1
|
Maciejewska-Stupska K, Czarnecka K, Szymański P. Bioavailability enhancement of coenzyme Q 10: An update of novel approaches. Arch Pharm (Weinheim) 2024; 357:e2300676. [PMID: 38683827 DOI: 10.1002/ardp.202300676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Coenzyme Q10 (CoQ10) is an essential, lipid-soluble vitamin involved in electron transport in the oxidoreductive reactions of the mitochondrial respiratory chain. Structurally, the quinone ring is connected to an isoprenoid moiety, which has a high molecular weight. Over the years, coenzyme Q10 has become relevant in the treatment of several diseases, like neurodegenerative disorders, coronary diseases, diabetes, hypercholesterolemia, cancer, and others. According to studies, CoQ10 supplementation might be beneficial in the treatment of CoQ10 deficiencies and disorders associated with oxidative stress. However, the water-insoluble nature of CoQ10 is a major hindrance to successful supplementation. So far, many advancements in CoQ10 bioavailability enhancement have been developed using novel drug carriers such as solid dispersion, liposomes, micelles, nanoparticles, nanoemulsions, self-emulsifying drug systems, or various innovative approaches (CoQ10 complexation with proteins). This article aims to provide an update on methods to improve CoQ10 solubility and bioavailability.
Collapse
Affiliation(s)
- Karolina Maciejewska-Stupska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
2
|
Sinclair SH, Miller E, Talekar KS, Schwartz SS. Diabetes mellitus associated neurovascular lesions in the retina and brain: A review. FRONTIERS IN OPHTHALMOLOGY 2022; 2:1012804. [PMID: 38983558 PMCID: PMC11182219 DOI: 10.3389/fopht.2022.1012804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/14/2022] [Indexed: 07/11/2024]
Abstract
Diabetes mellitus (DM) is now recognized as a system-wide, autoimmune, inflammatory, microvascular disorder, which, in the retina and brain results in severe multifocal injury now recognized as a leading cause, world-wide, of progressive vision loss and dementia. To address this problem, resulting primarily from variations in glycemia in the prediabetic and overt diabetic states, it must be realized that, although some of the injury processes associated with diabetes may be system wide, there are varying responses, effector, and repair mechanisms that differ from organ to organ or within varying cell structures. Specifically, within the retina, and similarly within the brain cortex, lesions occur of the "neurovascular unit", comprised of focal microvascular occlusions, inflammatory endothelial and pericyte injury, with small vessel leakage resulting in injury to astrocytes, Müller cells, and microglia, all of which occur with progressive neuronal apoptosis. Such lesions are now recognized to occur before the first microaneurysms are visible to imaging by fundus cameras or before they result in detectable symptoms or signs recognizable to the patient or clinician. Treatments, therefore, which currently are not initiated within the retina until edema develops or there is progression of vascular lesions that define the current staging of retinopathy, and in the brain only after severe signs of cognitive failure. Treatments, therefore are applied relatively late with some reduction in progressive cellular injury but with resultant minimal vision or cognitive improvement. This review article will summarize the multiple inflammatory and remediation processes currently understood to occur in patients with diabetes as well as pre-diabetes and summarize as well the current limitations of methods for assessing the structural and functional alterations within the retina and brain. The goal is to attempt to define future screening, monitoring, and treatment directions that hopefully will prevent progressive injury as well as enable improved repair and attendant function.
Collapse
Affiliation(s)
- Stephen H Sinclair
- Pennsylvania College of Optometry, Salus University, Philadelphia, PA, United States
| | - Elan Miller
- Division of Vascular Neurology, Vickie & Jack Farber Institute for Institute for Neuroscience, Sidney Kimmel Medical College (SKMC) Thomas Jefferson University, Philadelphia, PA, United States
| | - Kiran S Talekar
- Department of Radiology, Section of Neuroradiology and ENT Radiology, Clinical Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging at Thomas Jefferson University Hospital and The Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC) Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Stanley S Schwartz
- Department of Endocrinology and Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Main Line Health System, Philadelphia, PA, United States
| |
Collapse
|
3
|
Cirilli I, Damiani E, Dludla PV, Hargreaves I, Marcheggiani F, Millichap LE, Orlando P, Silvestri S, Tiano L. Role of Coenzyme Q 10 in Health and Disease: An Update on the Last 10 Years (2010-2020). Antioxidants (Basel) 2021; 10:antiox10081325. [PMID: 34439573 PMCID: PMC8389239 DOI: 10.3390/antiox10081325] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The present review focuses on preclinical and clinical studies conducted in the last decade that contribute to increasing knowledge on Coenzyme Q10's role in health and disease. Classical antioxidant and bioenergetic functions of the coenzyme have been taken into consideration, as well as novel mechanisms of action involving the redox-regulated activation of molecular pathways associated with anti-inflammatory activities. Cardiovascular research and fertility remain major fields of application of Coenzyme Q10, although novel applications, in particular in relation to topical application, are gaining considerable interest. In this respect, bioavailability represents a major challenge and the innovation in formulation aspects is gaining critical importance.
