1
|
Sun XM, Wu X, Wei MG, Zhu LZ, Wu WH, Zhou XY, Qi LW, Liu Q. CPS1 augments hepatic glucagon response through CaMKII/FOXO1 pathway. Front Pharmacol 2024; 15:1437738. [PMID: 39193349 PMCID: PMC11347310 DOI: 10.3389/fphar.2024.1437738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction: Elevated glucagon levels are a characteristic feature of type 2 diabetes. This abnormal increase in glucagon can lead to an accelerated rate of gluconeogenesis. Glucagon also stimulates hepatic metabolism of amino acids, particularly promoting the formation of urea. The specific role of carbamoyl phosphate synthetase 1 (CPS1), a rate-limiting enzyme in the urea cycle, in the development versus the persistence of glucagon-induced hyperglycemia has not been previously established. Methods: The study employed both in vivo and in vitro approaches to assess the impact of CPS1 modulation on glucagon response. CPS1 was knockdown or overexpression to evaluate its influence on hepatic gluconeogenesis. In addition, an in-silico strategy was employed to identify a potential CPS1 inhibitor. Results: Knockdown of CPS1 significantly reduced the glucagon response both in vivo and in vitro. Conversely, overexpression of CPS1 resulted in an overactive hepatic gluconeogenic response. Mechanistically, CPS1 induced the release of calcium ions from the endoplasmic reticulum, which in turn triggered the phosphorylation of CaMKII. The activation of CaMKII then facilitated the dephosphorylation and nuclear translocation of FOXO1, culminating in the enhancement of hepatic gluconeogenesis. Furthermore, cynarin, a natural CPS1 inhibitor derived from the artichoke plant, had the capacity to attenuate the hepatic glucagon response in a CPS1-dependent manner. Discussion: CPS1 played a pivotal role in mediating glucagon-induced hepatic gluconeogenesis. The discovery of cynarin as a natural inhibitor of CPS1 suggested its potential as a therapeutic agent for diabetes treatment.
Collapse
Affiliation(s)
- Xiao-Meng Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng-Guang Wei
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Li-Zeng Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Wen-hui Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Xin-Yue Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Karimi R, Yanovich A, Elbarbry F, Cleven A. Adaptive Effects of Endocrine Hormones on Metabolism of Macronutrients during Fasting and Starvation: A Scoping Review. Metabolites 2024; 14:336. [PMID: 38921471 PMCID: PMC11205672 DOI: 10.3390/metabo14060336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Food deprivation can occur for different reasons. Fasting (<24 h duration) occurs to meet religious or well-being goals. Starvation (>1-day duration) occurs when there is intentional (hunger strike or treatment of a medical condition) or unintentional (anorexia nervosa, drought, epidemic famine, war, or natural disaster) food deprivation. A scoping review was undertaken using the PubMed database to explore 1805 abstracts and review 88 eligible full-text articles to explore the adaptive relationships that emerge between cortisol, insulin, glucagon, and thyroid hormones on the metabolic pathways of macronutrients in humans during fasting and starvation. The collected data indicate that fasting and starvation prime the human body to increase cortisol levels and decrease the insulin/glucagon ratio and triiodothyronine (T3) levels. During fasting, increased levels of cortisol and a decreased insulin/glucagon ratio enhance glycogenolysis and reduce the peripheral uptake of glucose and glycogenesis, whereas decreased T3 levels potentially reduce glycogenolysis. During starvation, increased levels of cortisol and a decreased insulin/glucagon ratio enhance lipolysis, proteolysis, fatty acid and amino acid oxidation, ketogenesis, and ureagenesis, and decreased T3 levels reduce thermogenesis. We present a potential crosstalk between T3 and the above hormones, including between T3 and leptin, to extend their adaptive roles in the metabolism of endogenous macronutrients during food deprivation.
