1
|
Brosinsky P, Bornbaum J, Warga B, Schulz L, Schlüter KD, Ghigo A, Hirsch E, Schulz R, Euler G, Heger J. PI3K as Mediator of Apoptosis and Contractile Dysfunction in TGFβ 1-Stimulated Cardiomyocytes. BIOLOGY 2021; 10:biology10070670. [PMID: 34356525 PMCID: PMC8301398 DOI: 10.3390/biology10070670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND TGFβ1 is a growth factor that plays a major role in the remodeling process of the heart by inducing cardiomyocyte dysfunction and apoptosis, as well as fibrosis thereby restricting heart function. TGFβ1 mediates its effect via the TGFβ receptor I (ALK5) and the activation of SMAD transcription factors, but TGFβ1 is also known as activator of phosphoinositide-3-kinase (PI3K) via the non-SMAD signaling pathway. The aim of this study was to investigate whether PI3K is also involved in TGFβ1-induced cardiomyocytes apoptosis and contractile dysfunction. METHODS AND RESULTS Incubation of isolated ventricular cardiomyocytes with TGFβ1 resulted in impaired contractile function. Pre-incubation of cells with the PI3K inhibitor Ly294002 or the ALK5 inhibitor SB431542 attenuated the decreased cell shortening in TGFβ1-stimulated cells. Additionally, TGFβ-induced apoptosis was significantly reduced by the PI3K inhibitor Ly294002. Administration of a PI3Kγ-specific inhibitor AS605240 abolished the TGFβ effect on apoptosis and cell shortening. This was also confirmed in cardiomyocytes from PI3Kγ KO mice. Induction of SMAD binding activity and the TGFβ target gene collagen 1 could be blocked by the PI3K inhibitor Ly294002, but not by the specific PI3Kγ inhibitor AS605240. CONCLUSIONS TGFβ1-induced SMAD activation, cardiomyocyte apoptosis, and impaired cell shortening are mediated via both, the ALK5 receptor and PI3K, in adult cardiomyocytes. PI3Kγ specifically contributes to apoptosis induction and impairment of contractile function independent of SMAD signaling.
Collapse
Affiliation(s)
- Paulin Brosinsky
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Julia Bornbaum
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Björn Warga
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Lisa Schulz
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Klaus-Dieter Schlüter
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Gerhild Euler
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Jacqueline Heger
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
- Correspondence: ; Tel.: +49-641-99-47215
| |
Collapse
|
2
|
Ahmed LA, Mohamed AF, Abd El-Haleim EA, El-Tanbouly DM. Boosting Akt Pathway by Rupatadine Modulates Th17/Tregs Balance for Attenuation of Isoproterenol-Induced Heart Failure in Rats. Front Pharmacol 2021; 12:651150. [PMID: 33995066 PMCID: PMC8121023 DOI: 10.3389/fphar.2021.651150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/11/2021] [Indexed: 01/11/2023] Open
Abstract
Disruption of Th17/Tregs homeostasis plays a crucial role in governing the immune response during myocardial fibrosis and its progression to heart failure. The present study aimed to assess for the first time the possible protection afforded by rupatadine against isoproterenol-induced heart failure in rats. It also explored the role of PI3k/Akt as a possible mechanistic pathway, through which rupatadine could modulate Th17/Tregs balance to display its effect. Isoproterenol (85 and 170 mg/kg/day) was injected subcutaneously for 2 successive days, respectively and rupatadine (4 mg/kg/day) was then given orally for 14 days with or without wortmannin (PI3K/Akt inhibitor). Rupatadine succeeded to completely ameliorate isoproterenol-induced cardiac dysfunction as demonstrated by improvements of electrocardiographic and echocardiographic measurements. Moreover, rupatadine prevented the marked elevation of PAF and oxidative stress in addition to Th17 promoting cytokines (IL-6, IL-23, and TGF-β). Accordingly, rupatadine prevented Th17 stimulation or expansion as indicated by increased Foxp3/RORγt ratio and decreased production of its pro-inflammatory cytokine (IL-17). Rupatadine treatment mitigated isoproterenol-induced activation of STAT-3 signaling and the imbalance in p-Akt/total Akt ratio affording marked decrease in atrogin-1 and apoptotic biomarkers. Finally, this therapy was effective in averting cardiac troponin loss and reverting the histological alterations as assessed by myocardial fibrosis and hypertrophy grading. Contrariwise, co-administration of wortmannin mostly attenuated the protective effects of rupatadine affording more or less similar results to that of isoproterenol-untreated rats. In conclusion, rupatadine could be an effective therapy against the development of isoproterenol-induced heart failure where PI3K/Akt pathway seems to play a crucial role in its protective effect.