1
|
Dal Ben D, Antonioli L, Lambertucci C, Spinaci A, Fornai M, D'Antongiovanni V, Pellegrini C, Blandizzi C, Volpini R. Approaches for designing and discovering purinergic drugs for gastrointestinal diseases. Expert Opin Drug Discov 2020; 15:687-703. [PMID: 32228110 DOI: 10.1080/17460441.2020.1743673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Purines finely modulate physiological motor, secretory, and sensory functions in the gastrointestinal tract. Their activity is mediated by the purinergic signaling machinery, including receptors and enzymes regulating their synthesis, release, and degradation. Several gastrointestinal dysfunctions are characterized by alterations affecting the purinergic system. AREAS COVERED The authors provide an overview on the purinergic receptor signaling machinery, the molecules and proteins involved, and a summary of medicinal chemistry efforts aimed at developing novel compounds able to modulate the activity of each player involved in this machinery. The involvement of purinergic signaling in gastrointestinal motor, secretory, and sensory functions and dysfunctions, and the potential therapeutic applications of purinergic signaling modulators, are then described. EXPERT OPINION A number of preclinical and clinical studies demonstrate that the pharmacological manipulation of purinergic signaling represents a viable way to counteract several gastrointestinal diseases. At present, the paucity of purinergic therapies is related to the lack of receptor-subtype-specific agonists and antagonists that are effective in vivo. In this regard, the development of novel therapeutic strategies should be focused to include tools able to control the P1 and P2 receptor expression as well as modulators of the breakdown or transport of purines.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| |
Collapse
|
2
|
Intestinal Epithelial Ecto-5'-Nucleotidase (CD73) Regulates Intestinal Colonization and Infection by Nontyphoidal Salmonella. Infect Immun 2017; 85:IAI.01022-16. [PMID: 28717030 DOI: 10.1128/iai.01022-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/03/2017] [Indexed: 12/23/2022] Open
Abstract
Ecto-5'-nucleotidase (CD73) is expressed abundantly on the apical surface of intestinal epithelial cells (IECs) and functions as the terminal enzyme in the generation of extracellular adenosine. Previous work demonstrated that adenosine signaling in IECs results in a number of tissue-protective effects during inflammation; however, a rationale for its apical expression has been lacking. We hypothesized that the highly polarized expression of CD73 is indicative of an important role for extracellular adenosine as a mediator of host-microbe interactions. We show that adenosine harbors bacteriostatic activity against Salmonella enterica serovar Typhimurium that is not shared by the related purine metabolite 5'-AMP, inosine, or hypoxanthine. Analysis of Salmonella colonization in IEC-specific CD73 knockout mice (CD73f/fVillinCre ) revealed a nearly 10-fold increase in colonization compared to that in controls. Despite the increased luminal colonization by Salmonella, CD73f/fVillinCre mice were protected against Salmonella colitis and showed reduced Salmonella burdens in viscera, suggesting that adenosine promotes dissemination. The knockdown of CD73 expression in cultured IECs resulted in dramatic defects in intraepithelial localization and replication as well as defective transepithelial translocation by Salmonella In conclusion, we define a novel antimicrobial activity of adenosine in the gastrointestinal tract and unveil an important role for adenosine as a regulator of host-microbe interactions. These findings have broad implications for the development of new therapeutic agents for infectious disease.
Collapse
|
3
|
Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, Ostatnikova D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 2014; 138:179-87. [PMID: 25446201 DOI: 10.1016/j.physbeh.2014.10.033] [Citation(s) in RCA: 408] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
Development of Autism Spectrum Disorders (ASD), including autism, is based on a combination of genetic predisposition and environmental factors. Recent data propose the etiopathogenetic role of intestinal microflora in autism. The aim of this study was to elucidate changes in fecal microbiota in children with autism and determine its role in the development of often present gastrointestinal (GI) disorders and possibly other manifestations of autism in Slovakia. The fecal microflora of 10 children with autism, 9 siblings and 10 healthy children was investigated by real-time PCR. The fecal microbiota of autistic children showed a significant decrease of the Bacteroidetes/Firmicutes ratio and elevation of the amount of Lactobacillus spp. Our results also showed a trend in the incidence of elevated Desulfovibrio spp. in children with autism reaffirmed by a very strong association of the amount of Desulfovibrio spp. with the severity of autism in the Autism Diagnostic Interview (ADI) restricted/repetitive behavior subscale score. The participants in our study demonstrated strong positive correlation of autism severity with the severity of GI dysfunction. Probiotic diet supplementation normalized the Bacteroidetes/Firmicutes ratio, Desulfovibrio spp. and the amount of Bifidobacterium spp. in feces of autistic children. We did not find any correlation between plasma levels of oxytocin, testosterone, DHEA-S and fecal microbiota, which would suggest their combined influence on autism development. This pilot study suggests the role of gut microbiota in autism as a part of the "gut-brain" axis and it is a basis for further investigation of the combined effect of microbial, genetic, and hormonal changes for development and clinical manifestation of autism.
