao XL, Gun SB, Yang QL. Adaptive Thermogenesis and Lipid Metabolism Modulation in Inguinal and Perirenal Adipose Tissues of Hezuo Pigs in Response to Low-Temperature Exposure. Cells 2025; 14:392. [PMID: 40136641 PMCID: PMC11941736 DOI: 10.3390/cells14060392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
In mammals, exposure to low temperatures induces white adipose tissue (WAT) browning and alters lipid metabolism to promote thermogenesis, thereby maintaining body temperature. However, this response varies across different adipose depots. In this study, Hezuo pigs were exposed to either room temperature (23 ± 2 °C) or low temperature (-15 ± 2 °C) for periods of 12 h, 24 h, 48 h, 5 d, 10 d, and 15 d. Inguinal fat (IF) and perirenal fat (PF) were collected and analyzed using hematoxylin and eosin (HE) staining, transmission electron microscopy, RT-qPCR, and RNA-seq. Following cryoexposure, our results demonstrated a significant increase in adipocyte number and a corresponding decrease in cross-sectional area in both IF and PF groups from 24 h to 10 d. While adipocyte numbers were elevated at 12 h and 15 d, these changes were not statistically significant. Moreover, lipid droplets and mitochondria were more abundant, and the mRNA expression levels of thermogenic genes UCP3 and PGC-1α were significantly higher compared to the control group during the 24 h-10 d cold exposure period. No significant changes were observed in the other groups. RNA-seq data indicated that the lipid metabolism of IF and PF peaked on day 5 of low-temperature treatment. In IF tissue, lipid metabolism is mainly regulated by genes such as FABP4, WNT10B, PCK1, PLIN1, LEPR, and ADIPOQ. These genes are involved in the classical lipid metabolism pathway and provide energy for cold adaptation. In contrast, in PF tissue, genes like ATP5F1A, ATP5PO, SDHB, NDUFS8, SDHA, and COX5A play roles within the neurodegenerative disease pathway, and PF tissue has a positive impact on the process related to degenerative diseases. Further investigation is needed to clarify the functions of these candidate genes in lipid metabolism in Hezuo pigs and to explore the genetic mechanisms underlying the cold-resistance traits in local pig populations.
Collapse
Affiliation(s)
- Yao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.-X.S.); (J.L.); (H.D.); (R.J.); (Y.-H.L.); (X.-Y.H.); (X.-L.G.)
| | - Hai-Xia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.-X.S.); (J.L.); (H.D.); (R.J.); (Y.-H.L.); (X.-Y.H.); (X.-L.G.)
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.-X.S.); (J.L.); (H.D.); (R.J.); (Y.-H.L.); (X.-Y.H.); (X.-L.G.)
| | - Hong Du
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.-X.S.); (J.L.); (H.D.); (R.J.); (Y.-H.L.); (X.-Y.H.); (X.-L.G.)
| | - Rui Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.-X.S.); (J.L.); (H.D.); (R.J.); (Y.-H.L.); (X.-Y.H.); (X.-L.G.)
| | - Yu-Hao Liang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.-X.S.); (J.L.); (H.D.); (R.J.); (Y.-H.L.); (X.-Y.H.); (X.-L.G.)
| | - Xiao-Yu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.-X.S.); (J.L.); (H.D.); (R.J.); (Y.-H.L.); (X.-Y.H.); (X.-L.G.)
| | - Xiao-Li Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.-X.S.); (J.L.); (H.D.); (R.J.); (Y.-H.L.); (X.-Y.H.); (X.-L.G.)
| | - Shuang-Bao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.-X.S.); (J.L.); (H.D.); (R.J.); (Y.-H.L.); (X.-Y.H.); (X.-L.G.)
- Gansu Modern Pig Rearing Engineering and Technology Research Center, Lanzhou 730070, China
- Gansu Diebu Juema Pig Science and Technology Backyard, Gannan 740070, China
| | - Qiao-Li Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.-X.S.); (J.L.); (H.D.); (R.J.); (Y.-H.L.); (X.-Y.H.); (X.-L.G.)
- Gansu Diebu Juema Pig Science and Technology Backyard, Gannan 740070, China
| |
Collapse
|
6
|
Wang Y, Hu Q, Chen B, Ma D. Effects of Liupao Tea with Different Years of Aging on Glycolipid Metabolism, Body Composition, and Gut Microbiota in Adults with Obesity or Overweight: A Randomized, Double-Blind Study. Foods 2025; 14:866. [PMID: 40077569 PMCID: PMC11898661 DOI: 10.3390/foods14050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Liupao tea (LPT) is a traditionally fermented dark tea from Guangxi, China and the effects of different aging periods of LPT on metabolic health remain inadequately explored. METHODS This randomized, double-blind, longitudinal study enrolled 106 adults with obesity or overweight who were assigned to consume LPT of different ages over a 90-day period. Participants were randomly divided into four groups, each consuming LPT that had been aged for 1 year, 4 years, 7 years, or 10 years. The metabolic parameters, body composition, and gut microbiota were assessed at baseline and after the 90-day intervention. RESULTS All LPT groups experienced significant reductions in systolic blood pressure (SBP) and diastolic blood pressure (DBP), with the 10-year-aged group showing the most notable SBP decrease (p < 0.001). Total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels decreased significantly in the 1-, 4-, and 10-year-aged groups (p < 0.05), while high-density lipoprotein cholesterol (HDL-C) increased in the 7-year-aged group (p < 0.05). Body weight, body fat mass (BFM), body mass index (BMI), waist circumference (WC), body fat percentage (BFP), and visceral fat area (VFA) significantly declined across all groups (p < 0.05). Gut microbiota analysis showed changes in specific genera, though overall diversity remained stable. No significant differences were found in metabolic or microbiota outcomes between the different aged groups. CONCLUSIONS LPT consumption effectively improves blood pressure, lipid profiles, and body composition in adults with obesity without adverse liver effects. The aging duration of LPT does not significantly alter these health benefits, challenging the belief that longer-aged LPT is superior.
Collapse
Affiliation(s)
| | | | | | - Defu Ma
- Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing 100191, China (Q.H.)
| |
Collapse
|
7
|
Chen K, Dou X, Lin Y, Bai D, Luo Y, Zhou L. Pachymic acid promotes brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025:1-9. [PMID: 39807020 DOI: 10.3724/zdxbyxb-2024-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
OBJECTIVES To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX. METHODS The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay. The formation of lipid droplets following treatment with pachymic acid was observed through oil red O staining, and the content of lipids in differentiated cells was determined. The expression levels of key browning genes, including uncoupling protein (Ucp) 1, the peroxisome proliferation-activating receptor gamma coactivator (Pgc)-1α, and the transcription factor containing PR domain 16 (Prdm16) were detected by quantitative reverse transcription polymerase chain reaction. The expression of sterol regulatory element binding protein (Srebp) 1c, acetyl-CoA carboxylase (Acc), fatty acid synthetase (Fas), and steroid-sensitive lipase (Hsl), fatty triglyceride hydrolase (Atgl), and carnitine palmitoyl transferase (Cpt) 1 of lipolysis-related genes were also examined. RESULTS The 3T3-L1 MBX was induced in vitro to form beige adipocytes with high expression of key browning genes, including Ucp1, Pgc-1α, Prdm16, and beige adipose-marker genes, including Cd137, Tbx1, and Tmem26. The concentration range of 0-80 μM pachymic acid was non-cytotoxic to 3T3-L1 MBX. Pachymic acid treatment significantly inhibited the differentiation of 3T3-L1 MBX, resulting in a notable decrease in lipid accumulation content (P<0.01). Additionally, there was a marked increase in the expression of key browning genes and their proteins, such as Ucp1, Pgc-1α, and Prdm16, while the expressions of fat synthesis-related genes Srebp1c, Acc and Fas were significantly decreased (all P<0.05). The expressions of lipolysis-related genes, including Hsl, Atgl, and Cpt1, were significantly increased (all P<0.05). Besides, treating with 20 μmol/L pachymic acid showed the most pronounced effect. CONCLUSIONS Pachymic acid can inhibit fat synthesis and promote lipid decomposition by regulating the brown formation and lipid differentiation of 3T3-L1 MBX preadipocytes.
Collapse
Affiliation(s)
- Kunling Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiyou Lin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Danyao Bai
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yangzhou Luo
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liping Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
8
|
Qin X, Yang M, Yu Y, Wang X, Zheng Y, Cai R, Pang W. Melatonin improves endometrial receptivity and embryo implantation via MT2/PI3K/LIF signaling pathway in sows. J Anim Sci Biotechnol 2025; 16:4. [PMID: 39754262 PMCID: PMC11699789 DOI: 10.1186/s40104-024-01137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Increased backfat thickness of sows in early gestation is negative to reproductive performance. Endometrial receptivity is an important determinant of reproductive success, but it is unclear whether the effect of sow backfat thickness on litter size is associated with endometrial receptivity and whether melatonin treatment may have benefits. The present study seeks to answer these questions through in vitro and in vivo investigations. RESULTS Excessive lipid deposition and lower melatonin levels in the uterus are detrimental to endometrial receptivity and embryo implantation in high backfat thickness sows. In cells treated with melatonin, the MT2/PI3K/LIF axis played a role in reducing lipid accumulation in porcine endometrial epithelium cells and improved endometrial receptivity. Furthermore, we found a reduction of lipids in the uterus after eight weeks of intraperitoneal administration of melatonin to HFD mice. Notably, melatonin treatment caused a significant reduction in the deposition of endometrial collagen, an increase in the number of glands, and repair of the pinopode structure, ultimately improving endometrial receptivity, promoting embryo implantation, and increasing the number of litter size of mice. CONCLUSIONS Collectively, the finding reveals the harmful effects of high backfat thickness sows on embryo implantation and highlight the role of melatonin and the MT2/PI3K/LIF axis in improving endometrial receptivity by enhancing metabolism and reducing the levels of uterine lipids in obese animals.