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
3
|
Abstract
Objective: Omentin is a recently identified novel adipocytokine mainly expressed in the epicardial adipose tissue. Although it has favorable effects on cardiovascular disease, the impact of omentin on the hearts is still an understudied issue. The aim of the present study was to investigate the possible effects of omentin on isolated rat heart. Methods: Using the Langendorff method, 28 adult male Sprague–Dawley rat hearts were isolated and perfused with modified Krebs–Henseleit solution (mK–Hs). Concentrations of 100, 200, and 400 ng/mL omentin were given to the hearts for 30 min. The control group (n=7) was perfused with mK–Hs alone. Gene expressions in the left ventricle tissue were determined by real-time polymerase chain reaction. Left ventricular cyclic adenosine monophosphate and cyclic guanosine monophosphate (cGMP) concentrations were determined by using enzyme-linked immunosorbent assay. Results: All concentrations of omentin significantly decreased left ventricular developed pressure and maximal rate of pressure development that are the indexes of cardiac contractility. At the same time, omentin decreased both phosphoinositide 3-kinase γ (PI3Kγ) and sarcolemmal L-type Ca2+ channel (CaV1.2) mRNA levels. Moreover, this peptide at concentrations of 200 and 400 ng/mL increased endothelial nitric oxide synthase (eNOS) mRNA. Furthermore, concentrations of 200 and 400 ng/mL omentin increased the amount of cGMP. Conclusion: We conclude that acute omentin treatment decreases cardiac contractility. Elevated eNOS mRNA and cGMP levels with reduced CaV1.2 mRNA are likely to lead to negative inotropy.
Collapse
|
4
|
Kutlay Ö, Kaygısız Z, Kaygısız B. The Effect of Chemerin on Cardiac Parameters and Gene Expressions in Isolated Perfused Rat Heart. Balkan Med J 2018; 36:43-48. [PMID: 30238923 PMCID: PMC6335941 DOI: 10.4274/balkanmedj.2017.1787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: Chemerin is a novel chemoattractant adipokine expressed in cardiovascular system, and its receptor has been detected in the epicardial adipose tissue. Aims: To determine the effects of chemerin on the cardiac parameters and gene expressions in the isolated perfused rat heart. Study Design: Animal experiment. Methods: The hearts were retrogradely perfused with Langendorff technique to measure the cardiac parameters. The experimental groups were acutely treated with 10, 100, and 1000 nM doses of chemerin. Another group was given 10 μM L-nitric oxide synthase inhibitor for 5 min before 1000 nM chemerin administration. The real-time polymerase chain reaction was performed for detecting the expression of target genes. Results: All doses of chemerin significantly decreased the left ventricular developed pressure (max 35.33 Δ%, p<0.001), and +dP/dtmax (max 31.3 Δ%, p<0.001), which are the indexes of cardiac contractile force. In addition, 1000 nM chemerin reduced the coronary flow (max 31 Δ%, p<0.001). N(W)-nitro-L-arginine methyl ester antagonized the negative inotropic effect of chemerin on contractility. Chemerin induced a 2.16-fold increase in endothelial nitric oxide synthase mRNA and increased the cyclic guanosine monophosphate levels (p<0.001) but decreased the PI3Kγ gene expression (1.8-fold, p<0.001). Furthermore, all doses of chemerin decreased the CaV1.2 gene expression (1.69-fold, p<0.001). Conclusion: Acute chemerin treatment induces a negative inotropic action with the involvement of nitric oxide pathway, CaV1.2, and PI3Kγ on isolated rat heart.
