1
|
Wu Y, Benson MA, Sun SX. Fluid and solute transport by cells and a model of systemic circulation. PLoS Comput Biol 2025; 21:e1012935. [PMID: 40258085 PMCID: PMC12040233 DOI: 10.1371/journal.pcbi.1012935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 04/29/2025] [Accepted: 03/06/2025] [Indexed: 04/23/2025] Open
Abstract
Active fluid circulation and solute transport are essential functions of living organisms, enabling the efficient delivery of oxygen and nutrients to various physiological compartments. Since fluid circulation occurs in a network, the systemic flux and pressure are not simple outcomes of individual components. Rather, they are emergent properties of network elements and network topology. Moreover, consistent pressure and osmolarity gradients are maintained across compartments such as the kidney, interstitium, and blood vessels. The mechanisms by which these gradients and network properties are established and maintained are unanswered questions in systems physiology. Previous studies have shown that epithelial cells are fluid pumps and can actively generate pressure and osmolarity gradients. The polarization and activity of solute transporters in epithelial cells, which drive fluid flux, are influenced by pressure and osmolarity gradients. Therefore, there is an unexplored coupling between pressure and osmolarity in the circulatory network. In this work, we develop a mathematical framework that integrates the influence of pressure and osmolarity on solute transport. We use this model to explore both cellular fluid transport and systemic circulation. Using a simple network featuring the kidney-vascular interface, we show that our model naturally generates pressure and osmolarity gradients across the kidney, vessels and renal interstitium. While the current model uses this interface as an example, the findings can be generalized to other physiological compartments. This model demonstrates how systemic transport properties can depend on cellular properties and, conversely, how cell states are influenced by systemic properties. When epithelial and endothelial pumps are considered together, we predict how pressures at various points in the network depend on the overall osmolarity of the system. The model can be improved by including physiological geometries and expanding solute species, and highlights the interplay of fluid properties with cell function in living organisms.
Collapse
Affiliation(s)
- Yufei Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Morgan A. Benson
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sean X. Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Lichter Y, Gal Oz A, Adi N, Nini A, Angel Y, Nevo A, Aviram D, Moshkovits I, Wald R, Stavi D, Goder N. Linear Correlation Between Mean Arterial Pressure and Urine Output in Critically Ill Patients. Crit Care Explor 2024; 6:e1141. [PMID: 39120069 PMCID: PMC11319324 DOI: 10.1097/cce.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE Mean arterial pressure (MAP) plays a significant role in regulating tissue perfusion and urine output (UO). The optimal MAP target in critically ill patients remains a subject of debate. We aimed to explore the relationship between MAP and UO. DESIGN A retrospective observational study. SETTING A general ICU in a tertiary medical center. PATIENTS All critically ill patients admitted to the ICU for more than 10 hours. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS MAP values and hourly UO were collected in 5,207 patients. MAP levels were categorized into 10 groups of 5 mm Hg (from MAP < 60 mm Hg to MAP > 100 mg Hg), and 656,423 coupled hourly mean MAP and UO measurements were analyzed. Additionally, we compared the UO of individual patients in each MAP group with or without norepinephrine (NE) support or diuretics, as well as in patients with acute kidney injury (AKI).Hourly UO rose incrementally between MAP values of 65-100 mm Hg. Among 2,226 patients treated with NE infusion, mean UO was significantly lower in the MAP less than 60 mm Hg group (53.4 mL/hr; 95% CI, 49.3-57.5) compared with all other groups (p < 0.001), but no differences were found between groups of 75 less than or equal to MAP. Among 2500 patients with AKI, there was a linear increase in average UO from the MAP less than 60 mm Hg group (57.1 mL/hr; 95% CI, 54.2-60.0) to the group with MAP greater than or equal to 100 mm Hg (89.4 mL/hr; 95% CI, 85.7-93.1). When MAP was greater than or equal to 65 mm Hg, we observed a statistically significant trend of increased UO in periods without NE infusion. CONCLUSIONS Our analysis revealed a linear correlation between MAP and UO within the range of 65-100 mm Hg, also observed in the subgroup of patients treated with NE or diuretics and in those with AKI. These findings highlight the importance of tissue perfusion to the maintenance of diuresis and achieving adequate fluid balance in critically ill patients.
Collapse
Affiliation(s)
- Yael Lichter
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Critical Care Department, University College London Hospital NHS Foundation Trust, London, United Kingdom
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Gal Oz
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nimrod Adi
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Asaph Nini
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yoel Angel
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Andrey Nevo
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Aviram
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Critical Care Department, University College London Hospital NHS Foundation Trust, London, United Kingdom
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itay Moshkovits
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ron Wald
- Division of Nephrology, St. Michael’s Hospital and the University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON, Canada
| | - Dekel Stavi
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noam Goder
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Division of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
3
|
Shimoura CG, Oliveira TL, Lincevicius GS, Crajoinas RO, Oliveira-Sales EB, Varela VA, Gomes GN, Bergamaschi CT, Campos RR. The Total Denervation of the Ischemic Kidney Induces Differential Responses in Sodium Transporters' Expression in the Contralateral Kidney in Goldblatt Rats. Int J Mol Sci 2024; 25:6962. [PMID: 39000071 PMCID: PMC11241044 DOI: 10.3390/ijms25136962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
The Goldblatt model of hypertension (2K-1C) in rats is characterized by renal sympathetic nerve activity (rSNA). We investigated the effects of unilateral renal denervation of the clipped kidney (DNX) on sodium transporters of the unclipped kidneys and the cardiovascular, autonomic, and renal functions in 2K-1C and control (CTR) rats. The mean arterial pressure (MAP) and rSNA were evaluated in experimental groups. Kidney function and NHE3, NCC, ENaCβ, and ENaCγ protein expressions were assessed. The glomerular filtration rate (GRF) and renal plasma flow were not changed by DNX, but the urinary (CTR: 0.0042 ± 0.001; 2K-1C: 0.014 ± 0.003; DNX: 0.005 ± 0.0013 mL/min/g renal tissue) and filtration fractions (CTR: 0.29 ± 0.02; 2K-1C: 0.51 ± 0.06; DNX: 0.28 ± 0.04 mL/min/g renal tissue) were normalized. The Na+/H+ exchanger (NHE3) was reduced in 2K-1C, and DNX normalized NHE3 (CTR: 100 ± 6; 2K-1C: 44 ± 14, DNX: 84 ± 13%). Conversely, the Na+/Cl- cotransporter (NCC) was increased in 2K-1C and was reduced by DNX (CTR: 94 ± 6; 2K-1C: 144 ± 8; DNX: 60 ± 15%). In conclusion, DNX in Goldblatt rats reduced blood pressure and proteinuria independently of GRF with a distinct regulation of NHE3 and NCC in unclipped kidneys.