Collapse
Affiliation(s)
- Ilenia Cirilli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Phiwayinkosi Vusi Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa;
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Lauren Elizabeth Millichap
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
- Correspondence: ; Tel.: +39-071-220-4394
| |
Collapse
|
4
|
Fernández-Del-Río L, Kelly ME, Contreras J, Bradley MC, James AM, Murphy MP, Payne GS, Clarke CF. Genes and lipids that impact uptake and assimilation of exogenous coenzyme Q in Saccharomyces cerevisiae. Free Radic Biol Med 2020; 154:105-118. [PMID: 32387128 PMCID: PMC7611304 DOI: 10.1016/j.freeradbiomed.2020.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) is an essential player in the respiratory electron transport chain and is the only lipid-soluble antioxidant synthesized endogenously in mammalian and yeast cells. In humans, genetic mutations, pathologies, certain medical treatments, and aging, result in CoQ deficiencies, which are linked to mitochondrial, cardiovascular, and neurodegenerative diseases. The only strategy available for these patients is CoQ supplementation. CoQ supplements benefit a small subset of patients, but the poor solubility of CoQ greatly limits treatment efficacy. Consequently, the efficient delivery of CoQ to the mitochondria and restoration of respiratory function remains a major challenge. A better understanding of CoQ uptake and mitochondrial delivery is crucial to make this molecule a more efficient and effective therapeutic tool. In this study, we investigated the mechanism of CoQ uptake and distribution using the yeast Saccharomyces cerevisiae as a model organism. The addition of exogenous CoQ was tested for the ability to restore growth on non-fermentable medium in several strains that lack CoQ synthesis (coq mutants). Surprisingly, we discovered that the presence of CoQ biosynthetic intermediates impairs assimilation of CoQ into a functional respiratory chain in yeast cells. Moreover, a screen of 40 gene deletions considered to be candidates to prevent exogenous CoQ from rescuing growth of the CoQ-less coq2Δ mutant, identified six novel genes (CDC10, RTS1, RVS161, RVS167, VPS1, and NAT3) as necessary for efficient trafficking of CoQ to mitochondria. The proteins encoded by these genes represent essential steps in the pathways responsible for transport of exogenously supplied CoQ to its functional sites in the cell, and definitively associate CoQ distribution with endocytosis and intracellular vesicular trafficking pathways conserved from yeast to human cells.
Collapse
Affiliation(s)
- Lucía Fernández-Del-Río
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Miranda E Kelly
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Jaime Contreras
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, UK; Department of Medicine, University of Cambridge, UK
| | - Gregory S Payne
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA.
| |
Collapse
|
5
|
Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol 2019; 16:33-55. [PMID: 30177752 DOI: 10.1038/s41569-018-0074-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that mitochondrial dysfunction has a major role in the pathogenesis of multiple cardiovascular disorders. Over the past 2 decades, extraordinary efforts have been focused on the development of agents that specifically target mitochondria for the treatment of cardiovascular disease. Despite such an intensive wave of investigation, no drugs specifically conceived to modulate mitochondrial functions are currently available for the clinical management of cardiovascular disease. In this Review, we discuss the therapeutic potential of targeting mitochondria in patients with cardiovascular disease, examine the obstacles that have restrained the development of mitochondria-targeting agents thus far, and identify strategies that might empower the full clinical potential of this approach.
Collapse
Affiliation(s)
- Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.,Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France. .,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Monsef A, Shahidi S, Komaki A. Influence of Chronic Coenzyme Q10 Supplementation on Cognitive Function, Learning, and Memory in Healthy and Diabetic Middle-Aged Rats. Neuropsychobiology 2019; 77:92-100. [PMID: 30580330 DOI: 10.1159/000495520] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022]
Abstract
Diabetes mellitus can induce impairment in learning and memory. Cognitive and memory deficits are common in older adults and especially in those with diabetes. This is mainly because of hyperglycemia, oxidative stress, and vascular abnormalities. Coenzyme Q10 (CoQ10) can decrease oxidative stress, hyperglycemia, and inflammatory markers, and improve vascular function. Therefore, the aim of the present study was to investigate the possible effects of CoQ10 on cognitive function, learning, and memory in middle-aged healthy and diabetic rats. Adult middle-aged male Wistar rats (390-460 g, 12-13 months old) were divided into 6 experimental groups. Diabetes was induced by a single i.p. injection of streptozotocin (60 mg/kg). CoQ10 (20 or 120 mg/kg, orally by gavage) was administered for 45 days. The cognitive function and learning memory of rats were evaluated using novel object recognition (NOR) and passive avoidance tests. The discrimination index of the NOR test in the diabetic groups receiving CoQ10 (20 or 120 mg/kg) and the healthy group receiving CoQ10 (120 mg/kg) was significantly higher than that in the control group. In addition, the step through latency was significantly longer and the time spent in the dark compartment was significantly shorter in the diabetic groups receiving CoQ10 than in the control group. CoQ10 supplementation can improve learning and memory deficits induced by diabetes in older subjects. In addition, CoQ10 at higher doses can improve cognitive performance in older healthy subjects.