Collapse
Affiliation(s)
| | | | | | - Jan Bakos
- Institute of Physiology, Comenius University, Bratislava, Slovakia
| | - Barbora Vlkova
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | | | | |
Collapse
|
4
|
Janakiram NB, Mohammed A, Ravillah D, Choi CI, Zhang Y, Desai D, Amin S, Rao CV. Chemopreventive effects of PBI-Se, a selenium-containing analog of PBIT, on AOM-induced aberrant crypt foci in F344 rats. Oncol Rep 2013; 30:952-60. [PMID: 23708609 DOI: 10.3892/or.2013.2483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/26/2013] [Indexed: 11/06/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a potential target for the treatment of inflammation and cancer. Previously, we showed that the selective iNOS inhibitor S,S'-1,4-phenylenebis(1,2-ethanediyl)bis-isothiourea (PBIT) caused significant inhibition of colon carcinogenesis induced by azoxymethane (AOM), although it did not completely abrogate NO production due to the exogenous bioavailability of NO and NO generation by eNOS in tumor tissues. To create an iNOS-targeting molecule that may have additional benefits, a novel isosteric analog of PBIT, PBI-Se, was developed, in which sulfur was replaced with selenium. Chemopreventive efficacy of PBI-Se was evaluated in an AOM-induced rat colon carcinogenesis model using aberrant crypt foci (ACF) as the endpoint. At 7 weeks of age, rats (12/group) were fed the control diet (AIN 76A) and then colonic ACF were induced with two AOM treatments. Three days later, rats were fed diets containing PBI-Se (0-20 ppm) for 8 weeks, and then ACF were evaluated histopathologically. Dietary administration of 10 or 20 ppm of PBI-Se significantly suppressed AOM-induced total colonic ACF formation (32 or 41%, p<0.002-0.0003), and multi-crypt (4 or more) aberrant foci (29 or 47%, p<0.01-0.0004), respectively. The inhibition by PBI-Se was dose-dependent and was half the dose of PBIT for inhibiting total ACF in rats. Both PBIT and PBI-Se induced dose-dependent apoptosis in CaCo2 cells and caused a significant decrease in the cell cycle proteins cyclin D1 (70%, p<0.0001) and iNOS (99%, p<0.0001). Treatment with PBIT (30 and 60 µM) and PBI-Se (2 and 4 µM) significantly decreased the LPS-induced cytokine interleukin-6 level. Incorporation of selenium into the structure of PBIT provided the agent with additional novel cytotoxic and immunologic properties. Results from the in vitro and in vivo bioassays suggest that PBI-Se could be developed further for the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Hematology/Oncology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Tuccori M, Blandizzi C, Fornai M. The role of purinergic pathways in the pathophysiology of gut diseases: pharmacological modulation and potential therapeutic applications. Pharmacol Ther 2013; 139:157-88. [PMID: 23588157 DOI: 10.1016/j.pharmthera.2013.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Gut homeostasis results from complex neuro-immune interactions aimed at triggering stereotypical and specific programs of coordinated mucosal secretion and powerful motor propulsion. A prominent role in the regulation of this highly integrated network, comprising a variety of immune/inflammatory cells and the enteric nervous system, is played by purinergic mediators. The cells of the digestive tract are literally plunged into a "biological sea" of functionally active nucleotides and nucleosides, which carry out the critical task of driving regulatory interventions on cellular functions through the activation of P1 and P2 receptors. Intensive research efforts are being made to achieve an integrated view of the purinergic system, since it is emerging that the various components of purinergic pathways (i.e., enzymes, transporters, mediators and receptors) are mutually linked entities, deputed to finely modulating the magnitude and the duration of purinergic signaling, and that alterations occurring in this balanced network could be intimately involved in the pathophysiology of several gut disorders. This review article intends to provide a critical appraisal of current knowledge on the purinergic system role in the regulation of gastrointestinal functions, considering these pathways as a whole integrated network, which is capable of finely controlling the levels of bioactive nucleotides and nucleosides in the biophase of their respective receptors. Special attention is paid to the mechanisms through which alterations in the various compartments of the purinergic system could contribute to the pathophysiology of gut disorders, and to the possibility of counteracting such dysfunctions by means of pharmacological interventions on purinergic molecular targets.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Yeh KY, Li YY, Hsieh LL, Chen JR, Tang RP. The -174 G/C polymorphism in interleukin-6 (IL-6) promoter region is associated with serum IL-6 and carcinoembryonic antigen levels in patients with colorectal cancers in Taiwan. J Clin Immunol 2009; 30:53-9. [PMID: 19728052 DOI: 10.1007/s10875-009-9324-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/07/2009] [Indexed: 12/18/2022]
Abstract
INTRODUCTION We investigated the associations between -174 G/C polymorphism of interleukin-6 (IL-6) gene promoter and serum IL-6 and carcinoembryonic antigen (CEA) levels in Taiwanese patients with colorectal cancer (CRC). RESULTS AND DISCUSSION The frequency of the G allele was only 0.043, which is significantly lower compared to Western analogs. On grouping genotypes as G-positive (GG and CG) and G-negative (GG), the average IL-6 level and CEA levels were significantly lower in G-positive patients than in G-negative analogs (IL-6, 3.56 +/- 4.38 vs. 15.38 +/- 9.52 pg/ml, P = 0.021; CEA, 27.7 +/- 25.7 vs. 157.7 +/- 59.6 ng/ml, P = 0.012). The patients without the G allele had higher incidences of synchronous cancers of other origins (P = 0.003). CONCLUSION In conclusion, ethnicity affects the status of -174 G/C IL-6 polymorphism. This polymorphism status consequently influences the expressions of serum IL-6 and CEA and incidences of synchronous cancers of other origins.