Collapse
Affiliation(s)
- Özden Kutlay
- Department of Physiology, Eskişehir Osmangazi University School of Medicine, Eskişehir, Turkey
| | - Ziya Kaygısız
- Department of Physiology, Eskişehir Osmangazi University School of Medicine, Eskişehir, Turkey
| | - Bilgin Kaygısız
- Department of Pharmacology, Eskişehir Osmangazi University School of Medicine, Eskişehir, Turkey
| |
Collapse
|
5
|
Dong W, Guan F, Zhang X, Gao S, Liu N, Chen W, Zhang L, Lu D. Dhcr24 activates the PI3K/Akt/HKII pathway and protects against dilated cardiomyopathy in mice. Animal Model Exp Med 2018; 1:40-52. [PMID: 30891546 PMCID: PMC6354314 DOI: 10.1002/ame2.12007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/16/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND 24-dehydrocholesterol reductase (Dhcr24) catalyzes the last step of cholesterol biosynthesis, which is required for normal development and anti-apoptotic activities of tissues. We found that Dhcr24 expression decreased in the cTnTR 141W dilated cardiomyopathy (DCM) transgenic mice. Therefore, we tested whether rescued expression of Dhcr24 could prevent the development of DCM and its possible mechanism. METHODS Heart tissue specific transgenic overexpression mice of Dhcr24 was generated, then was crossed to cTnTR 141W mouse to obtain the double transgenic mouse (DTG). The phenotypes were demonstrated by the survival, cardiac geometry and function analysis, as well as microstructural and ultrastructural observations based on echocardiography and histology examination. The pathway and apoptosis were analysed by western blotting and TUNEL assay in vivo and in vitro. RESULTS We find that Dhcr24 decreased in hearts tissues of cTnTR 141W and LMNAE 82K DCM mice. The transgenic overexpression of Dhcr24 significantly improves DCM phenotypes in cTnTR 141W mice, and activates PI3K/Akt/HKII pathway, followed by a reduction of the translocation of Bax and release of cytochrome c, caspase-9 and caspase-3 activation and myocyte apoptosis. Knockdown the expression of Dhcr24 reduces the activation of PI3K/Akt/HKII pathway and inhibition of the mitochondrial-dependent apoptosis. The anti-apoptotic effect of Dhcr24 could be completely removed by the inhibition of PI3K pathway and partly removed by the HKII inhibitor in H9c2 cell line. CONCLUSION Compensatory expression of Dhcr24 protect against DCM through activated PI3K/Akt/HKII pathway and reduce Bax translocation. This is the first investigation for the molecular mechanism of Dhcr24 participate in development of DCM.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Fei‐fei Guan
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Shan Gao
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Ning Liu
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Wei Chen
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Lian‐feng Zhang
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Dan Lu
- Key Laboratory of Human Disease Comparative MedicineNHFPCInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Yamada S, Fong MC, Hsiao YW, Chang SL, Tsai YN, Lo LW, Chao TF, Lin YJ, Hu YF, Chung FP, Liao JN, Chang YT, Li HY, Higa S, Chen SA. Impact of Renal Denervation on Atrial Arrhythmogenic Substrate in Ischemic Model of Heart Failure. J Am Heart Assoc 2018; 7:JAHA.117.007312. [PMID: 29358197 PMCID: PMC5850156 DOI: 10.1161/jaha.117.007312] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Myocardial infarction increases the risk of heart failure (HF) and atrial fibrillation. Renal denervation (RDN) might suppress the development of atrial remodeling. This study aimed to elucidate the molecular mechanism of RDN in the suppression of atrial fibrillation in a HF model after myocardial infarction. METHODS AND RESULTS HF rabbits were created 4 weeks after coronary ligation. Rabbits were classified into 3 groups: normal control (n=10), HF (n=10), and HF-RDN (n=6). Surgical and chemical RDN were approached through midabdominal incisions in HF-RDN. Left anterior descending coronary artery in HF and HF-RDN was ligated to create myocardial infarction. After electrophysiological study, the rabbits were euthanized and the left atrial appendage was harvested for real-time polymerase chain reaction analysis and Trichrome stain. Left atrial dimension and left ventricular mass were smaller in HF-RDN by echocardiography compared with HF. Attenuated atrial fibrosis and tyrosine hydroxylase levels were observed in HF-RDN compared with HF. The mRNA expressions of Cav1.2, Nav1.5, Kir2.1, KvLQT1, phosphoinositide 3-kinase, AKT, and endothelial nitric oxide synthase in HF-RDN were significantly higher compared with HF. The effective refractory period and action potential duration of HF-RDN were significantly shorter compared with HF. Decreased atrial fibrillation inducibility was noted in HF-RDN compared with HF (50% versus 100%, P<0.05). CONCLUSIONS RDN reversed atrial electrical and structural remodeling, and suppressed the atrial fibrillation inducibility in an ischemic HF model. The beneficial effect of RDN may be related to prevention of the downregulation of the phosphoinositide 3-kinase/AKT/endothelial nitric oxide synthase signaling pathway.