Collapse
Affiliation(s)
- Reza Karimi
- Pacific University School of Pharmacy, 222 SE 8th Avenue, HPC-Ste 451, Hillsboro, OR 97123, USA; (A.Y.); (F.E.); (A.C.)
| | | | | | | |
Collapse
|
3
|
Okada J, Landgraf A, Xiaoli AM, Liu L, Horton M, Schuster VL, Yang F, Sidoli S, Qiu Y, Kurland IJ, Eliscovich C, Shinoda K, Pessin JE. Spatial hepatocyte plasticity of gluconeogenesis during the metabolic transitions between fed, fasted and starvation states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591168. [PMID: 38746329 PMCID: PMC11092462 DOI: 10.1101/2024.04.29.591168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The liver acts as a master regulator of metabolic homeostasis in part by performing gluconeogenesis. This process is dysregulated in type 2 diabetes, leading to elevated hepatic glucose output. The parenchymal cells of the liver (hepatocytes) are heterogeneous, existing on an axis between the portal triad and the central vein, and perform distinct functions depending on location in the lobule. Here, using single cell analysis of hepatocytes across the liver lobule, we demonstrate that gluconeogenic gene expression ( Pck1 and G6pc ) is relatively low in the fed state and gradually increases first in the periportal hepatocytes during the initial fasting period. As the time of fasting progresses, pericentral hepatocyte gluconeogenic gene expression increases, and following entry into the starvation state, the pericentral hepatocytes show similar gluconeogenic gene expression to the periportal hepatocytes. Similarly, pyruvate-dependent gluconeogenic activity is approximately 10-fold higher in the periportal hepatocytes during the initial fasting state but only 1.5-fold higher in the starvation state. In parallel, starvation suppresses canonical beta-catenin signaling and modulates expression of pericentral and periportal glutamine synthetase and glutaminase, resulting in an enhanced pericentral glutamine-dependent gluconeogenesis. These findings demonstrate that hepatocyte gluconeogenic gene expression and gluconeogenic activity are highly spatially and temporally plastic across the liver lobule, underscoring the critical importance of using well-defined feeding and fasting conditions to define the basis of hepatic insulin resistance and glucose production.
Collapse
|
4
|
Henschke S, Nolte H, Magoley J, Kleele T, Brandt C, Hausen AC, Wunderlich CM, Bauder CA, Aschauer P, Manley S, Langer T, Wunderlich FT, Brüning JC. Food perception promotes phosphorylation of MFFS131 and mitochondrial fragmentation in liver. Science 2024; 384:438-446. [PMID: 38662831 DOI: 10.1126/science.adk1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/21/2024] [Indexed: 05/03/2024]
Abstract
Liver mitochondria play a central role in metabolic adaptations to changing nutritional states, yet their dynamic regulation upon anticipated changes in nutrient availability has remained unaddressed. Here, we found that sensory food perception rapidly induced mitochondrial fragmentation in the liver through protein kinase B/AKT (AKT)-dependent phosphorylation of serine 131 of the mitochondrial fission factor (MFFS131). This response was mediated by activation of hypothalamic pro-opiomelanocortin (POMC)-expressing neurons. A nonphosphorylatable MFFS131G knock-in mutation abrogated AKT-induced mitochondrial fragmentation in vitro. In vivo, MFFS131G knock-in mice displayed altered liver mitochondrial dynamics and impaired insulin-stimulated suppression of hepatic glucose production. Thus, rapid activation of a hypothalamus-liver axis can adapt mitochondrial function to anticipated changes of nutritional state in control of hepatic glucose metabolism.
Collapse
Affiliation(s)
- Sinika Henschke
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Judith Magoley
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tatjana Kleele
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Claus Brandt
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - A Christine Hausen
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Claudia M Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Corinna A Bauder
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Philipp Aschauer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Suliana Manley
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Langer
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
5
|
Abate E, Mehdi M, Addisu S, Degef M, Tebeje S, Kelemu T. Emerging roles of cytosolic phosphoenolpyruvate kinase 1 (PCK1) in cancer. Biochem Biophys Rep 2023; 35:101528. [PMID: 37637941 PMCID: PMC10457690 DOI: 10.1016/j.bbrep.2023.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Although it was traditionally believed that gluconeogenesis enzymes were absent from cancers that did not originate in gluconeogenic organs, numerous investigations have shown that they are functionally expressed in a variety of tumors as mediators of shortened forms of Gluconeogenesis. One of the isomers of PEPCK, the first-rate limiting enzyme in gluconeogenesis, is PCK 1, which catalyzes the conversion of oxaloacetate (OAA) and GTP into PEP, CO2, and GDP. It is also known as PEPCK-C or PCK1, and it is cytosolic. Despite being paradoxical, it has been demonstrated that, in addition to its enzymatic role in normal metabolism, this enzyme also plays a role in tumors that arise in gluconeogenic and non-gluconeogenic organs. According to newly available research, it has metabolic and non-metabolic roles in tumor progression and development. Thus, this review will give insight into PCK1 relationship, function, and mechanism in or with different types of cancer using contemporary findings.