Collapse
Affiliation(s)
- Kun-Yun Yeh
- Division of Hemato-oncology, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Keelung, Taiwan.
| | | | | | | | | |
Collapse
|
7
|
Chichlowski M, Croom J, McBride BW, Daniel L, Davis G, Koci MD. Direct-Fed Microbial PrimaLac and Salinomycin Modulate Whole-Body and Intestinal Oxygen Consumption and Intestinal Mucosal Cytokine Production in the Broiler Chick. Poult Sci 2007; 86:1100-6. [PMID: 17495079 DOI: 10.1093/ps/86.6.1100] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The current study investigated whole-body O2 consumption, intestinal O2 consumption, and intestinal inflammation status through mucosal cytokine production on broiler chicks fed the direct-fed microbial PrimaLac. One hundred twenty 1-d-old broiler chicks were randomly assigned to 1 of 3 experimental diets: standard starter diet (control), standard starter diet with added salinomycin (SAL), and standard starter diet with added PrimaLac (DFM). Birds were housed in 2 separate rooms, the control and SAL treatments in one room and the DFM in another. Intact ileal and cecal samples were collected on d 19, 20, and 21 after measuring whole-body O2 consumption using indirect calorimetry. The O2 up-take of ileal tissue was measured using an in vitro O2 monitor. Analysis of intestinal immune status of broilers was measured by the relative differences in mRNA of both pro- and antiinflammatory cytokines: interleukin-(IL) 1beta, IL-6, and IL-10 using real-time reverse transcription-PCR. Broilers exhibited a 6 to 16% decrease in whole-body energy expenditures and up to a 47% decrease (P<0.05) in ileal energy expenditures in the DFM group compared with other treatments. The reverse transcription-PCR data demonstrated that DFM consortium numerically altered both pro- and antiinflammatory cytokines within the ileum of 19-d posthatch broilers. These data suggest that direct-fed microbials like PrimaLac increase metabolic efficiency via changes in intestinal physiology and metabolism.
Collapse
Affiliation(s)
- M Chichlowski
- Department of Poultry Science, North Carolina State University, Raleigh 27695, USA
| | | | | | | | | | | |
Collapse
|
8
|
Theodoropoulos G, Papaconstantinou I, Felekouras E, Nikiteas N, Karakitsos P, Panoussopoulos D, Lazaris AC, Patsouris E, Bramis J, Gazouli M. Relation between common polymorphisms in genes related to inflammatory response and colorectal cancer. World J Gastroenterol 2006; 12:5037-5043. [PMID: 16937502 PMCID: PMC4087409 DOI: 10.3748/wjg.v12.i31.5037] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 03/13/2006] [Accepted: 03/20/2006] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the association between common single nucleotide polymorphisms (SNPs) in inflammatory response-related genes such as interleukin (IL)-6, IL-8, tumor necrosis factor alpha (TNFalpha), peroxisome proliferators-activated receptor gamma (PPARgamma), intercellular adhesion molecule-1 (ICAM-1) and the risk of colorectal cancer (CRC) in a group of Greek patients. METHODS The study group consisted of 222 CRC patients and 200 healthy controls. Genotyping was performed using allele-specific PCR of PRC-RFLP and the results were confirmed by sequencing. We studied the association of SNPs in the IL-6 (-174G>C), IL-8 (-251T>A), TNFalpha (-308G>A), ICAM-1 (R241G and K469E), and PPARgamma (Pro12Ala) genes and the risk of CRC. RESULTS The IL-6 -174G, R241 and K469 alleles of ICAM-1 were associated with increased risk of CRC (OR = 1.77, 95% CI: 1.34-2.34; OR = 1.83, 95% CI: 1.23-2.72; and OR = 1.35, 95% CI: 1.03-1.77 respectively). The IL-8 and TNFalpha polymorphisms had no effect. Whereas the PPARgamma Pro12 genotype was associated with increased risk of disease (OR = 1.78, 95% CI: 1.25-2.49). CONCLUSION The association between common SNPs in immunologic response-related genes and CRC is reported in the present study. Apart from shedding light on the mechanisms of malignancy initiation and progression, SNPs may improve appropriate screening for sub-populations at risk.
