1
|
Bhattacharya S, Fernandez CJ, Kamrul-Hasan ABM, Pappachan JM. Monogenic diabetes: An evidence-based clinical approach. World J Diabetes 2025; 16:104787. [DOI: 10.4239/wjd.v16.i5.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Monogenic diabetes is a heterogeneous disorder characterized by hyperglycemia arising from defects in a single gene. Maturity-onset diabetes of the young (MODY) is the most common type with 14 subtypes, each linked to specific mutations affecting insulin synthesis, secretion and glucose regulation. Common traits across MODY subtypes include early-onset diabetes, a family history of autosomal dominant diabetes, lack of features of insulin resistance, and absent islet cell autoimmunity. Many cases are misdiagnosed as type 1 and type 2 diabetes mellitus. Biomarkers and scoring systems can help identify candidates for genetic testing. GCK-MODY, a common subtype, manifests as mild hyperglycemia and doesn’t require treatment except during pregnancy. In contrast, mutations in HNF4A, HNF1A, and HNF1B genes lead to progressive beta-cell failure and similar risks of complications as type 2 diabetes mellitus. Neonatal diabetes mellitus (NDM) is a rare form of monogenic diabetes that usually presents within the first six months. Half of the cases are lifelong, while others experience transient remission. Permanent NDM is most commonly due to activating mutations in genes encoding the adenosine triphosphate-sensitive potassium channel (KCNJ11 or ABCC8) and can be transitioned to sulfonylurea after confirmation of diagnosis. Thus, in many cases, monogenic diabetes offers an opportunity to provide precision treatment. The scope has broadened with next-generation sequencing (NGS) technologies, replacing older methods like Sanger sequencing. NGS can be for targeted gene panels, whole-exome sequencing (WES), or whole-genome sequencing. Targeted gene panels offer specific information efficiently, while WES provides comprehensive data but comes with bioinformatic challenges. The surge in testing has also led to an increase in variants of unknown significance (VUS). Deciding whether VUS is disease-causing or benign can be challenging. Computational models, functional studies, and clinical knowledge help to determine pathogenicity. Advances in genetic testing technologies offer hope for improved diagnosis and personalized treatment but also raise concerns about interpretation and ethics.
Collapse
Affiliation(s)
| | - Cornelius J Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, Lincolnshire, United Kingdom
| | | | - Joseph M Pappachan
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, Greater Manchester, United Kingdom
- Department of Endocrinology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
2
|
Le Collen L, Desgrouas C, Lukas Croisier C, Creugnet B, Dechaume A, Toussaint B, Vaillant E, Amanzougarene S, Buse Falay E, Derhourhi M, Lourdelle A, Delemer B, Bonello-Palot N, Vaxillaire M, Badens C, Froguel P, Bonnefond A. Rare ZMPSTE24 variants increase risk of hypertriglyceridemia and metabolic syndrome. Eur J Endocrinol 2025; 192:240-247. [PMID: 39993161 DOI: 10.1093/ejendo/lvaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVE The global increase in the prevalence of metabolic syndrome represents a significant public health concern. Rare biallelic pathogenic variants in ZMPSTE24 have been identified as the cause of mandibuloacral dysplasia type B, ie, a lipodystrophy syndrome associated with metabolic complications. The role of monoallelic pathogenic variants in ZMPSTE24 concerning metabolic syndrome remains uncertain. DESIGN Case report and systematic review of literature. METHODS We investigated a Wallisian family with FPLD and metabolic syndrome via whole-exome sequencing. We performed functional analyses of an identified rare ZMPSTE24 variant. To broadly assess the effect of heterozygous pathogenic ZMPSTE24 variants on FPLD-associated phenotypes, and metabolic syndrome, we used the Human Gene Mutation Database (HGMD) and 200 K exome data from UK Biobank. RESULTS We investigated a Wallisian family where a 40-year-old female with metabolic syndrome was found to carry a rare heterozygous missense variant in ZMPSTE24. Functional assays showed a decreased prelamin to lamin A maturation and accelerated senescence. In silico analysis demonstrated that this variant might disrupt the lamin A binding site. We then analyzed the impact of monoallelic pathogenic ZMPSTE24 variants on metabolic traits using data from the HGMD and the UK Biobank. In HGMD, ZMPSTE24 variants carriers presented with dyslipidemia and hepatic steatosis. In the UK Biobank, monoallelic pathogenic variants were associated with an increased risk of hypertriglyceridemia, with a trend toward metabolic syndrome. CONCLUSIONS This study underscores the association of ZMPSTE24 rare variants with metabolic disorders and emphasizes the need for further research to clarify their clinical implications.