Collapse
Affiliation(s)
- Shinya Yamada
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Man-Cai Fong
- Heart Center, Cheng Hsin General Hospital, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Wen Hsiao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Lin Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan .,Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Nan Tsai
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University, Taipei, Taiwan
| | - Li-Wei Lo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University, Taipei, Taiwan
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Feng Hu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University, Taipei, Taiwan
| | - Fa-Po Chung
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University, Taipei, Taiwan
| | - Jo-Nan Liao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University, Taipei, Taiwan
| | - Yao-Ting Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University, Taipei, Taiwan
| | - Hsing-Yuan Li
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Satoshi Higa
- Division of Cardiovascular Medicine, Cardiac Electrophysiology and Pacing Laboratory, Makiminato Central Hospital, Okinawa, Japan
| | - Shih-Ann Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Institute, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
7
|
Rossello X, Riquelme JA, He Z, Taferner S, Vanhaesebroeck B, Davidson SM, Yellon DM. The role of PI3Kα isoform in cardioprotection. Basic Res Cardiol 2017; 112:66. [PMID: 29043508 PMCID: PMC5645445 DOI: 10.1007/s00395-017-0657-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022]
Abstract
Ischemic preconditioning (IPC) limits myocardial infarct size through the activation of the PI3K-Akt signal cascade; however, little is known about the roles of individual PI3K isoforms in cardioprotection. We aimed, therefore, to elucidate the role of the PI3Kα isoform in cardioprotection Pharmacological PI3Kα inhibition was assessed in isolated-perfused mouse hearts subjected to ischemia/reperfusion injury (IRI), either during the IPC procedure or at reperfusion. PI3Kα inhibition abrogated the IPC-induced protective effect at reperfusion, but not when given only during the IPC protocol. These results were confirmed in an in vivo model. Moreover, pharmacological PI3Kα activation by insulin at reperfusion was sufficient to confer cardioprotection against IRI. In addition, PI3Kα was shown to be expressed and activated in mouse cardiomyocytes, mouse cardiac endothelial cells, as well as in mouse and human heart tissue. Furthermore, PI3Kα was shown to mediate its effect though the inhibition of mitochondrial permeability transition pore opening. In conclusion, PI3Kα activity is required during the early reperfusion phase to reduce myocardial infarct size. This suggests that strategies specifically enhancing the α isoform of PI3K at reperfusion promote tissue salvage and as such, and could provide a direct target for clinical treatment of IRI.
Collapse
Affiliation(s)
- Xavier Rossello
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Jaime A Riquelme
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Zhenhe He
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Stasa Taferner
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | | | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
8
|
Schneble N, Schmidt C, Bauer R, Müller JP, Monajembashi S, Wetzker R. Phosphoinositide 3-kinase γ ties chemoattractant- and adrenergic control of microglial motility. Mol Cell Neurosci 2016; 78:1-8. [PMID: 27825984 DOI: 10.1016/j.mcn.2016.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/15/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Microglial motility is tightly controlled by multitude of agonistic and antagonistic factors. Chemoattractants, released after infection or damage of the brain, provoke directed migration of microglia to the pathogenic incident. In contrast, noradrenaline and other stress hormones have been shown to suppress microglial movement. Here we asked for the signaling reactions involved in the positive and negative control of microglial motility. Using pharmacological and genetic approaches we identified the lipid kinase activity of phosphoinositide 3-kinase species γ (PI3Kγ) as an essential mediator of microglial migration provoked by the complement component C5a and other chemoattractants. Inhibition of PI3Kγ lipid kinase activity by protein kinase A was disclosed as mechanism causing suppression of microglial migration by noradrenaline. Together these data characterize PI3Kγ as a nodal point in the control of microglial motility.
Collapse
Affiliation(s)
- Nadine Schneble
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital of Jena, Hans -Knöll -Straße 2, 07745 Jena, Germany.
| | - Caroline Schmidt
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital of Jena, Hans -Knöll -Straße 2, 07745 Jena, Germany.
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital of Jena, Hans -Knöll -Straße 2, 07745 Jena, Germany.