Collapse
Affiliation(s)
- George Theodoropoulos
- 1st Propaideutic Surgical Department, Hippocration University Hospital, University of Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Johanesen PA, Dwinell MB. Flagellin-independent regulation of chemokine host defense in Campylobacter jejuni-infected intestinal epithelium. Infect Immun 2006; 74:3437-47. [PMID: 16714574 PMCID: PMC1479283 DOI: 10.1128/iai.01740-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial food-borne diarrheal disease throughout the world and the most frequent antecedent of autoimmune neuropathy Guillain-Barré syndrome. While infection is associated with immune memory, little is known regarding the role of the epithelium in targeting dendritic cells (DC) for initiating the appropriate adaptive immune response to C. jejuni. The objective of this study was to define the role for the intestinal epithelium in the induction of the adaptive immune response in C. jejuni infection by assessing the production of DC and T-cell chemoattractants. Human T84 epithelial cells were used as model intestinal epithelia. Infection of T84 cells with C. jejuni dose- and time-dependently up-regulated DC and T-cell chemokine gene transcription and secretion. Induction required live bacteria and was in the physiologically relevant direction for attraction of mucosal immunocytes. C. jejuni-activated NF-kappaB signaling was shown to be essential for proinflammatory chemokine secretion. Notably, C. jejuni secretion occurred independently of flagellin identification by Toll-like receptor 5. Secretion of a DC chemoattractant by differing clinical C. jejuni isolates suggested adherence/invasion were key virulence determinants of epithelial chemokine secretion. The regulated epithelial expression of DC and T-cell chemoattractants suggests a mechanism for the directed trafficking of immune cells required for the initiation of adaptive immunity in campylobacteriosis. Chemokine secretion occurs despite Campylobacter evasion of the flagellin pattern recognition receptor, suggesting that alternate host defense strategies limit disease pathogenesis.
Collapse
Affiliation(s)
- Priscilla A Johanesen
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
10
|
Günzel D, Florian P, Richter JF, Troeger H, Schulzke JD, Fromm M, Gitter AH. Restitution of single-cell defects in the mouse colon epithelium differs from that of cultured cells. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1496-507. [PMID: 16397094 DOI: 10.1152/ajpregu.00470.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Integrity of colon epithelium is of crucial importance and, as small defects occur constantly, rapid repair (restitution) is essential. To investigate the mechanism of restitution, single-cell lesions were induced in mouse colonic surface epithelia by iontophoretic injection of Ca2+. Closure of the resulting defects was monitored using confocal laser scanning microscopy (CLSM), and functional sealing by electrophysiological techniques. Restitution was evaluated as the time constant tau of the exponential decrease in conductance of an induced leak and amounted to 0.28 min under control conditions. After 4 min, the leak was completely sealed. Repair was thus considerably faster than in previously investigated HT-29/B6 cells (tau=5.73 min). As in cultured cells, cytochalasin D delayed restitution in native colon epithelia (tau=0.69 min), indicating the involvement of actin in the healing process; however, no accumulation of actin surrounding the lesion was detected. Long-term incubation of epithelia with IFN-gamma alone or in combination with TNF-alpha increased tau to 0.49 and 0.59 min, respectively. In contrast to cultured cells, TNF-alpha alone did not affect restitution. A brief (<10 min) exposure to the sterile filtered supernatant of hemolytic E. coli O4 cultures did not affect the morphology of the epithelium, but delayed restitution. In CLSM studies, defects were still clearly visible 4 min after the onset of lesion induction. The supernatant of a nonhemolytic E. coli O4 mutant did not exhibit this effect. In conclusion, single-cell defects in native colon cause functional leaks that seal faster than in cell cultures. Proinflammatory cytokines and pathogenic bacteria delay restitution. This suggests a key role of very small lesions at the onset of pathogenic processes in the intestine.
Collapse
Affiliation(s)
- D Günzel
- Department of Clinical Physiology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, and Jena University of Applied Sciences, Germany.
| | | | | | | | | | | | | |
Collapse
|