Collapse
Affiliation(s)
- Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, 59045 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy F-54000, France
| | - Camille Desgrouas
- Aix Marseille Univ, Centre de recherche en Cardiovasculaire et Nutrition, INSERM, 13005 Marseille, France
| | - Céline Lukas Croisier
- Department of Endocrinology Diabetology, University Hospital Center of Reims, 51092 Reims, France
| | | | - Aurélie Dechaume
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, 59045 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
| | - Bénédicte Toussaint
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, 59045 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
| | - Emmanuel Vaillant
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, 59045 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
| | - Souhila Amanzougarene
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, 59045 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
| | - Emmanuel Buse Falay
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, 59045 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
| | - Mehdi Derhourhi
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, 59045 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
| | - Alexandre Lourdelle
- Pediatric diabetology Department, American Memorial Hospital, University hospital, 51092 Reims, France
| | - Brigitte Delemer
- Department of Endocrinology Diabetology, University Hospital Center of Reims, 51092 Reims, France
- CRESTIC EA 3804, UFR Sciences Exactes et Naturelles, Moulin de La Housse, BP 1039, 51687 Reims, France
| | - Nathalie Bonello-Palot
- Aix Marseille Univ, Centre de recherche en Cardiovasculaire et Nutrition, INSERM, 13005 Marseille, France
| | - Martine Vaxillaire
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, 59045 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
| | - Catherine Badens
- Aix Marseille Univ, Centre de recherche en Cardiovasculaire et Nutrition, INSERM, 13005 Marseille, France
- Laboratoire de Génétique Moléculaire, APHM, 13005 Marseille, France
| | - Philippe Froguel
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, 59045 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
- Department of Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Amélie Bonnefond
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, 59045 Lille, France
- University of Lille, Lille University Hospital, 59000 Lille, France
- Department of Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| |
Collapse
|
3
|
Kalwick M, Roth M. A Comprehensive Review of the Genetics of Dyslipidemias and Risk of Atherosclerotic Cardiovascular Disease. Nutrients 2025; 17:659. [PMID: 40004987 PMCID: PMC11858766 DOI: 10.3390/nu17040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Dyslipidemias are often diagnosed based on an individual's lipid panel that may or may not include Lp(a) or apoB. But these values alone omit key information that can underestimate risk and misdiagnose disease, which leads to imprecise medical therapies that reduce efficacy with unnecessary adverse events. For example, knowing whether an individual's dyslipidemia is monogenic can granularly inform risk and create opportunities for precision therapeutics. This review explores the canonical and non-canonical causes of dyslipidemias and how they impact atherosclerotic cardiovascular disease (ASCVD) risk. This review emphasizes the multitude of genetic causes that cause primary hypercholesterolemia, hypertriglyceridemia, and low or elevated high-density lipoprotein (HDL)-cholesterol levels. Within each of these sections, this review will explore the evidence linking these genetic conditions with ASCVD risk. Where applicable, this review will summarize approved therapies for a particular genetic condition.
Collapse
Affiliation(s)
| | - Mendel Roth
- GBinsight, GB Healthwatch, San Diego, CA 92122, USA;
| |
Collapse
|
4
|
Wang A, Xu M, Li L, Li J. Atypical diabetes arising from SHORT syndrome: a case report. Front Endocrinol (Lausanne) 2024; 15:1467364. [PMID: 39735640 PMCID: PMC11671247 DOI: 10.3389/fendo.2024.1467364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Short stature, joint hyperextension, ocular hypotension, Rieger abnormalities, and delayed tooth eruption (SHORT) syndrom is a rare primary autosomal dominant genetic disorder mainly caused by pathogenic loss-of-function variants in the phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) gene. We report the case of a Chinese adult female patient with SHORT syndrome, carrying a PIK3R1 gene variant (c.1945C > T), who developed abnormal glucose metabolism and severe postprandial insulin resistance over 9 years. Although there are currently no established treatment guidelines for insulin resistance in patients with SHORT syndrome, we implemented a comprehensive treatment plan, including lifestyle interventions, metformin, and voglibose for glucose control. After 6 months of continuous observation, the patient's blood glucose levels and insulin resistance improved significantly. This case study provides useful insights for future treatment strategies.
Collapse
Affiliation(s)
- Aili Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Li Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jialin Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Saxena A, Tiwari P, Gupta S, Mandia R, Banshiwal RC, Lamoria RK, Anjana RM, Radha V, Mohan V, Mathur SK. Exploring lipodystrophy gene expression in adipocytes: unveiling insights into the pathogenesis of insulin resistance, type 2 diabetes, and clustering diseases (metabolic syndrome) in Asian Indians. Front Endocrinol (Lausanne) 2024; 15:1468824. [PMID: 39444451 PMCID: PMC11496143 DOI: 10.3389/fendo.2024.1468824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Background Studying the molecular mechanisms of lipodystrophy can provide valuable insights into the pathophysiology of insulin resistance (IR), type 2 diabetes (T2D), and other clustering diseases [metabolic syndrome (MetS)] and its underlying adipocentric disease (MetS disease). Methods A high-confidence lipodystrophy gene panel comprising 50 genes was created, and their expressions were measured in the visceral and subcutaneous (both peripheral and abdominal) adipose depots of MetS and non-MetS individuals at a tertiary care medical facility. Results Most lipodystrophy genes showed significant downregulation in MetS individuals compared to non-MetS individuals in both subcutaneous and visceral depots. In the abdominal compartment, all the genes showed relatively higher expression in visceral depot as compared to their subcutaneous counterpart, and this difference narrowed with increasing severity of MetS. Their expression level shows an inverse correlation with T2D, MetS, and HOMA-IR and with other T2D-related intermediate traits. Results also demonstrated that individualization of MetS patients could be done based on adipose tissue expression of just 12 genes. Conclusion Adipose tissue expression of lipodystrophy genes shows an association with MetS and its intermediate phenotypic traits. Mutations of these genes are known to cause congenital lipodystrophy syndromes, whereas their altered expression in adipose tissue contributes to the pathogenesis of IR, T2D, and MetS.