Collapse
Affiliation(s)
- Caroline G. Shimoura
- Cardiovascular Division, Department of Physiology, School of Medicine, Federal University of Sao Paulo, Sao Paulo 04023-060, Brazil; (C.G.S.); (G.S.L.); (G.N.G.); (C.T.B.)
| | - Tales L. Oliveira
- Faculty of Medicine, Municipal University of São Caetano do Sul, Sao Paulo 01327-000, Brazil;
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Gisele S. Lincevicius
- Cardiovascular Division, Department of Physiology, School of Medicine, Federal University of Sao Paulo, Sao Paulo 04023-060, Brazil; (C.G.S.); (G.S.L.); (G.N.G.); (C.T.B.)
| | - Renato O. Crajoinas
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | | | - Vanessa A. Varela
- Renal Division, Department of Medicine, School of Medicine, Federal University of Sao Paulo, Sao Paulo 04023-060, Brazil;
| | - Guiomar N. Gomes
- Cardiovascular Division, Department of Physiology, School of Medicine, Federal University of Sao Paulo, Sao Paulo 04023-060, Brazil; (C.G.S.); (G.S.L.); (G.N.G.); (C.T.B.)
| | - Cassia T. Bergamaschi
- Cardiovascular Division, Department of Physiology, School of Medicine, Federal University of Sao Paulo, Sao Paulo 04023-060, Brazil; (C.G.S.); (G.S.L.); (G.N.G.); (C.T.B.)
| | - Ruy R. Campos
- Cardiovascular Division, Department of Physiology, School of Medicine, Federal University of Sao Paulo, Sao Paulo 04023-060, Brazil; (C.G.S.); (G.S.L.); (G.N.G.); (C.T.B.)
| |
Collapse
|
4
|
Wu Y, Benson MA, Sun SX. Cell-Driven Fluid Dynamics: A Physical Model of Active Systemic Circulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594862. [PMID: 38826192 PMCID: PMC11142051 DOI: 10.1101/2024.05.19.594862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Active fluid circulation and transport are key functions of living organisms, which drive efficient delivery of oxygen and nutrients to various physiological compartments. Because fluid circulation occurs in a network, the systemic flux and pressure are not simple outcomes of any given component. Rather, they are emergent properties of network elements and network topology. Moreover, consistent pressure and osmolarity gradients across compartments such as the kidney, interstitium, and vessels are known. How these gradients and network properties are established and maintained is an unanswered question in systems physiology. Previous studies have shown that epithelial cells are fluid pumps that actively generate pressure and osmolarity gradients. Polarization and activity of ion exchangers that drive fluid flux in epithelial cells are affected by pressure and osmolarity gradients. Therefore, there is an unexplored coupling between the pressure and osmolarity in the circulating network. Here we develop a mathematical theory that integrates the influence of pressure and osmolarity on solute transport and explores both cell fluid transport and systemic circulation. This model naturally generates pressure and osmolarity gradients across physiological compartments, and demonstrates how systemic transport properties can depend on cell properties, and how the cell state can depend on systemic properties. When epithelial and endothelial pumps are considered together, we predict how pressures at various points in the network depend on the overall osmolarity of the system. The model can be improved by including physiological geometries and expanding solute species, and highlights the interplay of fluid properties with cell function in living organisms.
Collapse
Affiliation(s)
- Yufei Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Morgan A. Benson
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sean X. Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Clark CR, Khalil RA. Regulation of vascular angiotensin II type 1 and type 2 receptor and angiotensin-(1-7)/MasR signaling in normal and hypertensive pregnancy. Biochem Pharmacol 2024; 220:115963. [PMID: 38061417 PMCID: PMC10860599 DOI: 10.1016/j.bcp.2023.115963] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024]
Abstract
Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.
Collapse
Affiliation(s)
- Caroline R Clark
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Kim GH. Primary Role of the Kidney in Pathogenesis of Hypertension. Life (Basel) 2024; 14:119. [PMID: 38255734 PMCID: PMC10817438 DOI: 10.3390/life14010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Previous transplantation studies and the concept of 'nephron underdosing' support the idea that the kidney plays a crucial role in the development of essential hypertension. This suggests that there are genetic factors in the kidney that can either elevate or decrease blood pressure. The kidney normally maintains arterial pressure within a narrow range by employing the mechanism of pressure-natriuresis. Hypertension is induced when the pressure-natriuresis mechanism fails due to both subtle and overt kidney abnormalities. The inheritance of hypertension is believed to be polygenic, and essential hypertension may result from a combination of genetic variants that code for renal tubular sodium transporters or proteins involved in regulatory pathways. The renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS) are the major regulators of renal sodium reabsorption. Hyperactivity of either the RAAS or SNS leads to a rightward shift in the pressure-natriuresis curve. In other words, hypertension is induced when the activity of RAAS and SNS is not suppressed despite increased salt intake. Sodium overload, caused by increased intake and/or reduced renal excretion, not only leads to an expansion of plasma volume but also to an increase in systemic vascular resistance. Endothelial dysfunction is caused by an increased intracellular Na+ concentration, which inhibits endothelial nitric oxide (NO) synthase and reduces NO production. The stiffness of vascular smooth muscle cells is increased by the accumulation of intracellular Na+ and subsequent elevation of cytoplasmic Ca++ concentration. In contrast to the hemodynamic effects of osmotically active Na+, osmotically inactive Na+ stimulates immune cells and produces proinflammatory cytokines, which contribute to hypertension. When this occurs in the gut, the microbiota may become imbalanced, leading to intestinal inflammation and systemic hypertension. In conclusion, the primary cause of hypertension is sodium overload resulting from kidney dysregulation.
Collapse
Affiliation(s)
- Gheun-Ho Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
7
|
Nasci VL, Almutlaq RN, Pollock DM, Gohar EY. Endothelin mediates sex-differences in acclimation to high salt diet in rats. Biol Sex Differ 2023; 14:70. [PMID: 37817272 PMCID: PMC10566168 DOI: 10.1186/s13293-023-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
INTRODUCTION Current understanding of sodium (Na+) handling is based on studies done primarily in males. Contrary to the gradual increase in high salt (HS) induced natriuresis over 3-5 days in males, female Sprague Dawley (SD) rats have a robust natriuresis after 1 day of HS. Renal endothelin-1 (ET-1) signaling, through ET receptor A and B, is an important natriuretic pathway and was implicated in our previous dietary salt acclimation studies, however, the contribution of ET receptors to sex-differences in acclimation to dietary Na+ challenges has yet to be clarified. We hypothesized that ET receptors mediate the augmented natriuretic capacity of female rats in response to a HS diet. METHODS To test our hypothesis, male and female SD rats were implanted with telemeters and randomly assigned to treatment with A-182086, a dual ETA and ETB receptor antagonist, or control. 24-h urine samples were collected and assessed for electrolytes and ET-1. Studies were performed on a normal salt (NS, 0.3% NaCl) diet and after challenging rats with HS (4% NaCl) diet for 1 day. RESULTS We found that A-182086 increased blood pressure in male and female SD rats fed either diet. Importantly, A-182086 eliminated sex-differences in natriuresis on NS and HS. In particular, A-182086 promotes HS-induced natriuresis in male rats rather than attenuating the natriuretic capacity of females. Further, the sex-difference in urinary ET-1 excretion in NS-fed rats was eliminated by A-182086. CONCLUSION In conclusion, ET receptors are crucial for mediating sex-difference in the natriuretic capacity primarily through their actions in male rats.