Collapse
Affiliation(s)
- Ebsitu Abate
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohammed Mehdi
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Addisu
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Maria Degef
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tebeje
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Rodgers RL. Glucagon, cyclic AMP, and hepatic glucose mobilization: A half‐century of uncertainty. Physiol Rep 2022; 10:e15263. [PMID: 35569125 PMCID: PMC9107925 DOI: 10.14814/phy2.15263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
For at least 50 years, the prevailing view has been that the adenylate cyclase (AC)/cyclic AMP (cAMP)/protein kinase A pathway is the predominant signal mediating the hepatic glucose‐mobilizing actions of glucagon. A wealth of evidence, however, supports the alternative, that the operative signal most of the time is the phospholipase C (PLC)/inositol‐phosphate (IP3)/calcium/calmodulin pathway. The evidence can be summarized as follows: (1) The consensus threshold glucagon concentration for activating AC ex vivo is 100 pM, but the statistical hepatic portal plasma glucagon concentration range, measured by RIA, is between 28 and 60 pM; (2) Within that physiological concentration range, glucagon stimulates the PLC/IP3 pathway and robustly increases glucose output without affecting the AC/cAMP pathway; (3) Activation of a latent, amplified AC/cAMP pathway at concentrations below 60 pM is very unlikely; and (4) Activation of the PLC/IP3 pathway at physiological concentrations produces intracellular effects that are similar to those produced by activation of the AC/cAMP pathway at concentrations above 100 pM, including elevated intracellular calcium and altered activities and expressions of key enzymes involved in glycogenolysis, gluconeogenesis, and glycogen synthesis. Under metabolically stressful conditions, as in the early neonate or exercising adult, plasma glucagon concentrations often exceed 100 pM, recruiting the AC/cAMP pathway and enhancing the activation of PLC/IP3 pathway to boost glucose output, adaptively meeting the elevated systemic glucose demand. Whether the AC/cAMP pathway is consistently activated in starvation or diabetes is not clear. Because the importance of glucagon in the pathogenesis of diabetes is becoming increasingly evident, it is even more urgent now to resolve lingering uncertainties and definitively establish glucagon’s true mechanism of glycemia regulation in health and disease.
Collapse
Affiliation(s)
- Robert L. Rodgers
- Department of Biomedical and Pharmaceutical Sciences College of Pharmacy University of Rhode Island Kingston Rhode Island USA
| |
Collapse
|
7
|
Thyroid-Stimulating Hormone Inhibits Insulin Receptor Substrate-1 Expression and Tyrosyl Phosphorylation in 3T3-L1 Adipocytes by Increasing NF-κB DNA-Binding Activity. DISEASE MARKERS 2022; 2022:7553670. [PMID: 35320949 PMCID: PMC8938072 DOI: 10.1155/2022/7553670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
Background. Abundant evidence indicates that thyroid-stimulating hormone (TSH) levels are associated with insulin resistance in adipocytes. However, the potential mechanism of the association remains uncertain. The objective of this study was to determine the potential role of TSH in the suppression of insulin receptor substrate-1 (IRS-1) expression and IRS-1 tyrosyl phosphorylation, which might contribute to insulin resistance. Methods. Mouse 3T3-L1 preadipocytes were differentiated into adipocytes. After treatment with 0.01, 0.1, and 1.0 mIU/ml bovine TSH, the TNF-α concentration in the medium was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB) DNA-binding activity was quantified by electrophoretic mobility shift assay (EMSA). IRS-1 levels in adipocytes were quantified by Western blotting, and tyrosine phosphorylation was measured by immunoprecipitation. Results. TSH induced TNF-α secretion in a dose-dependent manner. There was a significant positive correlation between NF-κB DNA-binding activity and TNF-α secretion. This effect and correlation were weakened by BAY 11-7082 (a nuclear NF-κB inhibitor) and H89 (an inhibitor of cyclic adenosine monophosphate- (cAMP-) dependent protein kinase A (PKA)). Treatment of cultured adipocytes with TSH inhibited insulin-stimulated IRS-1 tyrosyl phosphorylation but promoted TSH-dependent secretion of TNF-α and activation of NF-κB DNA-binding activity. The effects of TSH were significantly inhibited by BAY 11-7082 and H89 and were completely blocked by the TNF-α antagonist WP9QY. Conclusion. TSH inhibited IRS-1 protein expression and tyrosyl phosphorylation in 3T3-L1 adipocytes by stimulating TNF-α production via promotion of NF-κB DNA-binding activity. TSH might play a pivotal role in the development of insulin resistance.