Collapse
Affiliation(s)
- Aditya Saxena
- Department of Computer Engineering & Applications, GLA University, Mathura, India
| | - Pradeep Tiwari
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Shalu Gupta
- Department of General Surgery, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Rajendra Mandia
- Department of General Surgery, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Ramesh C. Banshiwal
- Department of Orthopedics, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Ravinder Kumar Lamoria
- Department of Orthopedics, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Ranjit Mohan Anjana
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Venkatesan Radha
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Sandeep Kumar Mathur
- Department of Endocrinology, Sawai Man Singh (SMS) Medical College, Jaipur, India
| |
Collapse
|
6
|
Rapini N, Delvecchio M, Mucciolo M, Ruta R, Rabbone I, Cherubini V, Zucchini S, Cianfarani S, Prandi E, Schiaffini R, Bizzarri C, Piccini B, Maltoni G, Predieri B, Minuto N, Di Paola R, Giordano M, Tinto N, Grasso V, Russo L, Tiberi V, Scaramuzza A, Frontino G, Maggio MC, Musolino G, Piccinno E, Tinti D, Carrera P, Mozzillo E, Cappa M, Iafusco D, Bonfanti R, Novelli A, Barbetti F. The Changing Landscape of Neonatal Diabetes Mellitus in Italy Between 2003 and 2022. J Clin Endocrinol Metab 2024; 109:2349-2357. [PMID: 38408297 PMCID: PMC11319002 DOI: 10.1210/clinem/dgae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
CONTEXT In the last decade the Sanger method of DNA sequencing has been replaced by next-generation sequencing (NGS). NGS is valuable in conditions characterized by high genetic heterogeneity such as neonatal diabetes mellitus (NDM). OBJECTIVE To compare results of genetic analysis of patients with NDM and congenital severe insulin resistance (c.SIR) identified in Italy in 2003-2012 (Sanger) vs 2013-2022 (NGS). METHODS We reviewed clinical and genetic records of 104 cases with diabetes onset before 6 months of age (NDM + c.SIR) of the Italian dataset. RESULTS Fifty-five patients (50 NDM + 5 c.SIR) were identified during 2003-2012 and 49 (46 NDM + 3 c.SIR) in 2013-2022. Twenty-year incidence was 1:103 340 (NDM) and 1:1 240 082 (c.SIR) live births. Frequent NDM/c.SIR genetic defects (KCNJ11, INS, ABCC8, 6q24, INSR) were detected in 41 and 34 probands during 2003-2012 and 2013-2022, respectively. We identified a pathogenic variant in rare genes in a single proband (GATA4) (1/42 or 2.4%) during 2003-2012 and in 8 infants (RFX6, PDX1, GATA6, HNF1B, FOXP3, IL2RA, LRBA, BSCL2) during 2013-2022 (8/42 or 19%, P = .034 vs 2003-2012). Notably, among rare genes 5 were recessive. Swift and accurate genetic diagnosis led to appropriate treatment: patients with autoimmune NDM (FOXP3, IL2RA, LRBA) were subjected to bone marrow transplant; patients with pancreas agenesis/hypoplasia (RFX6, PDX1) were supplemented with pancreatic enzymes, and the individual with lipodystrophy caused by BSCL2 was started on metreleptin. CONCLUSION NGS substantially improved diagnosis and precision therapy of monogenic forms of neonatal diabetes and c.SIR in Italy.
Collapse
Affiliation(s)
- Novella Rapini
- Monogenic Diabetes Clinic, Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Maurizio Delvecchio
- Metabolic Disorder and Diabetes Unit, “Giovanni XXIII” Children Hospital, 70100 Bari, Italy
- Unit of Pediatrics, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mafalda Mucciolo
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Rosario Ruta
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Ivana Rabbone
- Department of Health Sciences, Division of Pediatrics, University of Eastern Piedmont, 28100 Novara, Italy
| | - Valentino Cherubini
- Pediatric Endocrinology and Diabetology Unit, Department of Women's and Children's Health, Azienda Ospedaliero Universitaria delle Marche, G. Salesi Hospital, 60126 Ancona, Italy
| | - Stefano Zucchini
- Pediatric Endocrine Unit, University Hospital of Bologna Sant’Orsola-Malpighi, 40138 Bologna, Italy
| | - Stefano Cianfarani
- Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Women's and Children's Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Elena Prandi
- Pediatrics Clinic, University of Brescia and ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Riccardo Schiaffini
- Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Carla Bizzarri
- Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Barbara Piccini
- Endocrinology and Diabetology Unit, Meyer University Children's Hospital IRCCS, 50139 Florence, Italy
| | - Giulio Maltoni
- Pediatric Endocrine Unit, University Hospital of Bologna Sant’Orsola-Malpighi, 40138 Bologna, Italy
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of Mother, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Nicola Minuto
- Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Rossella Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Mara Giordano
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Laboratory of Genetics, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II/CEINGE Advanced Biotechnologies Franco Salvatore, 80131 Naples, Italy
| | - Valeria Grasso
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lucia Russo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valentina Tiberi
- Pediatric Endocrinology and Diabetology Unit, Department of Women's and Children's Health, Azienda Ospedaliero Universitaria delle Marche, G. Salesi Hospital, 60126 Ancona, Italy
| | - Andrea Scaramuzza
- Diabetes and Endocrine Service, Pediatric Unit, ASST Cremona, Maggiore Hospital, 26100 Cremona, Italy
| | - Giulio Frontino
- Department of Pediatrics, Pediatric Diabetology Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | | | - Gianluca Musolino
- Growth Disorders, Endocrinology and Diabetology Clinic, Filippo del Ponte Pediatric Hospital, ASST Sette Laghi, 21100 Varese, Italy
| | - Elvira Piccinno
- Metabolic Disorder and Diabetes Unit, “Giovanni XXIII” Children Hospital, 70100 Bari, Italy
| | - Davide Tinti
- Department of Pediatrics, University of Turin, 10126 Turin, Italy
| | - Paola Carrera
- Genomics for the Diagnosis of Human Pathologies, San Raffaele Scientific Institute, Center for Omics sciences @OSR, 20132 Milan, Italy
- Laboratory of Molecular Genetics and Cytogenetics, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Enza Mozzillo
- Department of Translational Medical Science, Section of Pediatrics, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Marco Cappa
- Research Area for Innovative Therapies in Endocrinopathies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Dario Iafusco
- Department of Pediatrics, University of Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Riccardo Bonfanti
- Department of Pediatrics, Pediatric Diabetology Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele and Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Fabrizio Barbetti
- Monogenic Diabetes Clinic, Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