Collapse
Affiliation(s)
- Victoria L Nasci
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rawan N Almutlaq
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eman Y Gohar
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Hu G, Xie D, Chen C, Wang W, Li PL, Ritter JK, Li N. Renal Medullary Overexpression of Sphingosine-1-Phosphate Receptor 1 Transgene Attenuates Deoxycorticosterone Acetate (DOCA)-Salt Hypertension. Am J Hypertens 2023; 36:509-516. [PMID: 37171128 PMCID: PMC10403973 DOI: 10.1093/ajh/hpad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Our previous studies showed that renal medullary sphingosine-1-phosphate receptor 1 (S1PR1) mediated sodium excretion, high salt intake increased S1PR1 level, deoxycorticosterone acetate (DOCA) blocked high salt-induced S1PR1 in the renal medulla, and that conditional knockout of S1PR1 in the collecting duct aggravated DOCA-salt hypertension. The present study tested the hypothesis that overexpression of S1PR1 transgene in the renal medulla attenuates the sodium retention and hypertension in DOCA-salt mouse model. METHODS Male C57BL/6J mice received renal medullary transfection of control or S1PR1-expressing plasmids and then DOCA-salt treatment. Renal sodium excretion and arterial pressure were compared between control and S1PR1-overexpressed mice in response to high salt loading or pressure natriuresis. RESULTS S1PR1-transfected mice showed significantly enhanced urinary sodium excretion in response to acute sodium loading (0.93 ± 0.27 in control vs. 4.72 ± 1.12 µmol/min/gKW in S1PR1-overexpressed mice, P < 0.05) and the pressure natriuresis (3.58 ± 1.77 vs. 9.52 ± 1.38, P < 0.05), less positive sodium balance in response to chronic high-salt intake (3.05 ± 0.39 vs. 1.65 ± 0.39 mmol/72 hr, P < 0.05), and consequently, the attenuation of DOCA-salt hypertension (134.2 ± 6.79 vs. 109.8 ± 3.54 mm Hg, P < 0.05). The αENaC protein amount in the renal medulla was not changed, however, the βENaC was significantly decreased and the γENaC was significantly increased in S1PR1-overexpressed mice. The immunostaining showed apical membrane translocation of γENaC, while no change of αENaC and βENaC in control mice, and that the apical membrane translocation of γENaC was blocked in S1PR1-treasffected mice. CONCLUSIONS These results suggested that activation of S1PR1 in the renal medulla attenuates DOCA-induced sodium retention and salt-sensitive hypertension associated with inhibition of ENaC.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Dengpiao Xie
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Chaoling Chen
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Weili Wang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
9
|
Spitz RW, Loprinzi PD, Loenneke JP. Individuals with hypertension have lower plasma volume regardless of weight status. J Hum Hypertens 2023; 37:491-495. [PMID: 35568725 DOI: 10.1038/s41371-022-00705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/13/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
Increased plasma volume is often reported as a cause or symptom of hypertension in individuals with obesity. However, these individuals are often compared to normal weight normotensive individuals. Since higher plasma volumes have been reported in larger individuals, it is possible that plasma volume is actually lower in obese hypertensive individuals compared to normotensive obese individuals. This may be important for better understanding the clinical manifestation of hypertension between weight categories. National Health and Nutritional Examination Survey (cycles 1999-2018) data were used to examine the relationship between plasma (derived from the Straus formula), blood pressure (measured with an automated device) and body mass index. We observed an inverse relationship between estimated plasma volume and systolic (B = -1.68 (95% CI: -2.06, -1.30) mmHg), p < 0.0001), diastolic (B = -3.35 (95% CI: -3.61, -3.08) mmHg) p < 0.0001), and mean arterial pressure (B = -2.79 (95% CI: -3.05, -2.53) mmHg) p < 0.0001). The relationship between estimated plasma volume and diastolic blood pressure (interaction term: B = -0.069 (-0.10, -0.03), p < 0.0001) did depend on BMI. The "normal weight" group had the lowest slope and this slope was significantly different from the "obese" (B = -1.47 (95% CI: -1.88, -1.07)) and "overweight" (B = -1.11 (-1.55, -0.67)) groups. Plasma volume is lower in hypertensive individuals regardless of weight status, but this relationship is more pronounced among obese individuals.
Collapse
Affiliation(s)
- Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, Mississippi, USA
| | - Paul D Loprinzi
- Department of Health, Exercise Science, and Recreation Management. Exercise and Memory Laboratory, The University of Mississippi, University, MS, Mississippi, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, Mississippi, USA.
| |
Collapse
|
10
|
Ndiaye JF, Nekka F, Craig M. Understanding the Mechanisms and Treatment of Heart Failure: Quantitative Systems Pharmacology Models with a Focus on SGLT2 Inhibitors and Sex-Specific Differences. Pharmaceutics 2023; 15:1002. [PMID: 36986862 PMCID: PMC10052171 DOI: 10.3390/pharmaceutics15031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Heart failure (HF), which is a major clinical and public health challenge, commonly develops when the myocardial muscle is unable to pump an adequate amount of blood at typical cardiac pressures to fulfill the body's metabolic needs, and compensatory mechanisms are compromised or fail to adjust. Treatments consist of targeting the maladaptive response of the neurohormonal system, thereby decreasing symptoms by relieving congestion. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, which are a recent antihyperglycemic drug, have been found to significantly improve HF complications and mortality. They act through many pleiotropic effects, and show better improvements compared to others existing pharmacological therapies. Mathematical modeling is a tool used to describe the pathophysiological processes of the disease, quantify clinically relevant outcomes in response to therapies, and provide a predictive framework to improve therapeutic scheduling and strategies. In this review, we describe the pathophysiology of HF, its treatment, and how an integrated mathematical model of the cardiorenal system was built to capture body fluid and solute homeostasis. We also provide insights into sex-specific differences between males and females, thereby encouraging the development of more effective sex-based therapies in the case of heart failure.
Collapse
Affiliation(s)
- Jean François Ndiaye
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC H3T 1C5, Canada
| | - Fahima Nekka
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
11
|
Koirala A, Pourafshar N, Daneshmand A, Wilcox CS, Mannemuddhu SS, Arora N. Etiology and Management of Edema: A Review. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:110-123. [PMID: 36868727 DOI: 10.1053/j.akdh.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 04/18/2023]
Abstract
The development of peripheral edema can often pose a significant diagnostic and therapeutic challenge for practitioners due to its association with a wide variety of underlying disorders ranging in severity. Updates to the original Starling's principle have provided new mechanistic insights into edema formation. Additionally, contemporary data highlighting the role of hypochloremia in the development of diuretic resistance provide a possible new therapeutic target. This article reviews the pathophysiology of edema formation and discusses implications for treatment.