Collapse
Affiliation(s)
- Amirreza Monsef
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran,
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Tan BL, Norhaizan ME, Liew WPP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol 2018; 9:1162. [PMID: 30405405 PMCID: PMC6204759 DOI: 10.3389/fphar.2018.01162] [Citation(s) in RCA: 594] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Aging is the progressive loss of organ and tissue function over time. Growing older is positively linked to cognitive and biological degeneration such as physical frailty, psychological impairment, and cognitive decline. Oxidative stress is considered as an imbalance between pro- and antioxidant species, which results in molecular and cellular damage. Oxidative stress plays a crucial role in the development of age-related diseases. Emerging research evidence has suggested that antioxidant can control the autoxidation by interrupting the propagation of free radicals or by inhibiting the formation of free radicals and subsequently reduce oxidative stress, improve immune function, and increase healthy longevity. Indeed, oxidation damage is highly dependent on the inherited or acquired defects in enzymes involved in the redox-mediated signaling pathways. Therefore, the role of molecules with antioxidant activity that promote healthy aging and counteract oxidative stress is worth to discuss further. Of particular interest in this article, we highlighted the molecular mechanisms of antioxidants involved in the prevention of age-related diseases. Taken together, a better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
8
|
Jafari M, Mousavi SM, Asgharzadeh A, Yazdani N. Coenzyme Q10 in the treatment of heart failure: A systematic review of systematic reviews. Indian Heart J 2018; 70 Suppl 1:S111-S117. [PMID: 30122240 PMCID: PMC6097169 DOI: 10.1016/j.ihj.2018.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
Introduction This article is an attempt to provide an overview of systematic reviews to determine the efficacy of CQ10 supplementation in the treatment of patients with cardiovascular diseases (CVD). Method and material All reviews were identified through a systematic search of the following databases: Cochrane, DARE, Ovid, EMBASE, ISI Web of Knowledge, and PubMed. Check references studies and the quality of the studies was assessed by means of AMSTTAR. No meta-analyses were performed due to the heterogeneity of studies. Result Extracted data for Seven systematic reviews for primary outcomes, net changes in cardiac output, cardiac index, New York Heart Association functional classification, improved survival, based on existing evidence, there is a case for use of CoQ10 as an adjunctive therapy in congestive heart failure, especially in those patients unable to tolerate mainstream medical therapies. Conclusion Evidence suggests that the CoQ10 supplement may be a useful tool for managing patients with heart failure.
Collapse
Affiliation(s)
- Mehdi Jafari
- Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran; Health Services Management Department, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masood Mousavi
- School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Asra Asgharzadeh
- School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran; Health Technology Assessment Group (HTAG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Neda Yazdani
- Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Noordali H, Loudon BL, Frenneaux MP, Madhani M. Cardiac metabolism - A promising therapeutic target for heart failure. Pharmacol Ther 2017; 182:95-114. [PMID: 28821397 DOI: 10.1016/j.pharmthera.2017.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Both heart failure with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF) are associated with high morbidity and mortality. Although many established pharmacological interventions exist for HFrEF, hospitalization and death rates remain high, and for those with HFpEF (approximately half of all heart failure patients), there are no effective therapies. Recently, the role of impaired cardiac energetic status in heart failure has gained increasing recognition with the identification of reduced capacity for both fatty acid and carbohydrate oxidation, impaired function of the electron transport chain, reduced capacity to transfer ATP to the cytosol, and inefficient utilization of the energy produced. These nodes in the genesis of cardiac energetic impairment provide potential therapeutic targets, and there is promising data from recent experimental and early-phase clinical studies evaluating modulators such as carnitine palmitoyltransferase 1 inhibitors, partial fatty acid oxidation inhibitors and mitochondrial-targeted antioxidants. Metabolic modulation may provide significant symptomatic and prognostic benefit for patients suffering from heart failure above and beyond guideline-directed therapy, but further clinical trials are needed.