7
|
Patni N, Chard C, Araújo-Vilar D, Phillips H, Magee DA, Akinci B. Diagnosis, treatment and management of lipodystrophy: the physician perspective on the patient journey. Orphanet J Rare Dis 2024; 19:263. [PMID: 38992753 PMCID: PMC11241872 DOI: 10.1186/s13023-024-03245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Lipodystrophy syndromes are a heterogeneous group of rare, life-limiting diseases characterized by a selective loss of adipose tissue and severe metabolic complications. There is a paucity of information describing the experiences and challenges faced by physicians who have seen and treated patients with lipodystrophy. This study aimed to provide a better understanding of the physician's perspective regarding the patient journey in lipodystrophy, including diagnosis, the burden of disease, and treatment approaches. METHODS Thirty-three physicians from six countries who had seen or treated patients with lipodystrophy were interviewed using a semi-structured questionnaire. Interviews were transcribed, anonymized, and analyzed for themes and trends. Four main themes were developed: (1) the diagnostic journey in lipodystrophy including the disease features or 'triggers' that result in the onward referral of patients to specialist medical centers with experience in managing lipodystrophy; (2) the impact of lipodystrophy on patient quality of life (QoL); (3) the use of standard therapies and leptin replacement therapy (metreleptin) in lipodystrophy, and (4) barriers to metreleptin use. RESULTS Participants reported that, due to their rarity and phenotypic heterogeneity, lipodystrophy cases are frequently unrecognized, leading to delays in diagnosis and medical intervention. Early consultation with multidisciplinary specialist medical teams was recommended for suspected lipodystrophy cases. The development and progression of metabolic complications were identified as key triggers for the referral of patients to specialist centers for follow-up care. Participants emphasized the impact of lipodystrophy on patient QoL, including effects on mental health and self-image. Although participants routinely used standard medical therapies to treat specific metabolic complications associated with lipodystrophy, it was acknowledged that metreleptin was typically required in patients with congenital generalized lipodystrophy and in some acquired generalized and partial lipodystrophy cases. A lack of experience among some participants and restrictions to access remained as barriers to metreleptin use. CONCLUSIONS To our knowledge, this is one of the first studies describing the qualitative experiences of physicians regarding the diagnosis and management of lipodystrophy. Other physician-centered studies may help increase the awareness of lipodystrophy among the wider medical community and support clinical approaches to this rare disease.
Collapse
Affiliation(s)
- Nivedita Patni
- Division of Pediatric Endocrinology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Craig Chard
- Lumanity Inc., Great Suffolk Yard, 2nd Floor, 131 Great Suffolk Street, London, SE1 1PP, United Kingdom
| | - David Araújo-Vilar
- UETeM-Molecular Pathology of Rare Diseases Group, Institute of Biomedical Research (CIMUS), School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Helen Phillips
- Chiesi Global Rare Diseases, 45 Mespil Road, Dublin, Ireland
| | - David A Magee
- Chiesi Global Rare Diseases, 45 Mespil Road, Dublin, Ireland.
| | - Baris Akinci
- Depark, Dokuz Eylul University & Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey
| |
Collapse
|
8
|
Mosbah H, Vatier C, Vigouroux C. Partial lipodystrophy: Clinical presentation and treatment. ANNALES D'ENDOCRINOLOGIE 2024; 85:197-200. [PMID: 38871513 DOI: 10.1016/j.ando.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Lipodystrophic syndromes are acquired or genetic rare diseases, characterized by a generalized or partial lack of adipose tissue leading to metabolic alterations linked to strong insulin resistance. They are probably underdiagnosed, especially for partial forms. They are characterized by a lack of adipose tissue or a lack of adipose development leading to metabolic disorders associated with often severe insulin resistance, hypertriglyceridemia and hepatic steatosis. In partial forms of lipodystrophy, these mechanisms are aggravated by excess visceral adipose tissue and/or subcutaneous adipose tissue in the upper part of the body. Diagnosis is based on clinical examination, pathological context and comorbidities, and on results of metabolic investigations and genetic analyses, which together determine management and genetic counseling. Early lifestyle and dietary measures focusing on regular physical activity, and balanced diet avoiding excess energy intake are crucial. They are accompanied by multidisciplinary follow-up adapted to each clinical form. When standard treatments have failed to control metabolic disorders, the orphan drug metreleptin, an analog of leptin, can be effective in certain forms of lipodystrophy syndromes.
Collapse
Affiliation(s)
- Héléna Mosbah
- Inserm, ECEVE UMR 1123, université Paris-Cité, Paris, France; Service endocrinologie, diabétologie, nutrition, CHU de la Milétrie, Poitiers, France; Service d'endocrinologie, hôpital Saint-Antoine, Centre de référence des maladies rares de l'insulino-sécrétion et de l'insulino-sensibilité (PRISIS), Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Camille Vatier
- Inserm U938, Centre de recherche Saint-Antoine, Institut de cardiométabolisme et nutrition (ICAN), Sorbonne université, Paris, France; Service d'endocrinologie, hôpital Saint-Antoine, Centre de référence des maladies rares de l'insulino-sécrétion et de l'insulino-sensibilité (PRISIS), Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Corinne Vigouroux
- Inserm U938, Centre de recherche Saint-Antoine, Institut de cardiométabolisme et nutrition (ICAN), Sorbonne université, Paris, France; Service d'endocrinologie, hôpital Saint-Antoine, Centre de référence des maladies rares de l'insulino-sécrétion et de l'insulino-sensibilité (PRISIS), Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
9
|
Gupta OT, Gupta RK. The Expanding Problem of Regional Adiposity: Revisiting a 1985 Diabetes Classic by Ohlson et al. Diabetes 2024; 73:649-652. [PMID: 38640415 PMCID: PMC11043052 DOI: 10.2337/dbi24-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 04/21/2024]
Abstract
Body fat distribution is a predictor of metabolic health in obesity. In this Classics in Diabetes article, we revisit a 1985 Diabetes article by Swedish investigators Ohlson et al. This work was one of the first prospective population-based studies that established a relationship between abdominal adiposity and the risk for developing diabetes. Here, we discuss evolving concepts regarding the link between regional adiposity and diabetes and other chronic disorders. Moreover, we highlight fundamental questions that remain unresolved.