Collapse
Affiliation(s)
- Xue Qin
- Key Laboratory of Northwest China's Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Menghao Yang
- Key Laboratory of Northwest China's Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Yu
- Key Laboratory of Northwest China's Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaolin Wang
- Key Laboratory of Northwest China's Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Zheng
- Key Laboratory of Northwest China's Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rui Cai
- Key Laboratory of Northwest China's Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weijun Pang
- Key Laboratory of Northwest China's Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Peixoto TC, Quitete FT, Teixeira AVS, Martins BC, Soares RDA, Atella GC, Bertasso IM, Lisboa PC, Resende AC, Mucci DDB, Souza-Mello V, Martins FF, Daleprane JB. Palm and interesterified palm oil-enhanced brown fat whitening contributes to metabolic dysfunction in C57BL/6J mice. Nutr Res 2025; 133:94-107. [PMID: 39705913 DOI: 10.1016/j.nutres.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Palm oil is widely used in the food industry owing to its high stability and versatility. The interesterified version has been used as an alternative to oils rich in trans fatty acids. However, the health effects of these vegetable oils are not yet fully understood. We hypothesized that the consumption of palm oil (noninteresterified and interesterified), even without excessive amounts of energy and lipids in the diet, could lead to morphofunctional changes in brown adipose tissue (BAT). To this end, male C57BL/6J mice were divided into 3 dietary groups (n = 10 each): soybean oil (SO), palm oil (PO), and interesterified palm oil (IPO) for 10 weeks. The PO and IPO groups had significant increases in the visceral fat mass and interscapular BAT (iBAT) lipid content. In iBAT, the PO and IPO groups showed lower mRNA expression of Ucp1, Adrb3, and Pgc1a, while the PO also showed lower mRNA levels of Ppara and Ampk, and the IPO showed lower Prdm16 expression. Moreover, PO had higher Il6 expression and lower catalase activity, while the IPO showed an upregulated Tnfa expression and lower catalase activity, but higher antioxidant activity of the glutathione peroxidase (GPx) enzyme. The consumption of PO and IPO had negative effects on weight and body fat, including the impairment of iBAT function. Our findings give rise to apprehensions regarding the safety and consequences of consuming PO and IPO for energy metabolism.
Collapse
MESH Headings
- Animals
- Palm Oil/pharmacology
- Mice, Inbred C57BL
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Male
- Soybean Oil/administration & dosage
- Soybean Oil/pharmacology
- Mice
- Plant Oils/pharmacology
- Intra-Abdominal Fat/metabolism
- Uncoupling Protein 1/metabolism
- RNA, Messenger/metabolism
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Interleukin-6/metabolism
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Diet
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Lipid Metabolism/drug effects
- Catalase/metabolism
- DNA-Binding Proteins
- PPAR alpha
Collapse
Affiliation(s)
- Thamara Cherem Peixoto
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fernanda Torres Quitete
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ananda Vitoria Silva Teixeira
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bruna Cadete Martins
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ricardo de Andrade Soares
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Geórgia Correa Atella
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela Castro Resende
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daniela de Barros Mucci
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil; Department of Morphology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Dong S, Jiang M, Sun Q, Xu J, Zhang L, Han L, Li YN, Zhou Z, Xu Y. Aspartate restrains thermogenesis by inhibiting the AMPK pathway in adipose tissues. Food Funct 2024; 15:11564-11577. [PMID: 39499545 DOI: 10.1039/d4fo03614j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Increasing evidence suggests that brown adipose tissue (BAT) plays an important role in obesity and related diseases. Great progress has been made in identifying positive regulators that activate adipocyte thermogenesis, but negative regulatory signaling of thermogenesis remains poorly understood. Here, we evaluated the potential effects of aspartate on the BAT function. We found that the circulating aspartate level is positively associated with metabolic syndrome and obesity in adults. Acute cold exposure significantly increases BAT aspartate as well as other amino acid levels in mice. In this regard, we speculate that aspartate may play a role in regulating the BAT function and systemic energy homeostasis. To verify the hypothesis, we altered aspartate availability to explore the effects on adipose tissue metabolism. Supplementation of aspartate exogenously inhibits the thermogenic gene expression and cold tolerance in mice. Intriguingly, aspartate bioavailability inhibits mitochondrial biosynthesis essentially through the suppression of mechanistic targeting of the AMPK cascade. Therefore, an evaluation of whether a diet deficient in aspartate will increase oxidative phosphorylation in the mitochondria to reestablish aspartate levels and therefore increase the energy expenditure will be interesting because these effects can prevent or ameliorate the development of obesity.
Collapse
Affiliation(s)
- Shengjun Dong
- Binzhou Medical University Hospital, 661 Huanghe 2nd Rd, Binzhou City, 256603, P.R. China.
| | - Mengxin Jiang
- Binzhou Medical University Hospital, 661 Huanghe 2nd Rd, Binzhou City, 256603, P.R. China.
- The First School of Clinical Medicine (Binzhou Medical University), 522 Huanghe 3rd Rd, Binzhou City, 256603, P.R. China
| | - Qinglei Sun
- Binzhou Medical University Hospital, 661 Huanghe 2nd Rd, Binzhou City, 256603, P.R. China.
| | - Junqing Xu
- Binzhou Medical University Hospital, 661 Huanghe 2nd Rd, Binzhou City, 256603, P.R. China.
- The First School of Clinical Medicine (Binzhou Medical University), 522 Huanghe 3rd Rd, Binzhou City, 256603, P.R. China
| | - Lei Zhang
- Binzhou Medical University Hospital, 661 Huanghe 2nd Rd, Binzhou City, 256603, P.R. China.
| | - Lei Han
- Binzhou Medical University Hospital, 661 Huanghe 2nd Rd, Binzhou City, 256603, P.R. China.
| | - Yan-Na Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, 346 Guanhai Rd, Yantai City, 264003, P.R. China.
| | - Zhengtong Zhou
- Institute of Medical Genomics, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan City, 271016, P.R. China.
| | - Yingjiang Xu
- Binzhou Medical University Hospital, 661 Huanghe 2nd Rd, Binzhou City, 256603, P.R. China.
| |
Collapse
|
11
|
Longo M, Bishnu A, Risiglione P, Montava-Garriga L, Cuenco J, Sakamoto K, MacKintosh C, Ganley IG. Opposing roles for AMPK in regulating distinct mitophagy pathways. Mol Cell 2024; 84:4350-4367.e9. [PMID: 39532100 DOI: 10.1016/j.molcel.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Mitophagy degrades damaged mitochondria, but we show here that it can also target functional mitochondria. This latter scenario occurs during programmed mitophagy and involves the mitophagy receptors NIX and BNIP3. Although AMP-activated protein kinase (AMPK), the energy-sensing protein kinase, can influence damaged-induced mitophagy, its role in programmed mitophagy is unclear. We found that AMPK directly inhibits NIX-dependent mitophagy by triggering 14-3-3-mediated sequestration of ULK1, via ULK1 phosphorylation at two sites: Ser556 and an additional identified site, Ser694. By contrast, AMPK activation increases Parkin phosphorylation and enhances the rate of depolarization-induced mitophagy, independently of ULK1. We show that this happens both in cultured cells and tissues in vivo, using the mito-QC mouse model. Our work unveils a mechanism whereby AMPK activation downregulates mitophagy of functional mitochondria but enhances that of dysfunctional/damaged ones.
Collapse
Affiliation(s)
- Marianna Longo
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Aniketh Bishnu
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Pierpaolo Risiglione
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Lambert Montava-Garriga
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Joyceline Cuenco
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Carol MacKintosh
- Division of Molecular Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, Scotland.
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland.
| |
Collapse
|
12
|
Felemban AH, Alshammari GM, Yagoub AEA, Saleh A, Yahya MA. Royal Jelly Exerts a Potent Anti-Obesity Effect in Rats by Activating Lipolysis and Suppressing Adipogenesis. Nutrients 2024; 16:3174. [PMID: 39339774 PMCID: PMC11435164 DOI: 10.3390/nu16183174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objective: This study examined the anti-obesity effect of royal jelly (RJ) in rats fed with a high-fat diet by targeting the major pathways involved in adipogenesis and lipolysis. In addition, it examined whether this effect is AMPK-dependent. Methods: Five groups of adult male albino rats were used (n = 6 each as 1); the control rats were fed with a normal diet (2.9 kcal), and the other groups were as follows: control + RJ (300 mg/kg), HFD (4.75 kcal), HFD + RJ (300 mg/kg), and HFD + RJ (300 mg/kg) + dorsomorphin (an AMPK inhibitor) (0.2 mg/kg). Results: RJ was administered orally to all rats. With no changes in food and energy intake, RJ significantly reduced gains in body weight, fat weight, body mass index (BMI), the Lee index, abdominal circumference (AC), and the adiposity index (AI). It also reduced fasting glucose and insulin levels, HOMA-IR, and the circulatory levels of free fatty acids (FFAs), triglycerides, cholesterol, and LDL-c in the HFD-fed rats. RJ also increased serum glycerol levels and adiponectin levels, but reduced the serum levels of leptin, IL-6, and TNF-α. Moreover, RJ reduced the secretion of IL-6 and TNF-α from isolated WAT. At the tissue level, the HFD + RJ rats exhibited a smaller adipocyte size compared to the HFD rats. At the molecular level, RJ increased the phosphorylation of AMPK, SREBP1, and ACC-1 and increased the mRNA and protein levels of HSL and ATG in the WAT of the HFD rats. In concomitance, RJ increased the mRNA levels of PGC-α1, reduced the protein levels of PPARγ, and repressed the transcriptional activities of PPARγ, SREBP1, and C/EBPαβ in the WAT of these rats. All the aforementioned effects of RJ were prevented by co-treatment with dorsomorphin. Conclusions: RJ exerts a potent anti-obesity effect in rats that is mediated by the AMPk-dependent suppression of WAT adipogenesis and the stimulation of lipolysis.