Collapse
Affiliation(s)
- Abbal Koirala
- Division of Nephrology, University of Washington, Seattle, WA
| | - Negiin Pourafshar
- Division of Nephrology, MedStar Georgetown University Hospital, Washington DC
| | - Arvin Daneshmand
- Division of Nephrology, MedStar Georgetown University Hospital, Washington DC
| | | | | | - Nayan Arora
- Division of Nephrology, University of Washington, Seattle, WA.
| |
Collapse
|
12
|
Renal sympathetic activity: A key modulator of pressure natriuresis in hypertension. Biochem Pharmacol 2023; 208:115386. [PMID: 36535529 DOI: 10.1016/j.bcp.2022.115386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Hypertension is a complex disorder ensuing necessarily from alterations in the pressure-natriuresis relationship, the main determinant of long-term control of blood pressure. This mechanism sets natriuresis to the level of blood pressure, so that increasing pressure translates into higher osmotically driven diuresis to reduce volemia and control blood pressure. External factors affecting the renal handling of sodium regulate the pressure-natriuresis relationship so that more or less natriuresis is attained for each level of blood pressure. Hypertension can thus only develop following primary alterations in the pressure to natriuresis balance, or by abnormal activity of the regulation network. On the other hand, increased sympathetic tone is a very frequent finding in most forms of hypertension, long regarded as a key element in the pathophysiological scenario. In this article, we critically analyze the interplay of the renal component of the sympathetic nervous system and the pressure-natriuresis mechanism in the development of hypertension. A special focus is placed on discussing recent findings supporting a role of baroreceptors as a component, along with the afference of reno-renal reflex, of the input to the nucleus tractus solitarius, the central structure governing the long-term regulation of renal sympathetic efferent tone.
Collapse
|
13
|
Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023; 15:nu15020395. [PMID: 36678265 PMCID: PMC9862583 DOI: 10.3390/nu15020395] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Body sodium (Na) levels must be maintained within a narrow range for the correct functioning of the organism (Na homeostasis). Na disorders include not only elevated levels of this solute (hypernatremia), as in diabetes insipidus, but also reduced levels (hyponatremia), as in cerebral salt wasting syndrome. The balance in body Na levels therefore requires a delicate equilibrium to be maintained between the ingestion and excretion of Na. Salt (NaCl) intake is processed by receptors in the tongue and digestive system, which transmit the information to the nucleus of the solitary tract via a neural pathway (chorda tympani/vagus nerves) and to circumventricular organs, including the subfornical organ and area postrema, via a humoral pathway (blood/cerebrospinal fluid). Circuits are formed that stimulate or inhibit homeostatic Na intake involving participation of the parabrachial nucleus, pre-locus coeruleus, medial tuberomammillary nuclei, median eminence, paraventricular and supraoptic nuclei, and other structures with reward properties such as the bed nucleus of the stria terminalis, central amygdala, and ventral tegmental area. Finally, the kidney uses neural signals (e.g., renal sympathetic nerves) and vascular (e.g., renal perfusion pressure) and humoral (e.g., renin-angiotensin-aldosterone system, cardiac natriuretic peptides, antidiuretic hormone, and oxytocin) factors to promote Na excretion or retention and thereby maintain extracellular fluid volume. All these intake and excretion processes are modulated by chemical messengers, many of which (e.g., aldosterone, angiotensin II, and oxytocin) have effects that are coordinated at peripheral and central level to ensure Na homeostasis.
Collapse
|
14
|
Galley JC, Hahn SA, Miller MP, Durgin BG, Jackson EK, Stocker SD, Straub AC. Angiotensin II augments renal vascular smooth muscle soluble GC expression via an AT 1 receptor-forkhead box subclass O transcription factor signalling axis. Br J Pharmacol 2022; 179:2490-2504. [PMID: 33963547 PMCID: PMC8883839 DOI: 10.1111/bph.15522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Reduced renal blood flow triggers activation of the renin-angiotensin-aldosterone system (RAAS) leading to renovascular hypertension. Renal vascular smooth muscle expression of the NO receptor, soluble GC (sGC), modulates the vasodilator response needed to control renal vascular tone and blood flow. Here, we tested if angiotensin II (Ang II) affects sGC expression via an AT1 receptor-forkhead box subclass O (FoxO) transcription factor dependent mechanism. EXPERIMENTAL APPROACH Using a murine two-kidney-one-clip (2K1C) renovascular hypertension model, we measured renal artery vasodilatory function and sGC expression. Additionally, we conducted cell culture studies using rat renal pre-glomerular smooth muscle cells (RPGSMCs) to test the in vitro mechanistic effects of Ang II treatment on sGC expression and downstream function. KEY RESULTS Contralateral, unclipped renal arteries in 2K1C mice showed increased NO-dependent vasorelaxation compared to sham control mice. Immunofluorescence studies revealed increased sGC protein expression in 2K1C contralateral renal arteries over sham controls. RPGSMCs treated with Ang II caused a significant up-regulation of sGC mRNA and protein expression as well as downstream sGC-dependent signalling. Ang II signalling effects on sGC expression occurred through an AT1 receptor and FoxO transcription factor-dependent mechanism at both the mRNA and protein expression levels. CONCLUSION AND IMPLICATIONS Renal artery smooth muscle, in vivo and in vitro, up-regulates expression of sGC following RAAS activity. In both cases, up-regulation of sGC leads to increased downstream cGMP signalling, suggesting a previously unrecognized protective mechanism to improve renal blood flow in the uninjured contralateral renal artery. LINKED ARTICLES This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.
Collapse
Affiliation(s)
- Joseph C. Galley
- Heart, Lung, Blood and Vascular Medicine Institute,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott A. Hahn
- Heart, Lung, Blood and Vascular Medicine Institute,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan P. Miller
- Heart, Lung, Blood and Vascular Medicine Institute,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brittany G. Durgin
- Heart, Lung, Blood and Vascular Medicine Institute,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sean D. Stocker
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam C. Straub
- Heart, Lung, Blood and Vascular Medicine Institute,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Semenikhina M, Stefanenko M, Spires DR, Ilatovskaya DV, Palygin O. Nitric-Oxide-Mediated Signaling in Podocyte Pathophysiology. Biomolecules 2022; 12:biom12060745. [PMID: 35740870 PMCID: PMC9221338 DOI: 10.3390/biom12060745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) is a potent signaling molecule involved in many physiological and pathophysiological processes in the kidney. NO plays a complex role in glomerular ultrafiltration, vasodilation, and inflammation. Changes in NO bioavailability in pathophysiological conditions such as hypertension or diabetes may lead to podocyte damage, proteinuria, and rapid development of chronic kidney disease (CKD). Despite the extensive data highlighting essential functions of NO in health and pathology, related signaling in glomerular cells, particularly podocytes, is understudied. Several reports indicate that NO bioavailability in glomerular cells is decreased during the development of renal pathology, while restoring NO level can be beneficial for glomerular function. At the same time, the compromised activity of nitric oxide synthase (NOS) may provoke the formation of peroxynitrite and has been linked to autoimmune diseases such as systemic lupus erythematosus. It is known that the changes in the distribution of NO sources due to shifts in NOS subunits expression or modifications of NADPH oxidases activity may be linked to or promote the development of pathology. However, there is a lack of information about the detailed mechanisms describing the production and release of NO in the glomerular cells. The interaction of NO and other reactive oxygen species in podocytes and how NO-calcium crosstalk regulates glomerular cells’ function is still largely unknown. Here, we discuss recent reports describing signaling, synthesis, and known pathophysiological mechanisms mediated by the changes in NO homeostasis in the podocyte. The understanding and further investigation of these essential mechanisms in glomerular cells will facilitate the design of novel strategies to prevent or manage health conditions that cause glomerular and kidney damage.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.); (M.S.)