Collapse
Affiliation(s)
- Olga T. Gupta
- Division of Endocrinology and Diabetes, Department of Pediatrics, Duke University, Durham, NC
| | - Rana K. Gupta
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC
| |
Collapse
|
10
|
Roumane A, Mcilroy GD, Sommer N, Han W, Heisler LK, Rochford JJ. GLP-1 receptor agonist improves metabolic disease in a pre-clinical model of lipodystrophy. Front Endocrinol (Lausanne) 2024; 15:1379228. [PMID: 38745956 PMCID: PMC11091257 DOI: 10.3389/fendo.2024.1379228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Aims Individuals with lipodystrophies typically suffer from metabolic disease linked to adipose tissue dysfunction including lipoatrophic diabetes. In the most severe forms of lipodystrophy, congenital generalised lipodystrophy, adipose tissue may be almost entirely absent. Better therapies for affected individuals are urgently needed. Here we performed the first detailed investigation of the effects of a glucagon like peptide-1 receptor (GLP-1R) agonist in lipoatrophic diabetes, using mice with generalised lipodystrophy. Methods Lipodystrophic insulin resistant and glucose intolerant seipin knockout mice were treated with the GLP-1R agonist liraglutide either acutely preceding analyses of insulin and glucose tolerance or chronically prior to metabolic phenotyping and ex vivo studies. Results Acute liraglutide treatment significantly improved insulin, glucose and pyruvate tolerance. Once daily injection of seipin knockout mice with liraglutide for 14 days led to significant improvements in hepatomegaly associated with steatosis and reduced markers of liver fibrosis. Moreover, liraglutide enhanced insulin secretion in response to glucose challenge with concomitantly improved glucose control. Conclusions GLP-1R agonist liraglutide significantly improved lipoatrophic diabetes and hepatic steatosis in mice with generalised lipodystrophy. This provides important insights regarding the benefits of GLP-1R agonists for treating lipodystrophy, informing more widespread use to improve the health of individuals with this condition.
Collapse
Affiliation(s)
- Ahlima Roumane
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - George D. Mcilroy
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Nadine Sommer
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Lora K. Heisler
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Justin J. Rochford
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
11
|
Al Yaarubi S, Alsagheir A, Al Shidhani A, Alzelaye S, Alghazir N, Brema I, Alsaffar H, Al Dubayee M, Alshahrani A, Abdelmeguid Y, Omar OM, Attia N, Al Amiri E, Al Jubeh J, Algethami A, Alkhayyat H, Haleem A, Al Yahyaei M, Khochtali I, Babli S, Nugud A, Thalange N, Albalushi S, Hergli N, Deeb A, Alfadhel M. Analysis of disease characteristics of a large patient cohort with congenital generalized lipodystrophy from the Middle East and North Africa. Orphanet J Rare Dis 2024; 19:118. [PMID: 38481246 PMCID: PMC10935864 DOI: 10.1186/s13023-024-03084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Congenital generalized lipodystrophy (CGL) is a rare inherited disease characterized by a near-total absence of adipose tissue and is associated with organ system abnormalities and severe metabolic complications. Here, we have analyzed the disease characteristics of the largest CGL cohort from the Middle East and North Africa (MENA) who have not received lipodystrophy-specific treatment. METHODS CGL was diagnosed clinically by treating physicians through physical assessment and supported by genetic analysis, fat loss patterns, family history, and the presence of parental consanguinity. Data were obtained at the time of patient diagnosis and during leptin-replacement naïve follow-up visits as permitted by available medical records. RESULTS Data from 43 patients with CGL (37 females, 86%) were collected from centers located in eight countries. The mean (median, range) age at diagnosis was 5.1 (1.0, at birth-37) years. Genetic analysis of the overall cohort showed that CGL1 (n = 14, 33%) and CGL2 (n = 18, 42%) were the predominant CGL subtypes followed by CGL4 (n = 10, 23%); a genetic diagnosis was unavailable for one patient (2%). There was a high prevalence of parental consanguinity (93%) and family history (67%) of lipodystrophy, with 64% (n = 25/39) and 51% (n = 20/39) of patients presenting with acromegaloid features and acanthosis nigricans, respectively. Eighty-one percent (n = 35/43) of patients had at least one organ abnormality; the most frequently affected organs were the liver (70%, n = 30/43), the cardiovascular system (37%, n = 16/43) and the spleen (33%, n = 14/43). Thirteen out of 28 (46%) patients had HbA1c > 5.7% and 20/33 (61%) had triglyceride levels > 2.26 mmol/L (200 mg/dl). Generally, patients diagnosed in adolescence or later had a greater severity of metabolic disease versus those diagnosed during childhood; however, metabolic and organ system abnormalities were observed in a subset of patients diagnosed before or at 1 year of age. CONCLUSIONS This analysis suggests that in addition to the early onset of fat loss, family history and high consanguinity enable the identification of young patients with CGL in the MENA region. In patients with CGL who have not received lipodystrophy-specific treatment, severe metabolic disease and organ abnormalities can develop by late childhood and worsen with age.