Collapse
Affiliation(s)
- Alaa Hasanain Felemban
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Saleh
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Branquinho J, Neves RL, Martin RP, Arata JG, Bittencourt CA, Araújo RC, Icimoto MY, Pesquero JB. Kinin B1 receptor deficiency promotes enhanced adipose tissue thermogenic response to β3-adrenergic stimulation. Inflamm Res 2024; 73:1565-1579. [PMID: 39017739 DOI: 10.1007/s00011-024-01917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE AND DESIGN Kinin B1 receptor (B1R) has a key role in adipocytes to protect against obesity and glycemic metabolism, thus becoming a potential target for regulation of energy metabolism and adipose tissue thermogenesis. MATERIAL OR SUBJECTS Kinin B1 knockout mice (B1KO) were subjected to acute induction with CL 316,243 and chronic cold exposure. METHODS Metabolic and histological analyses, gene and protein expression and RNA-seq were performed on interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) of mice. RESULTS B1KO mice, under acute effect of CL 316,243, exhibited increased energy expenditure and upregulated thermogenic genes in iWAT. They were also protected from chronic cold, showing enhanced non-shivering thermogenesis with increased iBAT mass (~ 90%) and recruitment of beige adipocytes in iWAT (~ 50%). Positive modulation of thermogenic and electron transport chain genes, reaching a 14.5-fold increase for Ucp1 in iWAT. RNA-seq revealed activation of the insulin signaling pathways for iBAT and oxidative phosphorylation, tricarboxylic acid cycle, and browning pathways for iWAT. CONCLUSION B1R deficiency induced metabolic and gene expression alterations in adipose tissue, activating thermogenic pathways and increasing energy metabolism. B1R antagonists emerge as promising therapeutic targets for regulating obesity and associated metabolic disorders, such as inflammation and diabetes.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Cold Temperature
- Dioxoles/pharmacology
- Energy Metabolism/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Bradykinin B1/genetics
- Receptor, Bradykinin B1/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Thermogenesis/drug effects
- Thiazoles/pharmacology
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
Collapse
Affiliation(s)
- Jéssica Branquinho
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Raquel L Neves
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Renan P Martin
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Júlia G Arata
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Clarissa A Bittencourt
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ronaldo C Araújo
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Y Icimoto
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - João B Pesquero
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Gómez-García I, Fernández-Quintela A, Portillo MP, Trepiana J. Changes in brown adipose tissue induced by resveratrol and its analogue pterostilbene in rats fed with a high-fat high-fructose diet. J Physiol Biochem 2024; 80:627-637. [PMID: 37843714 PMCID: PMC11502549 DOI: 10.1007/s13105-023-00985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023]
Abstract
Natural bioactive compounds have attracted a great deal of attention since some of them can act as thermogenesis activators. In recent years, special interest has been placed on resveratrol and its analogue pterostilbene, a dimethylether derivative that shows higher bioavailability. The aim of the present study is to compare the effects of resveratrol and its derivative pterostilbene on the thermogenic capacity of interscapular brown adipose tissue (iBAT) in rats under a high-fat high-fructose diet. Rats were divided into four experimental groups: control, high-fat high-fructose diet (HFHF) and HFHF diet supplemented with 30 mg/kg body weight/day of pterostilbene (PT30) or resveratrol (RSV30), for eight weeks. Weights of adipose tissues, iBAT triglycerides, carnitine palmitoyltransferase 1A (CPT1A) and citrate synthase (CS) activities, protein levels of uncoupling protein 1 (UCP1), sirtuins (SIRT1 and 3), AMP-activated protein kinase (AMPK), glucose transporter (GLUT4), fatty acid synthase (FAS), nuclear respiratory factor (NRF1), hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), CD36 and FATP1 fatty acid transporters, peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) activation and the batokines EPDR1 and NRG4 were assessed in iBAT. The results show that some key proteins related to thermogenesis were modified by either pterostilbene or resveratrol, although the lack of effects on other crucial proteins of the thermogenic machinery suggest that these compounds were not able to stimulate this process in iBAT. Overall, these data suggest that the effects of stilbenes on brown adipose tissue thermogenic capacity depend on the metabolic status, and more precisely on the presence or absence of obesity, although further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Iker Gómez-García
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria-Gasteiz, Spain
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - María Puy Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria-Gasteiz, Spain.
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain.
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Melini S, Lama A, Comella F, Opallo N, Del Piano F, Annunziata C, Mollica MP, Ferrante MC, Pirozzi C, Mattace Raso G, Meli R. Targeting liver and adipose tissue in obese mice: Effects of a N-acylethanolamine mixture on insulin resistance and adipocyte reprogramming. Biomed Pharmacother 2024; 174:116531. [PMID: 38574624 DOI: 10.1016/j.biopha.2024.116531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
N-acylethanolamines (NAEs) are endogenous lipid-signalling molecules involved in inflammation and energy metabolism. The potential pharmacological effect of NAE association in managing inflammation-based metabolic disorders is unexplored. To date, targeting liver-adipose axis can be considered a therapeutic approach for the treatment of obesity and related dysfunctions. Here, we investigated the metabolic effect of OLALIAMID® (OLA), an olive oil-derived NAE mixture, in limiting liver and adipose tissue (AT) dysfunction of high-fat diet (HFD)-fed mice. OLA reduced body weight and fat mass in obese mice, decreasing insulin resistance (IR), as shown by homeostasis model assessment index, and leptin/adiponectin ratio, a marker of adipocyte dysfunction. OLA improved serum lipid and hepatic profile and the immune/inflammatory pattern of metainflammation. In liver of HFD mice, OLA treatment counteracted glucose and lipid dysmetabolism, restoring insulin signalling (phosphorylation of AKT and AMPK), and reducing mRNAs of key markers of fatty acid accumulation. Furthermore, OLA positively affected AT function deeply altered by HFD by reprogramming of genes involved in thermogenesis of interscapular brown AT (iBAT) and subcutaneous white AT (scWAT), and inducing the beigeing of scWAT. Notably, the NAE mixture reduced inflammation in iBAT and promoted M1-to-M2 macrophage shift in scWAT of obese mice. The tissue and systemic anti-inflammatory effects of OLA and the increased expression of glucose transporter 4 in scWAT contributed to the improvement of gluco-lipid toxicity and insulin sensitivity. In conclusion, we demonstrated that this olive oil-derived NAE mixture is a valid nutritional strategy to counteract IR and obesity acting on liver-AT crosstalk, restoring both hepatic and AT function and metabolism.
Collapse
Affiliation(s)
- S Melini
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - A Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - F Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - N Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - F Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples 80137, Italy
| | - C Annunziata
- Department of Bioscience and Nutrition Karolinska Institute Neo Building, Huddinge 14152, Sweden
| | - M P Mollica
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| | - M C Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples 80137, Italy
| | - C Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - G Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - R Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| |
Collapse
|
16
|
Su Y, Li X, Zhao J, Ji B, Zhao X, Feng J, Zhao J. Guanidinoacetic acid ameliorates hepatic steatosis and inflammation and promotes white adipose tissue browning in middle-aged mice with high-fat-diet-induced obesity. Food Funct 2024; 15:4515-4526. [PMID: 38567805 DOI: 10.1039/d3fo05201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yuan Su
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xinrui Li
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Jiamin Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Bingzhen Ji
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Xiaoyi Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Jinxin Feng
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Junxing Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Shanxi Agricultural University, Taigu 030801, PR China
| |
Collapse
|
17
|
Wang Q, Hu GL, Qiu MH, Cao J, Xiong WY. Coffee, tea, and cocoa in obesity prevention: Mechanisms of action and future prospects. Curr Res Food Sci 2024; 8:100741. [PMID: 38694556 PMCID: PMC11061710 DOI: 10.1016/j.crfs.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
Obesity, a major public health problem, causes numerous complications that threaten human health and increase the socioeconomic burden. The pathophysiology of obesity is primarily attributed to lipid metabolism disorders. Conventional anti-obesity medications have a high abuse potential and frequently deliver insufficient efficacy and have negative side-effects. Hence, functional foods are regarded as effective alternatives to address obesity. Coffee, tea, and cocoa, three widely consumed beverages, have long been considered to have the potential to prevent obesity, and several studies have focused on their intrinsic molecular mechanisms in past few years. Therefore, in this review, we discuss the mechanisms by which the bioactive ingredients in these three beverages counteract obesity from the aspects of adipogenesis, lipolysis, and energy expenditure (thermogenesis). The future prospects and challenges for coffee, tea, and cocoa as functional products for the treatment of obesity are also discussed, which can be pursued for future drug development and prevention strategies against obesity.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun Cao
- Key Laboratory for Transboundary Ecosecurity of Southwest China (Ministry of Education), Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Wen-Yong Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| |
Collapse
|
18
|
Liang D, Li G. Pulling the trigger: Noncoding RNAs in white adipose tissue browning. Rev Endocr Metab Disord 2024; 25:399-420. [PMID: 38157150 DOI: 10.1007/s11154-023-09866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
White adipose tissue (WAT) serves as the primary site for energy storage and endocrine regulation in mammals, while brown adipose tissue (BAT) is specialized for thermogenesis and energy expenditure. The conversion of white adipocytes to brown-like fat cells, known as browning, has emerged as a promising therapeutic strategy for reversing obesity and its associated co-morbidities. Noncoding RNAs (ncRNAs) are a class of transcripts that do not encode proteins but exert regulatory functions on gene expression at various levels. Recent studies have shed light on the involvement of ncRNAs in adipose tissue development, differentiation, and function. In this review, we aim to summarize the current understanding of ncRNAs in adipose biology, with a focus on their role and intricate mechanisms in WAT browning. Also, we discuss the potential applications and challenges of ncRNA-based therapies for overweight and its metabolic disorders, so as to combat the obesity epidemic in the future.
Collapse
Affiliation(s)
- Dehuan Liang
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
- Fifth School of Clinical Medicine (Beijing Hospital), Peking University, Beijing, 100730, People's Republic of China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China.
| |
Collapse
|
19
|
Xu C, Zhang X, Wang Y, Wang Y, Zhou Y, Li F, Hou X, Xia D. Dietary kaempferol exerts anti-obesity effects by inducing the browing of white adipocytes via the AMPK/SIRT1/PGC-1α signaling pathway. Curr Res Food Sci 2024; 8:100728. [PMID: 38577419 PMCID: PMC10990952 DOI: 10.1016/j.crfs.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Browning of white adipose tissue is a novel approach for the management of obesity and obesity-related metabolic disorders. Kaempferol (KPF) is a common dietary nutrient found abundantly in many fruits and vegetables and has been shown to have the potential to regulate lipid metabolism. However, the detailed mechanism by which it affects the browning of white adipose tissue remains unclear. In the present study, we sought to determine how KPF induces adipocytes to undergo a browning transformation by establishing a primary adipocyte model and an obese mouse model. Our results showed that KPF-treated mice were rescued from diet-induced obesity, glucose tolerance and insulin resistance, associated with increased expression of adaptive thermogenesis-related proteins. KPF-promoted white adipose browning correlated with the AMPK/SIRT1/PGC-1α pathway, as the use of an AMPK inhibitor in preadipocytes partially reversed the observed browning phenotype of KPF-treated cells. Taken together, these data suggest that KPF promotes browning of white adipose tissue through activation of the AMPK/SIRT1/PGC-1α pathway. This study demonstrates that KPF is a promising natural product for the treatment of obesity by promoting white fat browning.