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.); (M.S.)
| | - Denisha R. Spires
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.R.S.); (D.V.I.)
| | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.R.S.); (D.V.I.)
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.); (M.S.)
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Correspondence:
| |
Collapse
|
16
|
Zhu Q, Hu J, Wang L, Wang W, Wang Z, Li PL, Li N. Overexpression of MicroRNA-429 Transgene Into the Renal Medulla Attenuated Salt-Sensitive Hypertension in Dahl S Rats. Am J Hypertens 2021; 34:1071-1077. [PMID: 34089591 DOI: 10.1093/ajh/hpab089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/28/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We have previously shown that high salt stimulates the expression of miR-429 in the renal medulla, which induces mRNA decay of HIF prolyl-hydroxylase 2 (PHD2), an enzyme to promote the degradation of hypoxia-inducible factor (HIF)-1α, and increases the HIF-1α-mediated activation of antihypertensive genes in the renal medulla, consequently promoting extra sodium excretion. Our preliminary results showed that high salt-induced increase of miR-429 was not observed in Dahl S rats. This present study determined whether correction of this impairment in miR-429 would reduce PHD2 levels, increase antihypertensive gene expression in the renal medulla and attenuate salt-sensitive hypertension in Dahl S rats. METHODS Lentiviruses encoding rat miR-429 were transfected into the renal medulla in uninephrectomized Dahl S rats. Sodium excretion and blood pressure were then measured. RESULTS Transduction of lentiviruses expressing miR-429 into the renal medulla increased miR-429 levels, decreased PHD2 levels, and upregulated HIF-1α target gene NOS-2, which restored the adaptive mechanism to increase the antihypertensive gene after high-salt intake in Dahl S rats. Functionally, overexpression of miR-429 transgene in the renal medulla significantly improved pressure natriuretic response, enhanced urinary sodium excretion, and reduced sodium retention upon extra sodium loading, and consequently, attenuated the salt-sensitive hypertension in Dahl S rats. CONCLUSIONS Our results suggest that the impaired miR-429-mediated PHD2 inhibition in response to high salt in the renal medulla may represent a novel mechanism for salt-sensitive hypertension in Dahl S rats and that correction of this impairment in miR-429 pathway could be a therapeutic approach for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junping Hu
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lei Wang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weili Wang
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhengchao Wang
- Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
17
|
Bakhoum CY, Vuong KT, Carter CE, Gabbai FB, Ix JH, Garimella PS. Proteinuria and nocturnal blood pressure dipping in hypertensive children and adolescents. Pediatr Res 2021; 90:876-881. [PMID: 33504962 PMCID: PMC8313642 DOI: 10.1038/s41390-020-01315-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND The absence of nocturnal blood pressure dipping is associated with adverse cardiovascular outcomes in adults, and proteinuria is a risk factor for non-dipping in this population. Risk factors for non-dipping in children are largely unknown. METHODS We retrospectively identified patients aged 5-19 years who underwent 24-h ambulatory blood pressure monitoring (ABPM) from August 2018 to January 2019 and had a spot urine protein-to-creatinine ratio (PCR) within 1 year of their ABPM. Dipping was defined as ≥10% reduction in systolic and diastolic blood pressure from day to night. Multivariable logistic and linear regression models evaluated the association of proteinuria with non-dipping. RESULTS Among 77 children identified, 27 (35.1%) were non-dippers. Each two-fold higher urine PCR was associated with 38% higher odds of non-dipping, after adjusting for body mass index (BMI). Higher urine PCR was also associated with a lower diastolic dipping percentage by 1.33 (95% confidence interval 0.31-2.34), after adjusting for BMI, age, and estimated glomerular filtration rate. CONCLUSIONS Limitations of this study include its retrospective design and the time lapse between urine PCR and ABPM. Proteinuria appears to be associated with blood pressure non-dipping in children. This finding needs to be confirmed in prospective studies. IMPACT Our study demonstrates the association of proteinuria with non-dipping of blood pressure in children. This association has been explored in adults, but to our knowledge, this is the first time it is evaluated in children referred for evaluation of elevated blood pressure. Non-dipping is a modifiable risk factor for kidney function decline and cardiovascular disease in adulthood, and thus early identification in children is important. The association between proteinuria and non-dipping in children will allow us to more readily identify those at risk, with a future focus on interventions to modify blood pressure dipping patterns.
Collapse
Affiliation(s)
- Christine Y. Bakhoum
- Division of Pediatric Nephrology, Rady Children’s Hospital, San Diego, California,Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Kim T. Vuong
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Caitlin E. Carter
- Division of Pediatric Nephrology, Rady Children’s Hospital, San Diego, California,Department of Pediatrics, University of California San Diego, La Jolla, California,Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California
| | - Francis B. Gabbai
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California.,Nephrology Section, Medicine Service, Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Joachim H. Ix
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California.,Nephrology Section, Medicine Service, Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Pranav S. Garimella
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
18
|
Li XC, Wang CH, Leite APO, Zhuo JL. Intratubular, Intracellular, and Mitochondrial Angiotensin II/AT 1 (AT1a) Receptor/NHE3 Signaling Plays a Critical Role in Angiotensin II-Induced Hypertension and Kidney Injury. Front Physiol 2021; 12:702797. [PMID: 34408663 PMCID: PMC8364949 DOI: 10.3389/fphys.2021.702797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is well recognized to be the most important risk factor for cardiovascular diseases, stroke, and end-stage kidney failure. A quarter of the world’s adult populations and 46% of the US adults develop hypertension and currently require antihypertensive treatments. Only 50% of hypertensive patients are responsive to current antihypertensive drugs, whereas remaining patients may continue to develop cardiovascular, stroke, and kidney diseases. The mechanisms underlying the poorly controlled hypertension remain incompletely understood. Recently, we have focused our efforts to uncover additional renal mechanisms, pathways, and therapeutic targets of poorly controlled hypertension and target organ injury using novel animal models or innovative experimental approaches. Specifically, we studied and elucidated the important roles of intratubular, intracellular, and mitochondrial angiotensin II (Ang II) system in the development of Ang II-dependent hypertension. The objectives of this invited article are to review and discuss our recent findings that (a) circulating and intratubular Ang II is taken up by the proximal tubules via the (AT1) AT1a receptor-dependent mechanism, (b) intracellular administration of Ang II in proximal tubule cells or adenovirus-mediated overexpression of an intracellular Ang II fusion protein selectively in the mitochonria of the proximal tubules induces blood pressure responses, and (c) genetic deletion of AT1 (AT1a) receptors or the Na+/H+ exchanger 3 selectively in the proximal tubules decreases basal blood pressure and attenuates Ang II-induced hypertension. These studies provide a new perspective into the important roles of the intratubular, intracellular, and mitochondrial angiotensin II/AT1 (AT1a) receptor signaling in Ang II-dependent hypertensive kidney diseases.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Ana Paula Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| |
Collapse
|
19
|
Łabno-Kirszniok K, Kujawa-Szewieczek A, Wiecek A, Piecha G. The Effects of Short-Term Changes in Sodium Intake on Plasma Marinobufagenin Levels in Patients with Primary Salt-Sensitive and Salt-Insensitive Hypertension. Nutrients 2021; 13:nu13051502. [PMID: 33946894 PMCID: PMC8147121 DOI: 10.3390/nu13051502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022] Open
Abstract
Increased marinobufagenin (MBG) synthesis has been suggested in response to high dietary salt intake. The aim of this study was to determine the effects of short-term changes in sodium intake on plasma MBG levels in patients with primary salt-sensitive and salt-insensitive hypertension. In total, 51 patients with primary hypertension were evaluated during acute sodium restriction and sodium loading. Plasma or serum concentrations of MBG, natriuretic pro-peptides, aldosterone, sodium, potassium, as well as hematocrit (Hct) value, plasma renin activity (PRA) and urinary sodium and potassium excretion were measured. Ambulatory blood pressure monitoring (ABPM) and echocardiography were performed at baseline. In salt-sensitive patients with primary hypertension plasma MBG correlated positively with diastolic blood pressure (ABPM) and serum NT-proANP concentration at baseline and with serum NT-proANP concentration after dietary sodium restriction. In this subgroup plasma MBG concentration decreased during sodium restriction, and a parallel increase of PRA was observed. Acute salt loading further decreased plasma MBG concentration in salt-sensitive subjects in contrast to salt insensitive patients. No correlation was found between plasma MBG concentration and left ventricular mass index. In conclusion, in salt-sensitive hypertensive patients plasma MBG concentration correlates with 24-h diastolic blood pressure and dietary sodium restriction reduces plasma MBG levels. Decreased MBG secretion in response to acute salt loading may play an important role in the pathogenesis of salt sensitivity.