Collapse
Affiliation(s)
| | - Afaf Alsagheir
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Azza Al Shidhani
- Department of Child Health, Division of Endocrinology, Sultan Qaboos University Hospital, Al-Khod, Muscat, Oman
| | - Somaya Alzelaye
- Center of Endocrinology and Diabetes Mellitus, Al-Qunfudah General Hospital, Makkah Province, Al-Qunfudah, Saudi Arabia
| | - Nadia Alghazir
- Department of Pediatrics, Faculty of Medicine, Tripoli University Hospital, University of Tripoli, Tripoli, Libya
| | - Imad Brema
- Obesity, Endocrine, and Metabolism Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hussain Alsaffar
- Department of Child Health, Division of Endocrinology, Sultan Qaboos University Hospital, Al-Khod, Muscat, Oman
| | - Mohammed Al Dubayee
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Medicine, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Awad Alshahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Medicine, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Omneya M Omar
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Najya Attia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Elham Al Amiri
- Al Qassimi Women & Children Hospital, Sharjah, United Arab Emirates
| | - Jamal Al Jubeh
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | | | - Haya Alkhayyat
- Bahrain Defence Force Royal Medical Services, Riffa, Bahrain
| | - Azad Haleem
- University of Duhok/College of Medicine, Duhok, Iraq
| | - Mouza Al Yahyaei
- National Diabetes and Endocrine Center, Royal Hospital, Muscat, Oman
| | - Ines Khochtali
- Internal Medicine and Endocrinology Department, Fattouma Bourguiba University Hospital, University of Monastir, Monastir, Tunisia, Monastir, Tunisia
| | - Saleha Babli
- Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ahmed Nugud
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Nandu Thalange
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
- Department of Medicine, Mohammed Bin Rashid University, Dubai, United Arab Emirates
| | | | | | - Asma Deeb
- Pediatric Endocrine Division, Sheikh Shakhbout Medical City & College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Majid Alfadhel
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- College of Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Mosbah H, Vatier C, Andriss B, Belalem I, Delemer B, Janmaat S, Jéru I, Le Collen L, Maiter D, Nobécourt E, Vantyghem MC, Vigouroux C, Dumas A. Patients' perspective on the medical pathway from first symptoms to diagnosis in genetic lipodystrophy. Eur J Endocrinol 2024; 190:23-33. [PMID: 38128113 DOI: 10.1093/ejendo/lvad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Underdiagnosis is an important issue in genetic lipodystrophies, which are rare diseases with metabolic, cardiovascular, gynecological, and psychological complications. We aimed to characterize the diagnostic pathway in these diseases from the patients' perspective. DESIGN Cross-sectional study conducted through a self-reported patient questionnaire. METHODS Patients with genetic lipodystrophy were recruited throughout the French national reference network for rare diseases of insulin secretion and insulin sensitivity. Patients completed a self-reported questionnaire on disease symptoms, steps leading to the diagnosis, and healthcare professionals involved. Descriptive analyses were conducted. RESULTS Out of 175 eligible patients, 109 patients (84% women) were included; 93 had partial familial lipodystrophy and 16 congenital generalized lipodystrophy. Metabolic comorbidities (diabetes 68%, hypertriglyceridemia 66%, hepatic steatosis 57%), cardiovascular (hypertension 54%), and gynecologic complications (irregular menstruation 60%) were frequently reported. Median age at diagnosis was 30 years (interquartile range [IQR] 23-47). The overall diagnostic process was perceived as "very difficult" for many patients. It extended over 12 years (IQR 5-25) with more than five different physicians consulted by 36% of respondents, before diagnosis, for lipodystrophy-related symptoms. The endocrinologist made the diagnosis for 77% of the patients. Changes in morphotype were reported as the first symptoms by the majority of respondents. CONCLUSIONS Diagnostic pathway in patients with genetic lipodystrophy is rendered difficult by the multisystemic features of the disease and the lack of knowledge of non-specialized physicians. Training physicians to systematically include adipose tissue examination in routine clinical evaluation should improve diagnosis and management of lipodystrophy and lipodystrophy-associated comorbidities.
Collapse
Affiliation(s)
- Héléna Mosbah
- ECEVE UMR 1123, INSERM, Université Paris Cité, 75014 Paris, France
- Service Endocrinologie, Diabétologie, Nutrition, CHU La Milétrie, 86000 Poitiers, France
- Hôpital Saint-Antoine, Centre de Référence des Maladies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
| | - Camille Vatier
- Hôpital Saint-Antoine, Centre de Référence des Maladies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
- Inserm U938, Centre de Recherche Saint-Antoine et Institut de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France
| | - Béatrice Andriss
- Unité d'Epidémiologie Clinique, APHP, Hôpital Universitaire Robert Debré, 75019 Paris, France
| | - Inès Belalem
- Hôpital Saint-Antoine, Centre de Référence des Maladies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
| | - Brigitte Delemer
- Service d'endocrinologie diabète nutrition, CHU de Reims, Hôpital Robert-Debré, 51100 Reims, France
| | - Sonja Janmaat
- Hôpital Saint-Antoine, Centre de Référence des Maladies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
- Inserm U938, Centre de Recherche Saint-Antoine et Institut de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France
| | - Isabelle Jéru
- Inserm U938, Centre de Recherche Saint-Antoine et Institut de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France
- Département de Génétique Médicale, DMU BioGeM, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Institut Pasteur, EGID, Université Lille, 59000 Lille, France
- Service d'endocrinologie diabète nutrition, CHU de Reims, Hôpital Robert-Debré, 51100 Reims, France
- Service de Génétique clinique, Centre hospitalier de Reims, 51100 Reims, France
| | - Dominique Maiter
- Service d'Endocrinologie et Nutrition, Institut de Recherche Expérimentale et Clinique IREC, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B-1348 Brussels, Belgique
| | - Estelle Nobécourt
- Service d'endocrinologie Diabétologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France
| | - Marie-Christine Vantyghem
- Endocrinologie, diabétologie et métabolisme, CHU Lille, 59000 Lille, France
- Inserm U1190, Université Lille, Institut Pasteur, 59000 Lille, France
| | - Corinne Vigouroux
- Hôpital Saint-Antoine, Centre de Référence des Maladies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
- Inserm U938, Centre de Recherche Saint-Antoine et Institut de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France
| | - Agnes Dumas
- ECEVE UMR 1123, INSERM, Université Paris Cité, 75014 Paris, France
| |
Collapse
|
13
|
Lu S, Cao ZB. Interplay between Vitamin D and Adipose Tissue: Implications for Adipogenesis and Adipose Tissue Function. Nutrients 2023; 15:4832. [PMID: 38004226 PMCID: PMC10675652 DOI: 10.3390/nu15224832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Adipose tissue encompasses various types, including White Adipose Tissue (WAT), Brown Adipose Tissue (BAT), and beige adipose tissue, each having distinct roles in energy storage and thermogenesis. Vitamin D (VD), a fat-soluble vitamin, maintains a complex interplay with adipose tissue, exerting significant effects through its receptor (VDR) on the normal development and functioning of adipocytes. The VDR and associated metabolic enzymes are widely expressed in the adipocytes of both rodents and humans, and they partake in the regulation of fat metabolism and functionality through various pathways. These encompass adipocyte differentiation, adipogenesis, inflammatory responses, and adipokine synthesis and secretion. This review primarily appraises the role and mechanisms of VD in different adipocyte differentiation, lipid formation, and inflammatory responses, concentrating on the pivotal role of the VD/VDR pathway in adipogenesis. This insight furnishes new perspectives for the development of micronutrient-related intervention strategies in the prevention and treatment of obesity.