Collapse
Affiliation(s)
- Changyu Xu
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoxi Zhang
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yihuan Wang
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Wang
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yixuan Zhou
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fenfen Li
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoli Hou
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Daozong Xia
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
20
|
Sharma C, Hamza A, Boyle E, Donu D, Cen Y. Post-Translational Modifications and Diabetes. Biomolecules 2024; 14:310. [PMID: 38540730 PMCID: PMC10968569 DOI: 10.3390/biom14030310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetes and its associated complications have increasingly become major challenges for global healthcare. The current therapeutic strategies involve insulin replacement therapy for type 1 diabetes (T1D) and small-molecule drugs for type 2 diabetes (T2D). Despite these advances, the complex nature of diabetes necessitates innovative clinical interventions for effective treatment and complication prevention. Accumulative evidence suggests that protein post-translational modifications (PTMs), including glycosylation, phosphorylation, acetylation, and SUMOylation, play important roles in diabetes and its pathological consequences. Therefore, the investigation of these PTMs not only sheds important light on the mechanistic regulation of diabetes but also opens new avenues for targeted therapies. Here, we offer a comprehensive overview of the role of several PTMs in diabetes, focusing on the most recent advances in understanding their functions and regulatory mechanisms. Additionally, we summarize the pharmacological interventions targeting PTMs that have advanced into clinical trials for the treatment of diabetes. Current challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Abu Hamza
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Emily Boyle
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; (C.S.); (A.H.); (E.B.); (D.D.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
21
|
Guo Y, Zhang Q, Yang D, Chen P, Xiao W. HIIT Promotes M2 Macrophage Polarization and Sympathetic Nerve Density to Induce Adipose Tissue Browning in T2DM Mice. Biomolecules 2024; 14:246. [PMID: 38540669 PMCID: PMC10968334 DOI: 10.3390/biom14030246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 01/05/2025] Open
Abstract
Browning of white adipose tissue (WAT) is a focus of research in type 2 diabetes mellitus (T2DM) and metabolism, which may be a potential molecular mechanism for high-intensity interval training (HIIT) to improve T2DM. In this study, male C57BL/6J wild-type mice were subjected to an 8-week HIIT regimen following T2DM induction through a high-fat diet (HFD) combined with streptozotocin (STZ) injection. We found that HIIT improved glucose metabolism, body weight, and fat mass in T2DM mice. HIIT also decreased adipocyte size and induced browning of WAT. Our data revealed a decrease in TNFα and an increase in IL-10 with HIIT, although the expression of chemokines MCP-1 and CXCL14 was increased. We observed increased pan-macrophage infiltration induced by HIIT, along with a simultaneous decrease in the expression of M1 macrophage markers (iNOS and CD11c) and an increase in M2 macrophage markers (Arg1 and CD206), suggesting that HIIT promotes M2 macrophage polarization. Additionally, HIIT upregulated the expression of Slit3 and neurotrophic factors (BDNF and NGF). The expression of the sympathetic marker tyrosine hydroxylase (TH) and the nerve growth marker GAP43 was also increased, demonstrating the promotion of sympathetic nerve growth and density by HIIT. Notably, we observed macrophages co-localizing with TH, and HIIT induced the accumulation of M2 macrophages around sympathetic nerves, suggesting a potential association between M2 macrophages and increased density of sympathetic nerves. In conclusion, HIIT induces adipose tissue browning and improves glucose metabolism in T2DM mice by enhancing M2 macrophage polarization and promoting sympathetic nerve growth and density.
Collapse
Affiliation(s)
- Yifan Guo
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (Y.G.); (Q.Z.); (D.Y.)
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Qilong Zhang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (Y.G.); (Q.Z.); (D.Y.)
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Dan Yang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (Y.G.); (Q.Z.); (D.Y.)
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Peijie Chen
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (Y.G.); (Q.Z.); (D.Y.)
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (Y.G.); (Q.Z.); (D.Y.)
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
22
|
Jaeckstein MY, Schulze I, Zajac MW, Heine M, Mann O, Pfeifer A, Heeren J. CD73-dependent generation of extracellular adenosine by vascular endothelial cells modulates de novo lipogenesis in adipose tissue. Front Immunol 2024; 14:1308456. [PMID: 38264660 PMCID: PMC10803534 DOI: 10.3389/fimmu.2023.1308456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Next to white and brown adipocytes present in white and brown adipose tissue (WAT, BAT), vascular endothelial cells, tissue-resident macrophages and other immune cells have important roles in maintaining adipose tissue homeostasis but also contribute to the etiology of obesity-associated chronic inflammatory metabolic diseases. In addition to hormonal signals such as insulin and norepinephrine, extracellular adenine nucleotides modulate lipid storage, fatty acid release and thermogenic responses in adipose tissues. The complex regulation of extracellular adenine nucleotides involves a network of ectoenzymes that convert ATP via ADP and AMP to adenosine. However, in WAT and BAT the processing of extracellular adenine nucleotides and its relevance for intercellular communications are still largely unknown. Based on our observations that in adipose tissues the adenosine-generating enzyme CD73 is mainly expressed by vascular endothelial cells, we studied glucose and lipid handling, energy expenditure and adaptive thermogenesis in mice lacking endothelial CD73 housed at different ambient temperatures. Under conditions of thermogenic activation, CD73 expressed by endothelial cells is dispensable for the expression of thermogenic genes as well as energy expenditure. Notably, thermoneutral housing leading to a state of low energy expenditure and lipid accumulation in adipose tissues resulted in enhanced glucose uptake into WAT of endothelial CD73-deficient mice. This effect was associated with elevated expression levels of de novo lipogenesis genes. Mechanistic studies provide evidence that extracellular adenosine is imported into adipocytes and converted to AMP by adenosine kinase. Subsequently, activation of the AMP kinase lowers the expression of de novo lipogenesis genes, most likely via inactivation of the transcription factor carbohydrate response element binding protein (ChREBP). In conclusion, this study demonstrates that endothelial-derived extracellular adenosine generated via the ectoenzyme CD73 is a paracrine factor shaping lipid metabolism in WAT.
Collapse
Affiliation(s)
- Michelle Y. Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Schulze
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Wolfgang Zajac
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Buyukdere Y, Akyol A. From a toxin to an obesogen: a review of potential obesogenic roles of acrylamide with a mechanistic approach. Nutr Rev 2023; 82:128-142. [PMID: 37155834 PMCID: PMC10711450 DOI: 10.1093/nutrit/nuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Obesity and obesity-related disorders such as cancer, type 2 diabetes, and fatty liver have become a global health problem. It is well known that the primary cause of obesity is positive energy balance. In addition, obesity is the consequence of complex gene and environment interactions that result in excess calorie intake being stored as fat. However, it has been revealed that there are other factors contributing to the worsening of obesity. The presence of nontraditional risk factors, such as environmental endocrine-disrupting chemicals, has recently been associated with obesity and comorbidities caused by obesity. The aim of this review was to examine the evidence and potential mechanisms for acrylamide having endocrine-disrupting properties contributing to obesity and obesity-related comorbidities. Recent studies have suggested that exposure to environmental endocrine-disrupting obesogens may be a risk factor contributing to the current obesity epidemic, and that one of these obesogens is acrylamide, an environmental and industrial compound produced by food processing, particularly the processing of foods such as potato chips, and coffee. In addition to the known harmful effects of acrylamide in humans and experimental animals, such as neurotoxicity, genotoxicity, and carcinogenicity, acrylamide also has an obesogenic effect. It has been shown in the literature to a limited extent that acrylamide may disrupt energy metabolism, lipid metabolism, adipogenesis, adipocyte differentiation, and various signaling pathways, and may exacerbate the disturbances in metabolic and biochemical parameters observed as a result of obesity. Acrylamide exerts its main potential obesogenic effects through body weight increase, worsening of the levels of obesity-related blood biomarkers, and induction of adipocyte differentiation and adipogenesis. Additional mechanisms may be discovered. Further experimental studies and prospective cohorts are needed, both to supplement existing knowledge about acrylamide and its effects, and to clarify its established relationship with obesity and its comorbidities.
Collapse
Affiliation(s)
- Yucel Buyukdere
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Asli Akyol
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
24
|
Chen S, Fu Y, Wang T, Chen Z, Zhao P, Huang X, Qiao M, Li T, Song L. Effect of 2'-Fucosyllactose on Beige Adipocyte Formation in 3T3-L1 Adipocytes and C3H10T1/2 Cells. Foods 2023; 12:4137. [PMID: 38002194 PMCID: PMC10670332 DOI: 10.3390/foods12224137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
2'-Fucosyllactose (2'-FL), the functional oligosaccharide naturally present in milk, has been shown to exert health benefits. This study was aimed to investigate the effect of 2'-fucosyllactose (2'-FL) on the browning of white adipose tissue in 3T3-L1 adipocytes and C3H10T1/2 cells. The results revealed that 2'-FL decreased lipid accumulations with reduced intracellular triglyceride contents in vitro. 2'-FL intervention increased the mitochondria density and the proportion of UCP1-positive cells. The mRNA expressions of the mitochondrial biogenesis-related and browning markers (Cox7a, Cyto C, Tfam, Ucp1, Pgc1α, Prdm16, Cidea, Elovl3, Pparα, CD137, and Tmem26) were increased after 2'-FL intervention to some extent. Similarly, the protein expression of the browning markers, including UCP1, PGC1α, and PRDM16, was up-regulated in the 2'-FL group. Additionally, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor, compound C (1 μM), significantly decreased the induction of thermogenic proteins expressions mediated by 2'-FL, indicating that the 2'-FL-enhanced beige cell formation was partially dependent on the AMPK pathway. In conclusion, 2'-FL effectively promoted the browning of white adipose in vitro.
Collapse
Affiliation(s)
- Siru Chen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Yankun Fu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Zhenglin Chen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Peijun Zhao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
25
|
Göransson O, Kopietz F, Rider MH. Metabolic control by AMPK in white adipose tissue. Trends Endocrinol Metab 2023; 34:704-717. [PMID: 37673765 DOI: 10.1016/j.tem.2023.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
White adipose tissue (WAT) plays an important role in the integration of whole-body metabolism by storing fat and mobilizing triacylglycerol when needed. The released free fatty acids can then be oxidized by other tissues to provide ATP. AMP-activated protein kinase (AMPK) is a key regulator of metabolic pathways, and can be targeted by a new generation of direct, small-molecule activators. AMPK activation in WAT inhibits insulin-stimulated lipogenesis and in some situations also inhibits insulin-stimulated glucose uptake, but AMPK-induced inhibition of β-adrenergic agonist-stimulated lipolysis might need to be re-evaluated in vivo. The lack of dramatic effects of AMPK activation on basal metabolism in WAT could be advantageous when treating type 2 diabetes with pharmacological pan-AMPK activators.
Collapse
Affiliation(s)
- Olga Göransson
- Lund University, Department of Experimental Medical Science, BMC, 221 84 Lund, Sweden.
| | - Franziska Kopietz
- Lund University, Department of Experimental Medical Science, BMC, 221 84 Lund, Sweden
| | - Mark H Rider
- Université catholique de Louvain (UCLouvain) and de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium
| |
Collapse
|
26
|
Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon 2023; 9:e21233. [PMID: 38027723 PMCID: PMC10663750 DOI: 10.1016/j.heliyon.2023.e21233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes has emerged as one the leading detrimental factors for human life expectancy worldwide. The disease is mainly considered as outcome of dysregulation in glucose metabolism, resulting in consistent high glucose concentration in blood. At initial stages, the diabetes particularly type 2 diabetes, is manageable by lifestyle interventions such as regular physical activity and diet with less carbohydrates. However, in advance stage, regular intake of external insulin dose and medicines like metformin are recommended. The long-term consumption of metformin is associated with several side effects such as nausea, vomiting, diarrhoea, lectic acidosis etc., In this scenario, several plant-based medicines have shown promising potential for the prevention and treatment of diabetes. Berberine is the bioactive compound present in the different plant parts of berberis family. Biochemical studies have shown that berberine improve insulin sensitivity and insulin secretion. Additionally, berberine induces glucose metabolism by activating AMPK signaling and inhibition of inflammation. A series of studies have demonstrated the antidiabetic potential of berberine at in vitro, pre-clinical and clinical trials. This review provides comprehensive details of preventive and therapeutic potential of berberine against diabetes.