Collapse
Affiliation(s)
| | | | | | - Grzegorz Piecha
- Correspondence: ; Tel.: +48-322-591-429; Fax: +48-322-553-726
| |
Collapse
|
20
|
Acharya R, Ellenwood S, Upadhyay K. Efficacy of Antihypertensive Therapy in a Child with Unilateral Focal Fibromuscular Dysplasia of the Renal Artery: A Case Study and Review of Literature. MEDICINES (BASEL, SWITZERLAND) 2020; 7:9. [PMID: 32093171 PMCID: PMC7168152 DOI: 10.3390/medicines7020009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/23/2022]
Abstract
Background: Fibromuscular dysplasia (FMD) is one of the important etiologies of renovascular hypertension in children. It is usually resistant to multiple antihypertensive agents and can cause extreme elevation in blood pressures, which can lead to end organ damage if not promptly diagnosed and treated. Treatment options include medical management with antihypertensive agents, balloon or stent angioplasties, surgical revascularization, and nephrectomy. The aim of the study was to review the efficacy of antihypertensive therapy only in the management of FMD in a very young child. Methods: This is a retrospective chart study with review of literature. Results: Here, we report a 22-month-old toddler who presented with severe resistant hypertension and cardiomyopathy who was found to have focal FMD of the right renal artery. She also presented with proteinuria, hyponatremia that was probably secondary to pressure natriuresis, hypokalemia, hyperaldosteronism, and elevated plasma renin activity. The stabilization of blood pressures was done medically with the usage of antihypertensive medications only, without the need for angioplasty or surgical revascularization. Conclusions: We demonstrate that surgical intervention may not always be necessary in the treatment of all cases of FMD, especially in a small child where such intervention may be technically challenging and lead to potential complications. Hence, medical management alone may be sufficient, at least for the short-term, in small children with controlled hypertension and normal renal function, with surgical intervention reserved for FMD with medication-refractory hypertension and/or compromised renal function.
Collapse
Affiliation(s)
- Ratna Acharya
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Savannah Ellenwood
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Kiran Upadhyay
- Department of Pediatrics, Division of Pediatric Nephrology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Xu P, Gildea JJ, Zhang C, Konkalmatt P, Cuevas S, Bigler Wang D, Tran HT, Jose PA, Felder RA. Stomach gastrin is regulated by sodium via PPAR-α and dopamine D1 receptor. J Mol Endocrinol 2020; 64:53-65. [PMID: 31794424 PMCID: PMC7654719 DOI: 10.1530/jme-19-0053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Gastrin, secreted by stomach G cells in response to ingested sodium, stimulates the renal cholecystokinin B receptor (CCKBR) to increase renal sodium excretion. It is not known how dietary sodium, independent of food, can increase gastrin secretion in human G cells. However, fenofibrate (FFB), a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, increases gastrin secretion in rodents and several human gastrin-secreting cells, via a gastrin transcriptional promoter. We tested the following hypotheses: (1.) the sodium sensor in G cells plays a critical role in the sodium-mediated increase in gastrin expression/secretion, and (2.) dopamine, via the D1R and PPAR-α, is involved. Intact human stomach antrum and G cells were compared with human gastrin-secreting gastric and ovarian adenocarcinoma cells. When extra- or intracellular sodium was increased in human antrum, human G cells, and adenocarcinoma cells, gastrin mRNA and protein expression/secretion were increased. In human G cells, the PPAR-α agonist FFB increased gastrin protein expression that was blocked by GW6471, a PPAR-α antagonist, and LE300, a D1-like receptor antagonist. LE300 prevented the ability of FFB to increase gastrin protein expression in human G cells via the D1R, because the D5R, the other D1-like receptor, is not expressed in human G cells. Human G cells also express tyrosine hydroxylase and DOPA decarboxylase, enzymes needed to synthesize dopamine. G cells in the stomach may be the sodium sensor that stimulates gastrin secretion, which enables the kidney to eliminate acutely an oral sodium load. Dopamine, via the D1R, by interacting with PPAR-α, is involved in this process.
Collapse
Affiliation(s)
- Peng Xu
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - John J Gildea
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Chi Zhang
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Prasad Konkalmatt
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | - Santiago Cuevas
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | - Dora Bigler Wang
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Hanh T Tran
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Abstract
Approximately 33% of adults in the United States have high blood pressure; approximately 1% will present with a hypertensive emergency. Hypertension emergency is typically defined as a blood pressure great than 180/120 mmHg leading to end organ damage. However, it is important to note that an acute rise in blood pressure may also lead to end organ damage before achieving the blood pressure threshold. Therapeutic intervention should be a short-acting, easily titratable, intravenous antihypertensive medication based on the type of end-organ damage, pharmacokinetics, and comorbidities. This review focuses on presentations and treatment of hypertensive emergency.