Collapse
Affiliation(s)
| | - Zhen-Bo Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China;
| |
Collapse
|
14
|
Cobelo-Gómez S, Sánchez-Iglesias S, Rábano A, Senra A, Aguiar P, Gómez-Lado N, García-Varela L, Burgueño-García I, Lampón-Fernández L, Fernández-Pombo A, Díaz-López EJ, Prado-Moraña T, San Millán B, Araújo-Vilar D. A murine model of BSCL2-associated Celia's encephalopathy. Neurobiol Dis 2023; 187:106300. [PMID: 37717662 DOI: 10.1016/j.nbd.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
Celia's encephalopathy or progressive encephalopathy with/without lipodystrophy is a neurodegenerative disease with a fatal prognosis in childhood. It is generally caused by the c.985C > T variant in the BSCL2 gene, leading to the skipping of exon 7 and resulting in an aberrant seipin protein (Celia-seipin). To precisely define the temporal evolution and the mechanisms involved in neurodegeneration, lipodystrophy and fatty liver in Celia's encephalopathy, our group has generated the first global knock-in murine model for the aberrant human transcript of BSCL2 (Bscl2Celia/Celia) using a strategy based on the Cre/loxP recombination system. In order to carry out a characterization at the neurological, adipose tissue and hepatic level, behavioral studies, brain PET, metabolic, histological and molecular studies were performed. Around 12% of homozygous and 5.4% of heterozygous knock-in mice showed severe neurological symptoms early in life, and their life expectancy was dramatically reduced. Severe generalized lipodystrophy and mild hepatic steatosis were present in these affected animals, while serum triglycerides and glucose metabolism were normal, with no insulin resistance. Furthermore, the study revealed a reduction in brain glucose uptake, along with patchy loss of Purkinje cells and the presence of intranuclear inclusions in cerebellar cortex cells. Homozygous, non-severely-affected knock-in mice showed a decrease in locomotor activity and greater anxiety compared with their wild type littermates. Bscl2Celia/Celia is the first murine model of Celia's encephalopathy which partially recapitulates the phenotype and severe neurodegenerative picture suffered by these patients. This model will provide a helpful tool to investigate both the progressive encephalopathy with/without lipodystrophy and congenital generalized lipodystrophy.
Collapse
Affiliation(s)
- Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Alberto Rábano
- Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain
| | - Pablo Aguiar
- Molecular Imaging and Medical Physics, University of Santiago de Compostela-IDIS, Spain; Nuclear Medicine and Molecular Imaging Group, IDIS, University Clinical Hospital of Santiago de Compostela, Spain
| | - Noemí Gómez-Lado
- Molecular Imaging and Medical Physics, University of Santiago de Compostela-IDIS, Spain; Nuclear Medicine and Molecular Imaging Group, IDIS, University Clinical Hospital of Santiago de Compostela, Spain
| | - Lara García-Varela
- Molecular Imaging and Medical Physics, University of Santiago de Compostela-IDIS, Spain; Nuclear Medicine and Molecular Imaging Group, IDIS, University Clinical Hospital of Santiago de Compostela, Spain
| | - Iván Burgueño-García
- Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Laura Lampón-Fernández
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| | - Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| | - Beatriz San Millán
- Grupo de Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain; Pathology Department, Alvaro Cunqueiro Hospital, Vigo, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 2023:10.1038/s41574-023-00845-0. [PMID: 37221402 DOI: 10.1038/s41574-023-00845-0] [Citation(s) in RCA: 208] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
Collapse
Affiliation(s)
- Armella Zadoorian
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Dybbro E, Vos MB, Kohli R. Special Population: Pediatric Nonalcoholic Fatty Liver Disease. Clin Liver Dis 2023; 27:471-482. [PMID: 37024219 DOI: 10.1016/j.cld.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Pediatric nonalcoholic fatty liver disease represents the most common liver disease in children and has been shown to carry significant morbidity. Widespread heterogeneity of disease, as well as the limitation of indirect screening modalities, has made true prevalence of disease difficult to estimate as well as hindered ability to identify optimal prognostic factors in the pediatric population. Current therapeutic options are limited in pediatric patients with current mainstay of therapy, lifestyle modifications, has proven to have a limited efficacy in current clinical application. Current research remains needed in improved screening modalities, prognosticating techniques, and therapeutic options in the pediatric population.