Collapse
Affiliation(s)
- Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Anamika Sharma
- National Institute of Pharmaceutical and Education and Research 500037, Hyderabad, India
| | - Nishant Saxena
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Rashmi Bhamra
- Global Research Institute of Pharmacy, Radour-135133, Haryana, India
| | - Sandeep Kumar
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| |
Collapse
|
27
|
Zhou Y, Xu B. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins. Crit Rev Food Sci Nutr 2023; 63:12372-12397. [PMID: 35866515 DOI: 10.1080/10408398.2022.2101425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a long-term metabolic disorder that manifests as chronic hyperglycemia and impaired insulin, bringing a heavy load on the global health care system. Considering the inevitable side effects of conventional anti-diabetic drugs, saponins-rich natural products exert promising therapeutic properties to serve as safer and more cost-effective alternatives for DM management. Herein, this review systematically summarized the research progress on the anti-diabetic properties of dietary saponins and their underlying molecular mechanisms in the past 20 years. Dietary saponins possessed the multidirectional anti-diabetic capabilities by concurrent regulation of various signaling pathways, such as IRS-1/PI3K/Akt, AMPK, Nrf2/ARE, NF-κB-NLRP3, SREBP-1c, and PPARγ, in liver, pancreas, gut, and skeletal muscle. However, the industrialization and commercialization of dietary saponin-based drugs are confronted with a significant challenge due to the low bioavailability and lack of the standardization. Hence, in-depth evaluations in pharmacological profile, function-structure interaction, drug-signal pathway interrelation are essential for developing dietary saponins-based anti-diabetic treatments in the future.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
28
|
Cheng L, Shi L, He C, Wang C, Lv Y, Li H, An Y, Duan Y, Dai H, Zhang H, Huang Y, Fu W, Sun W, Zhao B. Mulberry leaf flavonoids activate BAT and induce browning of WAT to improve type 2 diabetes via regulating the AMPK/SIRT1/PGC-1α signaling pathway. Chin J Nat Med 2023; 21:812-829. [PMID: 38035937 DOI: 10.1016/s1875-5364(23)60481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 12/02/2023]
Abstract
Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic β cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.
Collapse
Affiliation(s)
- Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Lu Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yinglan Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huimin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huilin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Weiguang Sun
- GuangZhou Baiyunshan Xingqun Pharmaceutical Co., Ltd., Guangzhou 510288, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
29
|
Bae IS, Lee JA, Cho SH, Kim HW, Kim Y, Seo K, Cho HW, Lee MY, Chun JL, Kim KH. Rabbit Meat Extract Induces Browning in 3T3-L1 Adipocytes via the AMP-Activated Protein Kinase Pathway. Foods 2023; 12:3671. [PMID: 37835324 PMCID: PMC10572372 DOI: 10.3390/foods12193671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The browning of white adipocytes may be an innovative approach to address obesity. This study investigated the effects of rabbit meat extract on 3T3-L1 adipocytes, with a specific emphasis on inducing browning. The browning effects of rabbit meat extract were evaluated by analyzing genes specifically expressed in 3T3-L1 adipocytes using quantitative PCR and immunoblotting. Rabbit meat extract increased the expression of brown adipocyte-specific markers, UCP1 and PGC1α, and mitochondrial biogenesis factors, TFAM and NRF1, without affecting cell viability in fully differentiated 3T3-L1 adipocytes. Moreover, adipocyte differentiation and the triglyceride content were decreased; hormone-sensitive lipase activity was promoted. Rabbit meat extract activated the AMPK pathway in the differentiated 3T3-L1 cells. However, in adipocytes treated with rabbit meat extract, the expression of genes related to browning was reduced by the AMP-activated protein kinase (AMPK) inhibitor, dorsomorphin dihydrochloride. To the best of our knowledge, this is the first study to demonstrate that rabbit meat extract induces the browning of white adipocytes via the activation of the AMPK pathway, thereby demonstrating its therapeutic potential in preventing obesity.
Collapse
Affiliation(s)
- In-Seon Bae
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Jeong Ah Lee
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Soo-Hyun Cho
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Hyoun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Yunseok Kim
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Kangmin Seo
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Hyun-Woo Cho
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Min Young Lee
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| |
Collapse
|
30
|
Dong M, An K, Mao L. High levels of uric acid inhibit BAT thermogenic capacity through regulation of AMPK. Am J Physiol Endocrinol Metab 2023; 325:E376-E389. [PMID: 37732807 PMCID: PMC10642990 DOI: 10.1152/ajpendo.00092.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/22/2023]
Abstract
Hyperuricemia (HUA) is strongly associated with the increasing prevalence of obesity, but the underlying mechanism remains elusive. Dysfunction of brown adipose tissue (BAT) could lead to obesity. However, studies on the role of HUA on BAT are lacking. Our retrospective clinical analysis showed that serum uric acid (UA) is significantly associated with BAT in humans. To investigate the role of UA in regulating BAT function, we used UA to treat primary brown adipocytes (BACs) in vitro and established HUA mice. In vitro results showed that HUA suppressed thermogenic gene expression and oxygen consumption rate. Accordingly, HUA mice exhibited lower energy expenditure and body temperature, with larger lipid droplets and lower thermogenic gene expression. These results demonstrate that HUA inhibits BAT thermogenic capacity in vitro and in vivo. To further elucidate the mechanism of UA on adipocytes, mRNA-sequencing analysis was performed and screened for "AMP-activated protein kinase (AMPK) signaling pathway" and "mitochondrial biogenesis." Further tests in vivo and in vitro showed that the phosphorylation of AMPK was suppressed by HUA. Activation of AMPK alleviated the inhibition of AMPK phosphorylation by HUA and increased mitochondrial biogenesis, subsequently restoring the impaired BAT thermogenic capacity in vitro and vivo. Thus, we confirmed that HUA suppresses mitochondrial biogenesis by regulating AMPK, thereby inhibiting BAT thermogenic capacity. Taken together, our study identifies UA as a novel regulator of BAT thermogenic capacity, providing a new strategy to combat obesity.NEW & NOTEWORTHY To investigate the effect and mechanism of UA on BAT thermogenic capacity, we established HUA models in vitro and in vivo, and performed RNA sequencing analysis. Our results revealed that HUA suppresses mitochondrial biogenesis by regulating AMPK, thereby inhibiting BAT thermogenic capacity. Taken together, our study identifies UA as a novel regulator of BAT thermogenic capacity, providing a new strategy to combat obesity.
Collapse
Affiliation(s)
- Meijuan Dong
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Kun An
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Li Mao
- Department of Endocrinology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
31
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
32
|
Chung M, Hwang J, Park S. Antiobesity effects of onion ( Allium cepa) in subjects with obesity: Systematic review and meta-analysis. Food Sci Nutr 2023; 11:4409-4418. [PMID: 37576046 PMCID: PMC10420769 DOI: 10.1002/fsn3.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 04/30/2023] [Indexed: 08/15/2023] Open
Abstract
Onions are rich in bioactive compounds and have been found to prevent various chronic diseases, including obesity. We performed a systematic review and meta-analysis to investigate the antiobesity effect of onions. Studies were identified in PubMed/MEDLINE, Embase, Web of Science, and CENTRAL focusing on clinical trials evaluating the antiobesity effects of onion in obese subjects. The risk of bias in the studies was evaluated using Cochrane's Risk of Bias tool. The effect of onions was analyzed using data from the selected studies, and the results were indicated by weighted mean difference with 95% CI. The I 2 static test was used to examine heterogeneity between the studies. A total of 38 studies were reviewed, of which five clinical trials meeting the criteria were selected. As investigational products, onion peels were used in four studies and onions were used in one study. Following systematic review, it was determined that the risk of bias was generally low, and body weight, BMI, waist circumference, and triglyceride levels were significantly reduced in the onion groups compared to the placebo. In conclusion, onion intake had an antiobesity effect by reducing body weight and body fat, and this effect was particularly pronounced with onion peel.
Collapse
Affiliation(s)
- Min‐Yu Chung
- Department of Food and NutritionGangseo UniversitySeoulKorea
| | - Jin‐Taek Hwang
- Food Functionality Research DivisionKorea Food Research InstituteWanjuKorea
| | - Soo‐Hyun Park
- Food Functionality Research DivisionKorea Food Research InstituteWanjuKorea
| |
Collapse
|
33
|
Zhang J, Xi Y, Fei Q, Xu J, Hu J. Identification of tRNA-derived RNAs in adipose tissue from overweight type 2 diabetes mellitus patients and their potential biological functions. Front Endocrinol (Lausanne) 2023; 14:1139157. [PMID: 37484941 PMCID: PMC10358832 DOI: 10.3389/fendo.2023.1139157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM)causes a huge public health burden worldwide, especially for those who are overweight or obese, the pain is often greater. And search for effective targets in overweight T2DM could help improve patient quality of life and prognosis. tRNA-derived RNAs (tsRNAs) are multifunctional regulators that are currently receiving much attention, but there is still a lack of knowledge about tsRNAs in overweight T2DM. Methods T2DM patients with BMI ≥ 25 (Overweight group) and BMI< 25 (Control group) were subjected to tsRNA sequencing; differentially expressed tsRNAs in the two groups were analyzed and their expression was verified using qRT-PCR. The biological function of downstream target genes was also evaluated by enrichment analysis. Results qRT-PCR evaluation identified a tsRNA with up-regulated expression (tRF-1-28-Glu-TTC-3-M2) and a tsRNA with down-regulated expression (tRF-1-31-His-GTG-1), both of which may be involved in metabolic and energy-related processes. Conclusion Dysregulation of tsRNA expression in overweight patients with T2DM suggests a potential role for tsRNA in the development of T2DM.