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital of Jena, Hans -Knöll -Straße 2, 07745 Jena, Germany.
| | - Shamci Monajembashi
- Leibnitz Institute for Age Research, Fritz Lipmann Institute (FLI), Beutenberg-Straße 11, 07745 Jena, Germany.
| | - Reinhard Wetzker
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital of Jena, Hans -Knöll -Straße 2, 07745 Jena, Germany.
| |
Collapse
|
9
|
Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc 2016; 5:JAHA.116.003342. [PMID: 27146447 PMCID: PMC4889199 DOI: 10.1161/jaha.116.003342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Maladaptive cardiac hypertrophy is a major risk factor for heart failure, which is the leading cause of death worldwide. C‐C motif chemokine receptor 9 (CCR9), a subfamily of the G protein–coupled receptor supergene family, has been highlighted as an immunologic regulator in the development and homing of immune cells and in immune‐related diseases. Recently, CCR9 was found to be involved in the pathogenesis of other diseases such as cardiovascular diseases; however, the effects that CCR9 exerts in cardiac hypertrophy remain elusive. Methods and Results We observed significantly increased CCR9 protein levels in failing human hearts and in a mouse or cardiomyocyte hypertrophy model. In loss‐ and gain‐of‐function experiments, we found that pressure overload–induced hypertrophy was greatly attenuated by CCR9 deficiency in cardiac‐specific CCR9 knockout mice, whereas CCR9 overexpression in cardiac‐specific transgenic mice strikingly enhanced cardiac hypertrophy. The prohypertrophic effects of CCR9 were also tested in vitro, and a similar phenomenon was observed. Consequently, we identified a causal role for CCR9 in pathological cardiac hypertrophy. Mechanistically, we revealed a lack of difference in the expression levels of mitogen‐activated protein kinases between groups, whereas the phosphorylation of AKT/protein kinase B and downstream effectors significantly decreased in CCR9 knockout mice and increased in CCR9 transgenic mice after aortic binding surgery. Conclusions The prohypertrophic effects of CCR9 were not attributable to the mitogen‐activated protein kinase signaling pathway but rather to the AKT–mammalian target of rapamycin–glycogen synthase kinase 3β signaling cascade.
Collapse
Affiliation(s)
- Zhengxi Xu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fanghua Mei
- Animal Experiment Center and Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Hanning Liu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Cheng Sun
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhe Zheng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Beretta M, Bauer M, Hirsch E. PI3K signaling in the pathogenesis of obesity: The cause and the cure. Adv Biol Regul 2015; 58:1-15. [PMID: 25512233 DOI: 10.1016/j.jbior.2014.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
With the steady rise in the incidence of obesity and its associated comorbidities, in the last decades research aimed at understanding molecular mechanisms that control body weight has gained new interest. Fat gain is frequently associated with chronic adipose tissue inflammation and with peripheral as well as central metabolic derangements, resulting in an impaired hypothalamic regulation of energy homeostasis. Recent attention has focused on the role of phosphatidylinositol 3-kinase (PI3K) in both immune and metabolic response pathways, being involved in the pathophysiology of obesity and its associated metabolic diseases. In this review, we focus on distinct PI3K isoforms, especially class I PI3Ks, mediating inflammatory cells recruitment to the enlarged fat as well as intracellular responses to key hormonal regulators of fat storage, both in adipocytes and in the central nervous system. This integrated view of PI3K functions may ultimately help to develop new therapeutic interventions for the treatment of obesity.