Collapse
|
8
|
Mutlu B, Puigserver P. GCN5 acetyltransferase in cellular energetic and metabolic processes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194626. [PMID: 32827753 PMCID: PMC7854474 DOI: 10.1016/j.bbagrm.2020.194626] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/23/2022]
Abstract
General Control Non-repressed 5 protein (GCN5), encoded by the mammalian gene Kat2a, is the first histone acetyltransferase discovered to link histone acetylation to transcriptional activation [1]. The enzymatic activity of GCN5 is linked to cellular metabolic and energetic states regulating gene expression programs. GCN5 has a major impact on energy metabolism by i) sensing acetyl-CoA, a central metabolite and substrate of the GCN5 catalytic reaction, and ii) acetylating proteins such as PGC-1α, a transcriptional coactivator that controls genes linked to energy metabolism and mitochondrial biogenesis. PGC-1α is biochemically associated with the GCN5 protein complex during active metabolic reprogramming. In the first part of the review, we examine how metabolism can change GCN5-dependent histone acetylation to regulate gene expression to adapt cells. In the second part, we summarize the GCN5 function as a nutrient sensor, focusing on non-histone protein acetylation, mainly the metabolic role of PGC-1α acetylation across different tissues.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Bosch M, Parton RG, Pol A. Lipid droplets, bioenergetic fluxes, and metabolic flexibility. Semin Cell Dev Biol 2020; 108:33-46. [DOI: 10.1016/j.semcdb.2020.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
|
10
|
Fornes D, Heinecke F, Roberti SL, White V, Capobianco E, Jawerbaum A. Proinflammation in maternal and fetal livers and circulating miR-122 dysregulation in a GDM rat model induced by intrauterine programming. Mol Cell Endocrinol 2020; 510:110824. [PMID: 32315718 DOI: 10.1016/j.mce.2020.110824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/05/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022]
Abstract
In gestational diabetes mellitus (GDM) pregnancies, a compromised fetal liver may impact offspring's metabolic health. Here, we aimed to address prooxidant, proinflammatory and profibrotic markers in the livers from GDM rats and their fetuses, and to analyze the expression of miR-122 (a relevant microRNA in liver pathophysiology) in fetal and maternal plasma of GDM rats, as well as in the fetal livers of neonatal streptozotocin-induced (nSTZ) diabetic rats, the rats that generate GDM through intrauterine programming. GDM and nSTZ rats were evaluated on day 21 of pregnancy. We found increased nitric oxide production and lipoperoxidation in the livers from GDM rats and their fetuses compared to controls. Livers from GDM fetuses also showed increased levels of connective tissue growth factor and matrix metalloproteinase-2. The expression of miRNA-122 was downregulated in the plasma from GDM rats and their male fetuses, as well as in the livers from male fetuses of nSTZ diabetic rats. miR-122 levels were regulated both in vitro through PPARγ activation and in vivo through a maternal diet enriched in PPAR ligands. Our findings revealed a prooxidant/proinflammatory environment in the livers from GDM rats and their fetuses and a dysregulation of miR-122, likely relevant in the programming of offspring's diseases.
Collapse
Affiliation(s)
- Daiana Fornes
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Florencia Heinecke
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Sabrina Lorena Roberti
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Verónica White
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Evangelina Capobianco
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Schmitz-Peiffer C. Deconstructing the Role of PKC Epsilon in Glucose Homeostasis. Trends Endocrinol Metab 2020; 31:344-356. [PMID: 32305097 DOI: 10.1016/j.tem.2020.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
The failure of insulin to suppress glucose production by the liver is a key aspect of the insulin resistance seen in type 2 diabetes. Lipid-activated protein kinase C epsilon has long been identified as an important mediator of diet-induced glucose intolerance and hepatic insulin resistance and the current view emphasizes a mechanism involving phosphorylation of the insulin receptor by the kinase to inhibit downstream insulin action. However, the significance of this direct effect in the liver has now been challenged by tissue-specific deletion of PKCε, which demonstrated a more prominent role for the kinase in adipose tissue to promote glucose intolerance. New insights regarding the role of PKCε therefore contribute to the understanding of indirect effects on hepatic glucose metabolism.
Collapse
Affiliation(s)
- Carsten Schmitz-Peiffer
- Garvan Institute of Medical Research, Darlinghurst Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|