Collapse
|
34
|
Khaledi K, Hoseini R, Gharzi A. Effects of aerobic training and vitamin D supplementation on glycemic indices and adipose tissue gene expression in type 2 diabetic rats. Sci Rep 2023; 13:10218. [PMID: 37353689 PMCID: PMC10290097 DOI: 10.1038/s41598-023-37489-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/22/2023] [Indexed: 06/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder mainly caused by overweight and obesity that accumulates pro-inflammatory factors in adipose tissue. Studies have confirmed the efficacy of exercise and vitamin D supplementation in preventing, controlling, and treating diabetes. While, reduced physical activity and vitamin D deficiency are related to increased adiposity, blood glucose level, insulin concentration, and insulin resistance. This study purposed to investigate the effect of 8-week aerobic training with vitamin D supplementation on the expression of AMPK, PGC-1α, and UCP-1 genes expression in the visceral adipose tissue of obese rats with T2DM. In this experimental study, fifty male Wistar rats were divided into 5 groups (n = 10): aerobic training and vitamin D supplementation (AT + Vit D), aerobic training (5 days/week for 8 weeks; AT), vitamin D supplementation (Vit D), diabetic control (C) and NC (Non-Diabetic Control). AT + Vit D and AT groups practiced an 8-week aerobic training, 5 days a week. Vit D and AT + Vit D groups receive 5000 IU of vitamin D by injection once a week while AT and C received sesame oil. After blood sampling, visceral fat was taken to measure AMPK, PGC-1α, and UCP1 gene expression. Data were statistically analyzed by One-way ANOVA and paired sample t-test at a significance level of p < 0.05. Based on our results BW, BMI, WC, visceral fat, insulin, glucose, and HOMA-IR were significantly lower in the AT + Vit D, AT, and Vit D groups compared with the C group (p < 0.01). Furthermore, AT + Vit D, AT, and Vit D upregulated AMPK, PGC-1α, and UCP1 gene expression compared to the C. Based on the results compared to AT and Vit D, AT + Vit D significantly upregulated AMPK (p = 0.004; p = 0.001), PGC-1α (p = 0.010; p = 0.001), and UCP1 (p = 0.032; p = 0.001) gene expression, respectively. Also, AT induced more significant upregulations in the AMPK (p = 0.001), PGC-1α (p = 0.001), and UCP1 gene expression (p = 0.001) than Vit D. Vitamin D supplementation enhanced the beneficial effects of aerobic training on BW, BMI, WC, visceral fat, insulin, glucose, and HOMA-IR in diabetic rats. We also observed that separate AT or Vit D upregulated the gene expression of AMPK, PGC-1α, and UCP1 however, combined AT + Vit D upregulated AMPK, PGC-1α, and UCP1 more significantly. These results suggested that combining aerobic training and vitamin D supplementation exerted incremental effects on the gene expressions related to adipose tissue in animal models of diabetes.
Collapse
Affiliation(s)
- Kimya Khaledi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O. Box. 6714414971, Kermanshah, Iran
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O. Box. 6714414971, Kermanshah, Iran.
| | - Ahmad Gharzi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
35
|
Wu MF, Xi QH, Sheng Y, Wang YM, Wang WY, Chi CF, Wang B. Antioxidant Peptides from Monkfish Swim Bladders: Ameliorating NAFLD In Vitro by Suppressing Lipid Accumulation and Oxidative Stress via Regulating AMPK/Nrf2 Pathway. Mar Drugs 2023; 21:360. [PMID: 37367685 DOI: 10.3390/md21060360] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, we investigate the ameliorating functions of QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) from monkfish swim bladders on an FFA-induced NAFLD model of HepG2 cells. The lipid-lowering mechanisms revealed that these five oligopeptides can up-regulate the expression of phospho-AMP-activated protein kinase (p-AMPK) proteins to inhibit the expression of the sterol regulatory element binding protein-1c (SREBP-1c) proteins on increasing lipid synthesis and up-regulating the expression of the PPAP-α and CPT-1 proteins on promoting the β-oxidation of fatty acids. Moreover, QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) can significantly inhibit reactive oxygen species' (ROS) production, promote the activities of intracellular antioxidases (superoxide dismutase, SOD; glutathione peroxidase, GSH-PX; and catalase, CAT) and bring down the content of malondialdehyde (MDA) derived from lipid peroxidation. Further investigations revealed that the regulation of these five oligopeptides on oxidative stress was achieved through activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to raise the expression levels of the heme oxygenase 1 (HO-1) protein and downstream antioxidant proteases. Therefore, QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) could serve as candidate ingredients to develop functional products for treating NAFLD.
Collapse
Affiliation(s)
- Ming-Feng Wu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing-Hao Xi
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yan Sheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wan-Yi Wang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
36
|
Chae SA, Du M, Son JS, Zhu MJ. Exercise improves homeostasis of the intestinal epithelium by activation of apelin receptor-AMP-activated protein kinase signalling. J Physiol 2023; 601:2371-2389. [PMID: 37154385 PMCID: PMC10280693 DOI: 10.1113/jp284552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Intestinal remodelling is dynamically regulated by energy metabolism. Exercise is beneficial for gut health, but the specific mechanisms remain poorly understood. Intestine-specific apelin receptor (APJ) knockdown (KD) and wild-type male mice were randomly divided into two subgroups, with/without exercise, to obtain four groups: WT, WT with exercise, APJ KD and APJ KD with exercise. Animals in the exercise groups were subjected to daily treadmill exercise for 3 weeks. Duodenum was collected at 48 h after the last bout of exercise. AMP-activated protein kinase (AMPK) α1 KD and wild-type mice were also utilized for investigating the mediatory role of AMPK on exercise-induced duodenal epithelial development. AMPK and peroxisome proliferator-activated receptor γ coactivator-1 α were upregulated by exercise via APJ activation in the intestinal duodenum. Correspondingly, exercise induced permissive histone modifications in the PR domain containing 16 (PRDM16) promoter to activate its expression, which was dependent on APJ activation. In agreement, exercise elevated the expression of mitochondrial oxidative markers. The expression of intestinal epithelial markers was downregulated due to AMPK deficiency, and AMPK signalling facilitated epithelial renewal. These data demonstrate that exercise-induced activation of the APJ-AMPK axis facilitates the homeostasis of the intestinal duodenal epithelium. KEY POINTS: Apelin receptor (APJ) signalling is required for improved epithelial homeostasis of the small intestine in response to exercise. Exercise intervention activates PRDM16 through inducing histone modifications, enhanced mitochondrial biogenesis and fatty acid metabolism in duodenum. The morphological development of duodenal villus and crypt is enhanced by the muscle-derived exerkine apelin through the APJ-AMP-activated protein kinase axis.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
37
|
Sharma A, Anand SK, Singh N, Dwivedi UN, Kakkar P. AMP-activated protein kinase: An energy sensor and survival mechanism in the reinstatement of metabolic homeostasis. Exp Cell Res 2023; 428:113614. [PMID: 37127064 DOI: 10.1016/j.yexcr.2023.113614] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
Cells are programmed to favorably respond towards the nutrient availability by adapting their metabolism to meet energy demands. AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine energy-sensing kinase. It gets activated upon a decrease in the cellular energy status as reflected by an increased AMP/ATP ratio, ADP, and also during the conditions of glucose starvation without change in the adenine nucelotide ratio. AMPK functions as a centralized regulator of metabolism, acting at cellular and physiological levels to circumvent the metabolic stress by restoring energy balance. This review intricately highlights the integrated signaling pathways by which AMPK gets activated allosterically or by multiple non-canonical upstream kinases. AMPK activates the ATP generating processes (e.g., fatty acid oxidation) and inhibits the ATP consuming processes that are non-critical for survival (e.g., cell proliferation, protein and triglyceride synthesis). An integrated signaling network with AMPK as the central effector regulates all the aspects of enhanced stress resistance, qualified cellular housekeeping, and energy metabolic homeostasis. Importantly, the AMPK mediated amelioration of cellular stress and inflammatory responses are mediated by stimulation of transcription factors such as Nrf2, SIRT1, FoxO and inhibition of NF-κB serving as main downstream effectors. Moreover, many lines of evidence have demonstrated that AMPK controls autophagy through mTOR and ULK1 signaling to fine-tune the metabolic pathways in response to different cellular signals. This review also highlights the critical involvement of AMPK in promoting mitochondrial health, and homeostasis, including mitophagy. Loss of AMPK or ULK1 activity leads to aberrant accumulation of autophagy-related proteins and defective mitophagy thus, connecting cellular energy sensing to autophagy and mitophagy.
Collapse
Affiliation(s)
- Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Department of Biochemistry, University of Lucknow, Lucknow, 226007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.
| | - Sumit Kr Anand
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Department of Pathology, LSU Health, 1501 Kings Hwy, Shreveport, LA, 71103, USA.
| | - Neha Singh
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | | | - Poonam Kakkar
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
38
|
Zong Y, Wang M, Liu Y, Suo X, Fan G, Yang X. 5-HEPE reduces obesity and insulin resistance by promoting adipose tissue browning through GPR119/AMPK/PGC1α activation. Life Sci 2023; 323:121703. [PMID: 37075946 DOI: 10.1016/j.lfs.2023.121703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
AIMS Activating thermogenic program in brown adipocytes serves as a potential therapeutic target for increasing energy expenditure during the treatment of metabolic diseases. 5(S)-hydroxy-eicosapentaenoic acid (5-HEPE), an omega-3 unsaturated fatty acid metabolite, has been shown to enhance insulin secretion in vitro. However, its role in modulating obesity-related diseases remains largely unclear. MAIN METHODS To investigate this further, mice were fed with a high-fat diet for 12 weeks and then injected intraperitoneally every other day with 5-HEPE for 4 additional weeks. KEY FINDINGS In vivo, our results demonstrated that 5-HEPE alleviated the HFD-induced obesity and insulin resistance, leading to a significant decrease in subcutaneous fat and epididymal fat index and an increase in brown fat index. Compared to the HFD group, the 5-HEPE group mice had lower ITT and GTT AUC and lower HOMA-IR. Moreover, 5HEPE effectively increased energy expenditure of mice. 5-HEPE also significantly promoted brown adipose tissue (BAT) activation and browning in white adipose tissue (WAT) by up-regulating genes and proteins expression of UCP1, Prdm16, Cidea, and PGC1α. In vitro, we found 5-HEPE significantly promoted 3T3-L1 browning. Mechanistically, 5-HEPE acts by activating the GPR119/AMPK/PGC1α pathway. In conclusion, this study emphasizes a critical role of 5-HEPE in improving body energy metabolism and adipose tissue browning in HFD-fed mice. SIGNIFICANCE Our results suggest that 5-HEPE intervention may be an effective target for preventing obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yibo Zong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengxuan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaxin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - XiaoYi Suo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guoqiang Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
39
|
Zheng Y, Lee SY, Lee Y, Lee TK, Kim JE, Kim TH, Kang IJ. Standardized Sanguisorba officinalis L. Extract Inhibits Adipogenesis and Promotes Thermogenesis via Reducing Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12040882. [PMID: 37107257 PMCID: PMC10135657 DOI: 10.3390/antiox12040882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Obesity produces many health problems, including systemic oxidative stress. This study comprehensively investigated the effects of Sanguisorba officinalis L. extract (SO) as an antioxidant on abnormal lipid accumulation and oxidative stress in 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese mice (n = 48). We evaluated the anti-adipogenic and antioxidant effects of SO on 3T3-L1 by cell viability, Oil red O staining, and NBT assays. The ameliorative effects of SO in HFD-induced C57BL/6J mice were investigated by measuring body weight, serum lipids, adipocyte size, hepatic steatosis, AMPK pathway-related proteins, and thermogenic factors. In addition, the effect of SO on oxidative stress in obese mice was evaluated by the activity of antioxidant enzymes and the production of lipid peroxidation products and ROS production in adipose tissue. We found that SO dose-dependently decreased lipid accumulation and ROS production in 3T3-L1 adipocytes. In C57BL/6J obese mice, SO (above 200 mg/kg) attenuated the HFD-induced gain in body weight and white adipose tissue (WAT) weight without affecting appetite. SO also decreased serum glucose, lipid, and leptin levels and attenuated adipocyte hypertrophy and hepatic steatosis. Furthermore, SO increased the expression of SOD1 and SOD2 in WAT, decreased ROS and lipid peroxides, and activated the AMPK pathway and thermogenic factors. In summary, SO reduces oxidative stress in adipose tissue by increasing antioxidant enzyme activity and improves obesity symptoms through AMPK-pathway-regulated energy metabolism and mitochondrial respiratory thermogenesis.