Collapse
Affiliation(s)
- Hannah Noordali
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Brodie L Loudon
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Melanie Madhani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
The Malnourished Heart: An Unusual Case of Heart Failure. Am J Med 2017; 130:e297-e298. [PMID: 28219636 DOI: 10.1016/j.amjmed.2017.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 11/22/2022]
|
11
|
Corsi R, Mosti G, Cavezzi A, Urso SU, Dimitrova G, Fioroni E, Colucci R, Quinzi V. A Polyphenol-Based Multicomponent Nutraceutical in Dysmetabolism and Oxidative Stress: Results from a Pilot Study. J Diet Suppl 2017; 15:34-41. [PMID: 28453363 DOI: 10.1080/19390211.2017.1310784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To assess short-term efficacy and safety of a multicomponent nutraceutical (MCN) on dysmetabolism and oxidative stress, a pilot prospective observational study was performed on 21 individuals (12 men and 9 women) who took, for 60 days, 2 tablets per day of an MCN based on antioxidants and metabolism regulators: hydroxytyrosol (15 mg), maqui (300 mg), amla (200 mg), monacolin K (10 mg), berberine (245 mg), astaxanthin (0.5 mg), coenzyme Q10 (100 mg), and folic acid (200 mcg). On day 0 (T0) and day 60 (T60), all participants underwent laboratory tests related to lipid profile, carbohydrate metabolism, oxidative stress, and cellular inflammation. Statistical analysis was applied to the resulting data. A significant improvement of most atherogenesis and oxidative stress biomarkers was recorded (mean figure at T0 and T60, p value): total cholesterol 243.50/194.83 mg/dl, p =.0002; low-density lipoproteins 174.50/124.58 mg/dl, p =.0001; glycemia 96.25/88.50 mg/dl, p =.035; total free radicals 306.44/280.93 U.Carr., p =.036; serum antioxidant capacity 2103.00/2246.06 umol/l, p =.0042; oxidized cholesterol 680.33/597.25 uEq/l, p =.0511. Insulinemia, microalbuminuria, high-density lipoproteins, C-reactive protein, and triglycerides had no statistically significant variation. Body weight and systo-diastolic pressure showed no significant change from T0 to T60. No relevant side effects were reported. The investigated MCN (Eonlipid), based on polyphenols, significantly improved the oxidative stress parameters and decreased the majority of atherogenesis parameters at short term. No significant side effects were reported. Further placebo-controlled studies should possibly corroborate the promising results of this pilot study.
Collapse
Affiliation(s)
- Roberto Corsi
- a Eurocenter Venalinfa , San Benedetto del Tronto (AP) , Italy
| | | | - Attilio Cavezzi
- a Eurocenter Venalinfa , San Benedetto del Tronto (AP) , Italy
| | - Simone Ugo Urso
- a Eurocenter Venalinfa , San Benedetto del Tronto (AP) , Italy
| | - Gayla Dimitrova
- a Eurocenter Venalinfa , San Benedetto del Tronto (AP) , Italy
| | - Elena Fioroni
- c Laboratory Fioroni , San Benedetto del Tronto (AP) , Italy
| | - Roberto Colucci
- a Eurocenter Venalinfa , San Benedetto del Tronto (AP) , Italy
| | | |
Collapse
|
12
|
A review of the evidence for alternative and complementary medical approaches in the prevention of atherosclerotic cardiovascular disease and diabetes. Cardiovasc Endocrinol 2017; 6:39-43. [PMID: 31646118 DOI: 10.1097/xce.0000000000000118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/19/2017] [Indexed: 11/25/2022] Open
Abstract
The use of complementary and alternative medicine approaches has increased in the recent years. It has been utilized in both the treatment and prevention of many chronic diseases, especially in the management of hypertension, diabetes, and hyperlipidemia. Lifestyle modifications play a fundamental role in alternative and complementary medicine. Regular exercise, maintenance of optimal weight, and a healthful diet play vital roles in maintaining ideal health. Specifically, the Dietary Approaches to Stop Hypertension and Mediterranean diets have been established as having beneficial effects on blood pressure and cholesterol and even cardiovascular outcomes. Still, additional supplements including fish oil, CoQ10, and red yeast rice (among others) have shown promising beneficial effects. Unfortunately, many of the beneficial claims of natural products are not scientifically proven, lack reproducibility, and/or yield conflicting results. Until more concrete evidence can be produced, it is important for physicians and patients alike to familiarize themselves with these natural products and increase their awareness of any potential adverse effects.
Collapse
|