Collapse
Affiliation(s)
- Martina Beretta
- Molecular Biotechnology Center, University of Torino, Torino, Italy; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Emilio Hirsch
- Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
11
|
Resveratrol, a red wine antioxidant, reduces atrial fibrillation susceptibility in the failing heart by PI3K/AKT/eNOS signaling pathway activation. Heart Rhythm 2015; 12:1046-56. [PMID: 25640634 DOI: 10.1016/j.hrthm.2015.01.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Resveratrol has shown benefits in reducing ventricular remodeling and arrhythmias. OBJECTIVE This study aimed to assess the therapeutic efficacy of resveratrol in reducing atrial fibrillation (AF) in a heart failure (HF) model and to explore the underlying mechanisms. METHODS HF rabbits were created 4 weeks after undergoing coronary ligation. Group 1 (n = 6) was divided into subgroups of (a) normal rabbits, (b) HF sham rabbits, and (c) HF rabbits treated for 1 week with intraperitoneal injections of resveratrol, (d) resveratrol plus wortmannin, or (e) resveratrol plus diphenyleneiodonium chloride (DPI). All rabbits underwent epicardial catheter stimulation. Collagen content, messenger RNA and protein expression in ion channels, and phosphoinositide 3-kinase (PI3K)/AKT/endothelial nitric oxide synthase (eNOS) signaling pathways were studied in left atrial appendage (LAA) preparations. To investigate acute drug effects on left atrial electrophysiology, groups 2 a through 2e (n = 6 per group) were subjected to Langendorff perfusion. RESULTS Higher AF inducibility was found in the HF group and groups that were given PI3K and eNOS inhibitors than in the normal and resveratrol-treated groups (P < .001). Histologic analysis of the LAA revealed a decrease in fibrosis in resveratrol-treated groups compared with the HF group (8.95% ± 1.53% vs 26.62% ± 2.19%, P < .001). In real-time polymerase chain reaction analysis, ion channels including Kv1.4, Kv1.5, KvLQT1, Kir2.1, Nav1.5, Cav1.2, NCX, SERCA2a, and phospholamban were upregulated by resveratrol. PI3K, AKT, and eNOS messenger RNA and protein expression were upregulated by resveratrol but were inhibited by the coadministration of wortmannin and DPI. CONCLUSION Resveratrol decreases left atrial fibrosis and regulates variation in ion channels to reduce AF through the PI3K/AKT/eNOS signaling pathway.
Collapse
|
12
|
Colchicine suppresses atrial fibrillation in failing heart. Int J Cardiol 2014; 176:651-60. [DOI: 10.1016/j.ijcard.2014.07.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 05/14/2014] [Accepted: 07/05/2014] [Indexed: 11/17/2022]
|
13
|
Klement GL, Goukassian D, Hlatky L, Carrozza J, Morgan JP, Yan X. Cancer Therapy Targeting the HER2-PI3K Pathway: Potential Impact on the Heart. Front Pharmacol 2012; 3:113. [PMID: 22754526 PMCID: PMC3384262 DOI: 10.3389/fphar.2012.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/24/2012] [Indexed: 01/22/2023] Open
Abstract
The HER2-PI3K pathway is the one of the most mutated pathways in cancer. Several drugs targeting the major kinases of this pathway have been approved by the Food and Drug Administration and many are being tested in clinical trials for the treatment of various cancers. However, the HER2-PI3K pathway is also pivotal for maintaining the physiological function of the heart, especially in the presence of cardiac stress. Clinical studies have shown that in patients treated with doxorubicin concurrently with Trastuzumab, a monoclonal antibody that blocks the HER2 receptor, the New York Heart Association class III/IV heart failure was significantly increased compared to those who were treated with doxorubicin alone (16 vs. 3%). Studies in transgenic mice have also shown that other key kinases of this pathway, such as PI3Kα, PDK1, Akt, and mTOR, are important for protecting the heart from ischemia-reperfusion and aortic stenosis induced cardiac dysfunction. Studies, however, have also shown that inhibition of PI3Kγ improve cardiac function of a failing heart. In addition, results from transgenic mouse models are not always consistent with the outcome of the pharmacological inhibition of this pathway. Here, we will review these findings and discuss how we can address the cardiac side-effects caused by inhibition of this important pathway in both cancer and cardiac biology.
Collapse
Affiliation(s)
- Giannoula L Klement
- Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Phosphoinositides (PIs), a family of phosphorylated derivatives of the membrane lipid phosphatidylinositol, are established regulators of multiple cellular functions. An increasing amount of evidence has highlighted potential links between PI-mediated signaling pathways and the etiology of many human diseases, including cardiovascular pathologies. This chapter will provide a detailed overview of the peculiar functions of the major cardiovascular PIs in the pathogenesis of atherosclerosis, heart failure, and arrhythmias.
Collapse
Affiliation(s)
- Alessandra Ghigo
- Department of Genetics, Biology and Biochemistry, University of Torino, Molecular Biotechnology Center, Italy
| | | | | |
Collapse
|
15
|
Leukocyte and Cardiac Phosphoinositide 3-Kinase γ Activity in Pressure Overload–Induced Cardiac Failure. Trends Cardiovasc Med 2010; 20:273-6. [DOI: 10.1016/j.tcm.2011.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|