Collapse
Affiliation(s)
- Yulong Zheng
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - So-Yeon Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yeji Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ji Eun Kim
- Ju Yeong NS Co., Ltd., Seoul 05854, Republic of Korea
| | - Tae Hyeon Kim
- Ju Yeong NS Co., Ltd., Seoul 05854, Republic of Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
40
|
Cerri GC, Santos SHS, Bader M, Santos RAS. Brown adipose tissue transcriptome unveils an important role of the Beta-alanine/alamandine receptor, MrgD, in metabolism. J Nutr Biochem 2023; 114:109268. [PMID: 36641071 DOI: 10.1016/j.jnutbio.2023.109268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/28/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Alamandine is a recently described heptapeptide component of the renin-angiotensin system (RAS), and its effects are mediated by the receptor Mas-related G protein-coupled receptor D (MrgD) RAS represents an important link between obesity and its consequences by directly modulating the thermogenesis and brown adipose tissue (BAT) function. The alamandine/MrgD metabolic effects and signaling remain unexplored. In this context, the main goal of the present study was to assess the metabolic consequences of MrgD genetic ablation in C57BL6/J mice by evaluating brown adipose tissue RNA sequencing. The main results showed that MrgD-KO mice have diminished brown adipose tissue and that a high-glucose diet (HG) decreased both circulating alamandine levels and MrgD expression in BAT from wild-type mice (WT). BAT transcriptome reveals that MrgD-KO HG mice regulated 45 genes, while WT HG mice regulated 1,148 genes. MrgD-KO mice fed a standard diet (ST) compared with WT ST mice regulated 476 genes, of which 445 genes were downregulated. BAT uses the MrgD receptor to display a normal pattern of gene expression and to respond, like WT mice, to an HG diet. In conclusion, the MrgD signaling is important for the metabolic regulation and manutention of BAT functionality.
Collapse
Affiliation(s)
- Gabriela C Cerri
- Laboratory of Hypertension, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio H S Santos
- Institute of Agricultural Sciences, Food Engineering College, Federeal University of Minas Gerais, Montes Claros, Minas Gerais, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Robson A S Santos
- Laboratory of Hypertension, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
41
|
Shen Q, Chen Y, Shi J, Pei C, Chen S, Huang S, Li W, Shi X, Liang J, Hou S. Asperuloside alleviates lipid accumulation and inflammation in HFD-induced NAFLD via AMPK signaling pathway and NLRP3 inflammasome. Eur J Pharmacol 2023; 942:175504. [PMID: 36641101 DOI: 10.1016/j.ejphar.2023.175504] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome of hepatic parenchymal cell steatosis caused by excessive lipid deposition, which is the chronic liver disease with the highest incidence in China. Asperuloside (ASP), a kind of iridoid compound, possesses natural pharmacological effects of anti-tumor, anti-inflammatory, antioxidant and anti-obesity. However, whether ASP can improve NAFLD remains unclear. PURPOSE We aimed to investigate the effect of ASP on NAFLD mice induced by high-fat diet (HFD), and explore its mechanism in vivo and in vitro. METHODS Pharmacodynamics of ASP was studied by HFD induction in NAFLD mice. HepG2 cells were induced by palmitic acid (PA) as cell model to investigate the effect of ASP on lipid deposition and inflammatory infiltration. Expression of Adenosine monophosphate - activated protein kinase (AMPK) signaling pathway and NOD-like receptor pyrin containing 3 (NLRP3) inflammasome were detected by Western blot and RT-PCR. Cytokines IL-1β and TNF-α were detected by ELISA. RESULTS ASP alleviated liver injury and inflammatory damage in mice with NAFLD. In addition, ASP improved lipid deposition as well as inflammatory response in HFD-induced NAFLD mice and PA-stimulated HepG2 cells. ASP ameliorated lipid deposition and inflammatory response by regulating the p-AMPK/SREBP-1c signaling pathway and NLRP3 inflammasome. CONCLUSION Our results suggest that ASP improve lipid deposition and inflammatory infiltration in NAFLD mice via regulating the AMPK/SREBP-1c signaling pathway and NLRP3 inflammasome, which may be an effective candidate for the treatment of NAFLD.
Collapse
Affiliation(s)
- Qi Shen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jiaxi Shi
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Shuxian Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, Guangdong, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xuguang Shi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, Guangdong, China.
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
42
|
Pharmacological Activities of Mogrol: Potential Phytochemical against Different Diseases. Life (Basel) 2023; 13:life13020555. [PMID: 36836915 PMCID: PMC9959222 DOI: 10.3390/life13020555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Recently, mogrol has emerged as an important therapeutic candidate with multiple potential pharmacological properties, including neuroprotective, anticancer, anti-inflammatory, antiobesity, antidiabetes, and exerting a protective effect on different organs such as the lungs, bone, brain, and colon. Pharmacokinetic studies also highlighted the potential of mogrol as a therapeutic. Studies were also conducted to design and synthesize the analogs of mogrol to achieve better activities against different diseases. The literature also highlighted the possible molecular mechanism behind pharmacological activities, which suggested the role of several important targets, including AMPK, TNF-α, and NF-κB. These important mogrol targets were verified in different studies, indicating the possible role of mogrol in other associated diseases. Still, the compilation of pharmacological properties, possible molecular mechanisms, and important targets of the mogrol is missing in the literature. The current study not only provides the compilation of information regarding pharmacological activities but also highlights the current gaps and suggests the precise direction for the development of mogrol as a therapeutic against different diseases.
Collapse
|
43
|
Ziqubu K, Dludla PV, Mthembu SXH, Nkambule BB, Mabhida SE, Jack BU, Nyambuya TM, Mazibuko-Mbeje SE. An insight into brown/beige adipose tissue whitening, a metabolic complication of obesity with the multifactorial origin. Front Endocrinol (Lausanne) 2023; 14:1114767. [PMID: 36875450 PMCID: PMC9978510 DOI: 10.3389/fendo.2023.1114767] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Brown adipose tissue (BAT), a thermoregulatory organ known to promote energy expenditure, has been extensively studied as a potential avenue to combat obesity. Although BAT is the opposite of white adipose tissue (WAT) which is responsible for energy storage, BAT shares thermogenic capacity with beige adipose tissue that emerges from WAT depots. This is unsurprising as both BAT and beige adipose tissue display a huge difference from WAT in terms of their secretory profile and physiological role. In obesity, the content of BAT and beige adipose tissue declines as these tissues acquire the WAT characteristics via the process called "whitening". This process has been rarely explored for its implication in obesity, whether it contributes to or exacerbates obesity. Emerging research has demonstrated that BAT/beige adipose tissue whitening is a sophisticated metabolic complication of obesity that is linked to multiple factors. The current review provides clarification on the influence of various factors such as diet, age, genetics, thermoneutrality, and chemical exposure on BAT/beige adipose tissue whitening. Moreover, the defects and mechanisms that underpin the whitening are described. Notably, the BAT/beige adipose tissue whitening can be marked by the accumulation of large unilocular lipid droplets, mitochondrial degeneration, and collapsed thermogenic capacity, by the virtue of mitochondrial dysfunction, devascularization, autophagy, and inflammation.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, South Africa
| | - Sinenhlanhla X. H. Mthembu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sihle E. Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Babalwa U. Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Tawanda M. Nyambuya
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | | |
Collapse
|
44
|
Fatty Acids as Potent Modulators of Autophagy Activity in White Adipose Tissue. Biomolecules 2023; 13:biom13020255. [PMID: 36830623 PMCID: PMC9953325 DOI: 10.3390/biom13020255] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
A high-fat diet is one of the causative factors of obesity. The dietary profile of fatty acids is also an important variable in developing obesity, as saturated fatty acids are more obesogenic than monounsaturated and polyunsaturated fatty acids. Overweight and obesity are inseparably connected with the excess of adipose tissue in the body, characterized by hypertrophy and hyperplasia of fat cells, which increases the risk of developing metabolic syndrome. Changes observed within hypertrophic adipocytes result in elevated oxidative stress, unfolded protein accumulation, and increased endoplasmic reticulum (ER) stress. One of the processes involved in preservation of cellular homeostasis is autophagy, which is defined as an intracellular lysosome-dependent degradation system that serves to recycle available macromolecules and eliminate damaged organelles. In obesity, activation of autophagy is increased and the process appears to be regulated by different types of dietary fatty acids. This review describes the role of autophagy in adipose tissue and summarizes the current understanding of the effects of saturated and unsaturated fatty acids in autophagy modulation in adipocytes.