Collapse
|
23
|
Li XC, Soleimani M, Zhu D, Rubera I, Tauc M, Zheng X, Zhang J, Chen X, Zhuo JL. Proximal Tubule-Specific Deletion of the NHE3 (Na +/H + Exchanger 3) Promotes the Pressure-Natriuresis Response and Lowers Blood Pressure in Mice. Hypertension 2019; 72:1328-1336. [PMID: 30571224 DOI: 10.1161/hypertensionaha.118.10884] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study directly tested the hypothesis that deletion of the NHE3 (Na+/H+ exchanger 3) selectively in the proximal tubules of the kidney lowers basal blood pressure by increasing the pressure-natriuresis response in mice. Adult male and female, age-matched wild-type (WT) littermates and proximal tubule-specific NHE3 knockout mice (PT- Nhe3-/-; n=6-16 per group) were studied for (1) basal phenotypes of electrolytes and pH, blood pressure, and kidney function; (2) the pressure-natriuresis response using the mesenteric, celiac, and abdominal arterial occlusion technique; and (3) the natriuretic responses to acute saline expansion (0.9% NaCl, 10% body weight, intraperitoneal) or 2-week of 2% NaCl diet. Under basal conditions, PT- Nhe3-/- mice showed significantly lower systolic, diastolic, and mean arterial blood pressure ( P<0.01) than WT mice ( P<0.01). PT- Nhe3-/- mice also exhibited significantly greater diuretic ( P<0.01) and natriuretic responses than WT mice ( P<0.01), without altering 24-hour fecal Na+ excretion, plasma pH, Na+, and bicarbonate levels. In response to increased renal perfusion pressure by 30 mm Hg, the pressure-natriuresis response increased 5-fold in WT mice ( P<0.01), but it increased 8-fold in PT- Nhe3-/- mice ( P<0.01). In response to 10% acute saline expansion or 2-week 2% NaCl diet, more pronounced natriuretic responses were demonstrated in PT- Nhe3-/- than WT mice ( P<0.01). Our results support the scientific premise and physiological relevance that NHE3 in the proximal tubules plays an essential role in maintaining basal blood pressure homeostasis, and genetic deletion of NHE3 selectively in the proximal tubules of the kidney lowers blood pressure by increasing the pressure natriuretic response.
Collapse
Affiliation(s)
- Xiao C Li
- From the Division of Nephrology, Department of Pharmacology and Toxicology and Department of Medicine, University of Mississippi Medical Center, Jackson (X.C.L., X.Z., J.Z., X.C., J.L.Z.)
| | - Manoocher Soleimani
- Division of Nephrology and Hypertension, Department of Internal Medicine, The University of Cincinnati College of Medicine, OH (M.S.)
| | - Dongmin Zhu
- Department of Outpatients, Guangxi Science and Technology University No. 1 Affiliated Hospital, Liuzhou, China (D.Z.)
| | - Isabelle Rubera
- Laboratoire Centre National de la Recherche Scientifique (CNRS) 3472 LP2M, Université de Nice Sophia Antipolis, Nice Cedex 2, France (I.R., M.T.)
| | - Michel Tauc
- Laboratoire Centre National de la Recherche Scientifique (CNRS) 3472 LP2M, Université de Nice Sophia Antipolis, Nice Cedex 2, France (I.R., M.T.)
| | - Xiaowen Zheng
- From the Division of Nephrology, Department of Pharmacology and Toxicology and Department of Medicine, University of Mississippi Medical Center, Jackson (X.C.L., X.Z., J.Z., X.C., J.L.Z.).,Department of Emergency Medicine, Second Affiliated Hospital, Guangxi Medical University, Nanning, China (X.Z., J.Z.)
| | - Jianfeng Zhang
- From the Division of Nephrology, Department of Pharmacology and Toxicology and Department of Medicine, University of Mississippi Medical Center, Jackson (X.C.L., X.Z., J.Z., X.C., J.L.Z.)
| | - Xu Chen
- From the Division of Nephrology, Department of Pharmacology and Toxicology and Department of Medicine, University of Mississippi Medical Center, Jackson (X.C.L., X.Z., J.Z., X.C., J.L.Z.)
| | - Jia L Zhuo
- From the Division of Nephrology, Department of Pharmacology and Toxicology and Department of Medicine, University of Mississippi Medical Center, Jackson (X.C.L., X.Z., J.Z., X.C., J.L.Z.).,Department of Emergency Medicine, Second Affiliated Hospital, Guangxi Medical University, Nanning, China (X.Z., J.Z.)
| |
Collapse
|
24
|
Oloyo AK, Imaga NO, Fatope Y, Sofola OA. Sex differences in cardiac and renal responses to a high salt diet in Sprague-Dawley rats. Heliyon 2019; 5:e01665. [PMID: 31193051 PMCID: PMC6514751 DOI: 10.1016/j.heliyon.2019.e01665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Abstract
High dietary salt intake is an important risk factor for cardiovascular and renal diseases. However, sexual disparity exists in the response of target organs to high salt diet (HSD). To determine how sex affects cardiac and renal functions' response to HSD, 20 weanling Sprague-Dawley rats (10 males and 10 females) were divided into 4 groups of 5 rats each. The rats were fed a normal diet (0.3% NaCl) or HSD (8% NaCl) for 12 weeks. Fluid balance (FB) was determined from 24 hrs water intake and voided urine. Blood pressure (BP) was measured via arterial cannulation under anesthesia (25% w/v urethane and 1% w/v α-chloralose; 5 ml/kg, i.p). Serum levels of troponin I, aminotransaminases, creatinine, urea, uric acid and electrolytes as well as urinary concentration of albumin, creatinine, and electrolytes were measured using appropriate assay kits. Values are presented as mean ± S.E.M, compared by two-way ANOVA and Bonferroni post Hoc test. In the male rat, HSD significantly increased BP, serum: Troponin I, LDH and sodium (p < 0.05), urinary: albumin, sodium, potassium and FB (p < 0.05). In the female rat, HSD increased BP, serum: troponin I, LDH, sodium and creatinine clearance (p < 0.05), urinary: albumin, sodium and potassium (p < 0.01). However, HSD increased more, the BP, serum: Troponin I, LDH, urinary albumin and FB in male rats, while HSD increased urinary sodium more in female rats. Basal values in male vs. female of serum LDH and urinary albumin were significantly different. Thus, sex plays an important role in the response of the heart and kidney to salt stress.
Collapse
Affiliation(s)
- Ahmed Kolade Oloyo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Surulere, Nigeria
| | - Ngozi O.A. Imaga
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Surulere, Nigeria
| | - Yemisi Fatope
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Surulere, Nigeria
| | - Olusoga A. Sofola
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Surulere, Nigeria
| |
Collapse
|
25
|
Abstract
INTRODUCTION Hypertension is caused by increased cardiac output and/or increased peripheral resistance. Areas covered: The various mechanisms affecting cardiac output/peripheral resistance involved in the development of essential hypertension are covered. These include genetics; sympathetic nervous system overactivity; renal mechanisms: excess sodium intake and pressure natriuresis; vascular mechanisms: endothelial cell dysfunction and the nitric oxide pathway; hormonal mechanisms: the renin-angiotensin-aldosterone system (RAAS); obesity, obstructive sleep apnea (OSA); insulin resistance and metabolic syndrome; uric acid; vitamin D; gender differences; racial, ethnic, and environmental factors; increased left ventricular ejection force and hypertension and its association with increased basal sympathetic activity - cortical connections. Expert commentary: Maximum association of hypertension is found with sympathetic overactivity which is directly or indirectly involved in different mechanisms of hypertension including RAAS, OSA, obesity, etc.. It is not overt sympathetic activity but disturbed basal sympathetic tone. Basal sympathetic tone arises from hypothalamus; possibly affected by cortical influences. Therefore, hypertension is not merely a disease of circulatory system alone. Its pathogenesis involves alteration in ANS (autonomic nervous system) and likely in cortical-hypothalamic connections. Assessment of ANS and cortical-hypothalamic connections may be required for better understanding of hypertension.