Collapse
Affiliation(s)
- Eric Dybbro
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Miriam B Vos
- Division of Gastroenterology, Hepatology, and Nutrition, Emory School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Dou J, Thangaraj SV, Puttabyatappa M, Elangovan VR, Bakulski K, Padmanabhan V. Developmental programming: Adipose depot-specific regulation of non-coding RNAs and their relation to coding RNA expression in prenatal testosterone and prenatal bisphenol-A -treated female sheep. Mol Cell Endocrinol 2023; 564:111868. [PMID: 36708980 PMCID: PMC10069610 DOI: 10.1016/j.mce.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Inappropriate developmental exposure to steroids is linked to metabolic disorders. Prenatal testosterone excess or bisphenol A (BPA, an environmental estrogen mimic) leads to insulin resistance and adipocyte disruptions in female lambs. Adipocytes are key regulators of insulin sensitivity. Metabolic tissue-specific differences in insulin sensitivity coupled with adipose depot-specific changes in key mRNAs, were previously observed with prenatal steroid exposure. We hypothesized that depot-specific changes in the non-coding RNA (ncRNA) - regulators of gene expression would account for the direction of changes seen in mRNAs. Non-coding RNA (lncRNA, miRNA, snoRNA, snRNA) from various adipose depots of prenatal testosterone and BPA-treated animals were sequenced. Adipose depot-specific changes in the ncRNA that are consistent with the depot-specific mRNA expression in terms of directionality of changes and functional implications in insulin resistance, adipocyte differentiation and cardiac hypertrophy were found. Importantly, the adipose depot-specific ncRNA changes were model-specific and mutually exclusive, suggestive of different regulatory entry points in this regulation.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
18
|
Adiyaman SC, Altay C, Kamisli BY, Avci ER, Basara I, Simsir IY, Atik T, Secil M, Oral EA, Akinci B. Pelvis magnetic resonance imaging to diagnose familial partial lipodystrophy. J Clin Endocrinol Metab 2023:7049389. [PMID: 36808247 DOI: 10.1210/clinem/dgad063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
CONTEXT The diagnosis of familial partial lipodystrophy (FPLD) is currently made based on clinical judgement. OBJECTIVE There is a need for objective diagnostic tools that can diagnose FPLD accurately. METHODS We have developed a new method that used measurements from pelvic magnetic resonance imaging (MRI) at the pubis level. We evaluated measurements from a lipodystrophy cohort (n = 59; median age [25-75 percentiles]: 32 [24-44]; 48 females and 11 males) and age- and gender-matched controls (n = 29). Another dataset included MRIs from 289 consecutive patients. RESULTS Receiver operating characteristic curve (ROC) analysis revealed a potential cut-point of ≤ 13 mm gluteal fat thickness for the diagnosis of FPLD. A combination of gluteal fat thickness ≤ 13 mm and pubic/gluteal fat ratio ≥ 2.5 (based on a ROC) provided 96.67% (95% Confidence Interval [CI]: 82.78-99.92%) sensitivity and 91.38% (95% CI: 81.02-97.14%) specificity in the overall cohort and 100.00% (95% CI: 87.23-100.00%) sensitivity and 90.00% (95% CI: 76.34-97.21%) specificity in females for the diagnosis of FPLD. When this approach was tested in a larger dataset of random patients, FPLD was differentiated from subjects without lipodystrophy with 96.67% (95% CI: 82.78-99.92%) sensitivity and 100.00% (95% CI: 98.73-100.00%) specificity. When only women were analyzed, the sensitivity and the specificity was 100.00% (95%CI: 87.23-100.00% and 97.95-100.00%, respectively). The performance of gluteal fat thickness and pubic/gluteal fat thickness ratio was comparable to readouts performed by radiologists with expertise in lipodystrophy. CONCLUSION The combined use of gluteal fat thickness and pubic/gluteal fat ratio from pelvic MRI is a promising method to diagnose FPLD that can reliably identify FPLD in women. Our findings need to be tested in larger populations and prospectively.
Collapse
Affiliation(s)
- Suleyman Cem Adiyaman
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Canan Altay
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Berfu Y Kamisli
- Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Emre Ruhat Avci
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Isil Basara
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Ilgin Yildirim Simsir
- Division of Endocrinology, Department of Internal Medicine, Ege University School of Medicine, Izmir, Turkey
| | - Tahir Atik
- Department of Pediatric Genetics, Ege University School of Medicine, Izmir, Turkey
| | - Mustafa Secil
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Elif A Oral
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
19
|
Loss of Mature Lamin A/C Triggers a Shift in Intracellular Metabolic Homeostasis via AMPKα Activation. Cells 2022; 11:cells11243988. [PMID: 36552752 PMCID: PMC9777081 DOI: 10.3390/cells11243988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The roles of lamin A/C in adipocyte differentiation and skeletal muscle lipid metabolism are associated with familial partial lipodystrophy of Dunnigan (FPLD). We confirmed that LMNA knockdown (KD) in mouse adipose-derived mesenchymal stem cells (AD-MSCs) prevented adipocyte maturation. Importantly, in in vitro experiments, we discovered a significant increase in phosphorylated lamin A/C levels at serine 22 or 392 sites (pLamin A/C-S22/392) accompanying increased lipid synthesis in a liver cell line (7701 cells) and two hepatocellular carcinoma (HCC) cell lines (HepG2 and MHCC97-H cells). Moreover, HCC cells did not survive after LMNA knockout (KO) or even KD. Evidently, the functions of lamin A/C differ between the liver and adipose tissue. To date, the mechanism of hepatocyte lipid metabolism mediated by nuclear lamin A/C remains unclear. Our in-depth study aimed to identify the molecular connection between lamin A/C and pLamin A/C, hepatic lipid metabolism and liver cancer. Gain- and loss-of-function experiments were performed to investigate functional changes and the related molecular pathways in 7701 cells. Adenosine 5' monophosphate-activated protein kinase α (AMPKα) was activated when abnormalities in functional lamin A/C were observed following lamin A/C depletion or farnesyltransferase inhibitor (FTI) treatment. Active AMPKα directly phosphorylated acetyl-CoA-carboxylase 1 (ACC1) and subsequently inhibited lipid synthesis but induced glycolysis in both HCC cells and normal cells. According to the mass spectrometry analysis, lamin A/C potentially regulated AMPKα activation through its chaperone proteins, ATPase or ADP/ATP transporter 2. Lonafarnib (an FTI) combined with low-glucose conditions significantly decreased the proliferation of the two HCC cell lines more efficiently than lonafarnib alone by inhibiting glycolysis or the maturation of prelamin A.
Collapse
|