Collapse
|
45
|
Ma D, Wu T, Qu Y, Yang J, Cai L, Li X, Wang Y. Astragalus polysaccharide prevents heart failure-induced cachexia by alleviating excessive adipose expenditure in white and brown adipose tissue. Lipids Health Dis 2023; 22:9. [PMID: 36670439 PMCID: PMC9863193 DOI: 10.1186/s12944-022-01770-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Astragalus polysaccharide (APS) is a key active ingredient isolated from Astragalus membranaceus that has been reported to be a potential treatment for obesity and diabetes by regulating lipid metabolism and adipogenesis, alleviating inflammation, and improving insulin resistance. However, whether APS regulates lipid metabolism in the context of cachexia remains unclear. Therefore, this study analysed the effects of APS on lipid metabolism and adipose expenditure in a heart failure (HF)-induced cardiac cachexia rat model. METHODS: A salt-sensitive hypertension-induced cardiac cachexia rat model was used in the present study. Cardiac function was detected by echocardiography. The histological features and fat droplets in fat tissue and liver were observed by H&E staining and Oil O Red staining. Immunohistochemical staining, Western blotting and RT‒qPCR were used to detect markers of lipolysis and adipose browning in white adipose tissue (WAT) and thermogenesis in brown adipose tissue (BAT). Additionally, sympathetic nerve activity and inflammation in adipose tissue were detected. RESULTS Rats with HF exhibited decreased cardiac function and reduced adipose accumulation as well as adipocyte atrophy. In contrast, administration of APS not only improved cardiac function and increased adipose weight but also prevented adipose atrophy and FFA efflux in HF-induced cachexia. Moreover, APS inhibited HF-induced lipolysis and browning of white adipocytes since the expression levels of lipid droplet enzymes, including HSL and perilipin, and beige adipocyte markers, including UCP-1, Cd137 and Zic-1, were suppressed after administration of APS. In BAT, treatment with APS inhibited PKA-p38 MAPK signalling, and these effects were accompanied by decreased thermogenesis reflected by decreased expression of UCP-1, PPAR-γ and PGC-1α and reduced FFA β-oxidation in mitochondria reflected by decreased Cd36, Fatp-1 and Cpt1. Moreover, sympathetic nerve activity and interleukin-6 levels were abnormally elevated in HF rats, and astragalus polysaccharide could inhibit their activity. CONCLUSION APS prevented lipolysis and adipose browning in WAT and decreased BAT thermogenesis. These effects may be related to suppressed sympathetic activity and inflammation. This study provides a potential approach to treat HF-induced cardiac cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, 250014, Jinan, China
| | - Tao Wu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwei Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlong Yang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, 250014, Jinan, China
| | - Lu Cai
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, 250014, Jinan, China
| | - Xiao Li
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, 250014, Jinan, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, 250014, Jinan, China.
| |
Collapse
|
46
|
Wu N, Zhai X, Yuan F, Li J, Li D, Wang J, Zhang L, Shi Y, Ji G, He G, Liu B. Genetic variation in TBC1 domain family member 1 gene associates with the risk of lean NAFLD via high-density lipoprotein. Front Genet 2023; 13:1026725. [PMID: 36712867 PMCID: PMC9877292 DOI: 10.3389/fgene.2022.1026725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Objective: Non-alcoholic fatty liver disease (NAFLD) affects almost a quarter of the world's population. Although NAFLD often co-exists with obesity, a substantial proportion of NAFLD patients are lean which is relatively unexplored. This study aimed to examine the association between genetic variation in candidate genes, e.g., TBC1D1 and the risk of lean NAFLD in the elderly Chinese Han population. Methods: This is an extension of the research on physical examination in the Zhanjiang community center including 5387 residents, Shanghai, China, in 2017. According to the classification in adult Asian populations, participants were categorized into four groups: lean NAFLD (BMI <23, n = 106), non-lean NAFLD (BMI ≥23, n = 644), lean non-NAFLD (BMI <23, n = 216) and non-lean non-NAFLD (BMI ≥23, n = 253).116 NAFLD-related candidate genes, which cover 179 single nucleotide polymorphisms (SNPs) were included in the KEGG enrichment analysis. Independent samples t-test was adopted for the group comparison. The associations between genetic variations with the specific phenotype in five genetic models were analyzed with the "SNPassoc" R package and rechecked with logistic regression analysis. Mediation models were conducted to explore whether the certain phenotype can mediate the association between SNPs and the risk of lean NAFLD. Results: Compared with lean non-NAFLD individuals, lean NAFLD patients had higher BMI, low-density lipoprotein and triglyceride, and lower HDL. The AMPK signaling pathway, which includes TBC1D1 and ADIPOQ genes, was the most significant (p < .001). The A allele frequency of rs2279028 in TBC1D1 (p = .006) and G allele frequency of rs17366568 in ADIPOQ (p = .038) were significantly lower in lean NAFLD. The association between rs2279028 and the risk of lean NAFLD was mediated by HDL (p = .014). No significant mediation effect was found between rs17366568 and the risk of lean NAFLD. Conclusion: This study, for the first time, indicated that rs2279028 of TBC1D1 may contribute to the progression of lean NAFLD through HDL. This finding provides more evidence for exploring the mechanism of lean NAFLD and suggests practical solutions for the treatment of lean NAFLD.
Collapse
Affiliation(s)
- Na Wu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Zhai
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Li
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Li
- Zhangjiang Community Health Service Center of Pudong New District, Shanghai, China
| | - Jianying Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Baocheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
47
|
Tayanloo-Beik A, Nikkhah A, Alaei S, Goodarzi P, Rezaei-Tavirani M, Mafi AR, Larijani B, Shouroki FF, Arjmand B. Brown adipose tissue and alzheimer's disease. Metab Brain Dis 2023; 38:91-107. [PMID: 36322277 DOI: 10.1007/s11011-022-01097-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/01/2022] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD), the most common type of senile dementia, is a chronic neurodegenerative disease characterized by cognitive dysfunction and behavioral disability. The two histopathological hallmarks in this disease are the extraneuronal accumulation of amyloid-β (Aβ) and the intraneuronal deposition of neurofibrillary tangles (NFTs). Despite this, central and peripheral metabolic dysfunction, such as abnormal brain signaling, insulin resistance, inflammation, and impaired glucose utilization, have been indicated to be correlated with AD. There is solid evidence that the age-associated thermoregulatory deficit induces diverse metabolic changes associated with AD development. Brown adipose tissue (BAT) has been known as a thermoregulatory organ particularly vital during infancy. However, in recent years, BAT has been accepted as an endocrine organ, being involved in various functions that prevent AD, such as regulating energy metabolism, secreting hormones, improving insulin sensitivity, and increasing glucose utilization in adult humans. This review focuses on the mechanisms of BAT activation and the effect of aging on BAT production and signaling. Specifically, the evidence demonstrating the effect of BAT on pathological mechanisms influencing the development of AD, including insulin pathway, thermoregulation, and other hormonal pathways, are reviewed in this article.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran.
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Armani A, Feraco A, Camajani E, Gorini S, Lombardo M, Caprio M. Nutraceuticals in Brown Adipose Tissue Activation. Cells 2022; 11:cells11243996. [PMID: 36552762 PMCID: PMC9776638 DOI: 10.3390/cells11243996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and its associated comorbidities have become pandemic, and challenge the global healthcare system. Lifestyle changes, nutritional interventions and phamaceuticals should be differently combined in a personalized strategy to tackle such a public health burden. Altered brown adipose tissue (BAT) function contributes to the pathophysiology of obesity and glucose metabolism dysfunctions. BAT thermogenic activity burns glucose and fatty acids to produce heat through uncoupled respiration, and can dissipate the excessive calorie intake, reduce glycemia and circulate fatty acids released from white adipose tissue. Thus, BAT activity is expected to contribute to whole body energy homeostasis and protect against obesity, diabetes and alterations in lipid profile. To date, pharmacological therapies aimed at activating brown fat have failed in clinical trials, due to cardiovascular side effects or scarce efficacy. On the other hand, several studies have identified plant-derived chemical compounds capable of stimulating BAT thermogenesis in animal models, suggesting the translational applications of dietary supplements to fight adipose tissue dysfunctions. This review describes several nutraceuticals with thermogenic properties and provides indications, at a molecular level, of the regulation of the adipocyte thermogenesis by the mentioned phytochemicals.
Collapse
Affiliation(s)
- Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
- Correspondence:
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefania Gorini
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| |
Collapse
|
49
|
Wang B, Steinberg GR. Environmental toxicants, brown adipose tissue, and potential links to obesity and metabolic disease. Curr Opin Pharmacol 2022; 67:102314. [PMID: 36334331 DOI: 10.1016/j.coph.2022.102314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
Rates of human obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) have risen faster than anticipated and cannot solely be explained by excessive caloric intake or physical inactivity. Importantly, this effect is also observed in many other domesticated and non-domesticated mammals, which has led to the hypothesis that synthetic environmental pollutants may be contributing to disease development. While the impact of these chemicals on appetite and adipogenesis has been extensively studied, their potential role in reducing energy expenditure is less studied. An important component of whole-body energy expenditure is adaptive and diet-induced thermogenesis in human brown adipose tissue (BAT). This review summarizes recent evidence that environmental pollutants such as the pesticide chlorpyrifos inhibit BAT function, diet-induced thermogenesis and the potential signaling pathways mediating these effects. Lastly, we discuss the importance of housing experimental mice at thermoneutrality, rather than room temperature, to maximize the translation of findings to humans.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Canada; Division of Endocrinology and Metabolism, Department of Medicine, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
| |
Collapse
|
50
|
Liang M, Huo M, Guo Y, Zhang Y, Xiao X, Xv J, Fang L, Li T, Wang H, Dong S, Jiang X, Yu W. Aqueous extract of Artemisia capillaris improves non-alcoholic fatty liver and obesity in mice induced by high-fat diet. Front Pharmacol 2022; 13:1084435. [PMID: 36518663 PMCID: PMC9742474 DOI: 10.3389/fphar.2022.1084435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 01/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and is a nutritional metabolic disease. Artemisia capillaris (AC) is the above-ground dried part of Artemisia capillaris Thunb. or Artemisia scoparia Waldst. et Kit., a natural medicinal plant with pharmacological effects of heat-clearing and biliary-promoting. In order to evaluate the therapeutic effect of Artemisia capillaris on NAFLD and obesity, experiments were conducted using aqueous extracts of Artemisia capillaris (WAC) to intervene in NAFLD models in vivo and in vitro. In vivo experiments were performed using HFD-fed (high fat diet) C57BL/6 mice to induce NAFLD model, and in vitro experiments were performed using oleic acid to induce HepG2 cells to construct NAFLD cell model. H.E. staining and oil red O staining of liver tissue were used to observe hepatocytes. Blood biochemistry analyzer was used to detect serum lipid levels in mice. The drug targets and mechanism of action of AC to improve NAFLD were investigated by western blotting, qRT-PCR and immunofluorescence. The results showed that C57BL/6 mice fed HFD continuously for 16 weeks met the criteria for NAFLD in terms of lipid index and hepatocyte fat accumulation. WAC was able to reverse the elevation of serum lipid levels induced by high-fat diet in mice. WAC promoted the phosphorylation levels of PI3K/AKT and AMPK in liver and HepG2 cells of NAFLD mice, inhibited SREBP-1c expression, reduced TG and lipogenesis, and decreased lipid accumulation. In summary, WAC extract activates PI3K/AKT pathway, reduces SREBP-1c protein expression by promoting AMPK phosphorylation, and decreases fatty acid synthesis and TG content in hepatocytes. AC can be used as a potential health herb to improve NAFLD and obesity.
Collapse
Affiliation(s)
- Meng Liang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mohan Huo
- Department of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yi Guo
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuyi Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao Xiao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianwen Xv
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lixue Fang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianqi Li
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huan Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Dong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Prevention and Control of Common Animal Diseases, Northeast Agricultural University, Harbin, China
| |
Collapse
|