Collapse
Affiliation(s)
- Tarun Saxena
- a Department of Internal Medicine , Mittal Hospital and Research Centre , Ajmer , India
| | - Azeema Ozefa Ali
- a Department of Internal Medicine , Mittal Hospital and Research Centre , Ajmer , India
| | - Manjari Saxena
- b Department Yoga and Physical education , Mittal Hospital and Research Centre , Ajmer , India
| |
Collapse
|
26
|
Bie P. Mechanisms of sodium balance: total body sodium, surrogate variables, and renal sodium excretion. Am J Physiol Regul Integr Comp Physiol 2018; 315:R945-R962. [DOI: 10.1152/ajpregu.00363.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The classical concepts of human sodium balance include 1) a total pool of Na+ of ≈4,200 mmol (total body sodium, TBS) distributed primarily in the extracellular fluid (ECV) and bone, 2) intake variations of 0.03 to ≈6 mmol·kg body mass−1·day−1, 3) asymptotic transitions between steady states with a halftime (T½) of 21 h, 4) changes in TBS driven by sodium intake measuring ≈1.3 day [ΔTBS/Δ(Na+ intake/day)], 5) adjustment of Na+ excretion to match any diet thus providing metabolic steady state, and 6) regulation of TBS via controlled excretion (90–95% renal) mediated by surrogate variables. The present focus areas include 1) uneven, nonosmotic distribution of increments in TBS primarily in “skin,” 2) long-term instability of TBS during constant Na+ intake, and 3) physiological regulation of renal Na+ excretion primarily by neurohumoral mechanisms dependent on ECV rather than arterial pressure. Under physiological conditions 1) the nonosmotic distribution of Na+ seems conceptually important, but quantitatively ill defined; 2) long-term variations in TBS represent significant deviations from steady state, but the importance is undetermined; and 3) the neurohumoral mechanisms of sodium homeostasis competing with pressure natriuresis are essential for systematic analysis of short-term and long-term regulation of TBS. Sodium homeostasis and blood pressure regulation are intimately related. Real progress is slow and will accelerate only through recognition of the present level of ignorance. Nonosmotic distribution of sodium, pressure natriuresis, and volume-mediated regulation of renal sodium excretion are essential intertwined concepts in need of clear definitions, conscious models, and future attention.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Dietary Fructose Increases the Sensitivity of Proximal Tubules to Angiotensin II in Rats Fed High-Salt Diets. Nutrients 2018; 10:nu10091244. [PMID: 30200571 PMCID: PMC6164674 DOI: 10.3390/nu10091244] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
Dietary fructose causes salt-sensitive hypertension. Proximal tubules (PTs) reabsorb 70% of the filtered NaCl. Angiotensin II (Ang II), atrial natriuretic peptide (ANP) and norepinephrine (NE) regulate this process. Although Ang II signaling blockade ameliorates fructose-induced salt-sensitive hypertension, basal PT Na⁺ reabsorption and its sensitivity to the aforementioned factors have not been studied in this model. We hypothesized consuming fructose with a high-salt diet selectively enhances the sensitivity of PT transport to Ang II. We investigated the effects of Ang II, ANP and NE on PT Na reabsorption in rats fed a high-salt diet drinking tap water (HS) or 20% fructose (HS-FRU). Oxygen consumption (QO₂) was used as a measure of all ATP-dependent transport processes. Na⁺/K⁺-ATPase and Na⁺/H⁺-exchange (NHE) activities were studied because they represent primary apical and basolateral transporters in this segment. The effect of 10-12 mol/L Ang II in QO₂ by PTs from HS-FRU was larger than HS (p < 0.02; n = 7). In PTs from HS-FRU 10-12 mol/L Ang II stimulated NHE activity by 2.6 ± 0.7 arbitrary fluorescence units/s (p < 0.01; n = 5) but not in those from HS. The stimulatory effect of Ang II on PT Na⁺/K⁺-ATPase activity was not affected by HS-FRU. Responses of QO₂ and NHE activity to ANP did not differ between groups. The response of QO₂ to NE was unaltered by HS-FRU. We concluded that the sensitivity of PT Na⁺ reabsorption specifically to Ang II is enhanced by HS-FRU. This maintains high rates of transport even in the presence of low concentrations of the peptide, and likely contributes to the hypertension.
Collapse
|
28
|
Matic A, Jukic I, Stupin A, Baric L, Mihaljevic Z, Unfirer S, Tartaro Bujak I, Mihaljevic B, Lombard JH, Drenjancevic I. High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of Sprague-Dawley rats. Am J Physiol Heart Circ Physiol 2018; 315:H718-H730. [DOI: 10.1152/ajpheart.00097.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of the present study was to examine the effect of 1 wk of high salt (HS) intake and the role of oxidative stress in changing the mechanisms of flow-induced dilation (FID) in isolated pressurized middle cerebral arteries of male Sprague-Dawley rats ( n = 15–16 rats/group). Reduced FID in the HS group was restored by intake of the superoxide scavenger tempol (HS + tempol in vivo group). The nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester, cyclooxygenase inhibitor indomethacin, and selective inhibitor of microsomal cytochrome P-450 epoxidase activity N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide significantly reduced FID in the low salt diet-fed group, whereas FID in the HS group was mediated by NO only. Cyclooxygenase-2 mRNA (but not protein) expression was decreased in the HS and HS + tempol in vivo groups. Hypoxia-inducible factor-1α and VEGF protein levels were increased in the HS group but decreased in the HS + tempol in vivo group. Assessment by direct fluorescence of middle cerebral arteries under flow revealed significantly reduced vascular NO levels and increased superoxide/reactive oxygen species levels in the HS group. These results suggest that HS intake impairs FID and changes FID mechanisms to entirely NO dependent, in contrast to the low-salt diet-fed group, where FID is NO, prostanoid, and epoxyeicosatrienoic acid dependent. These changes were accompanied by increased lipid peroxidation products in the plasma of HS diet-fed rats, increased vascular superoxide/reactive oxygen species levels, and decreased NO levels, together with increased expression of hypoxia-inducible factor-1α and VEGF. NEW & NOTEWORTHY High-salt (HS) diet changes the mechanisms of flow-induced dilation in rat middle cerebral arteries from a combination of nitric oxide-, prostanoid-, and epoxyeicosatrienoic acid-dependent mechanisms to, albeit reduced, a solely nitric oxide-dependent dilation. In vivo reactive oxygen species scavenging restores flow-induced dilation in HS diet-fed rats and ameliorates HS-induced increases in the transcription factor hypoxia-inducible factor-1α and expression of its downstream target genes.
Collapse
Affiliation(s)
- Anita Matic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Lidija Baric
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Sanela Unfirer
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Branka Mihaljevic
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Julian H. Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| |
Collapse
|
29
|
Ahmad A, Dempsey SK, Daneva Z, Li N, Poklis JL, Li PL, Ritter JK. Modulation of mean arterial pressure and diuresis by renomedullary infusion of a selective inhibitor of fatty acid amide hydrolase. Am J Physiol Renal Physiol 2018; 315:F967-F976. [PMID: 29846106 DOI: 10.1152/ajprenal.00090.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The kidneys contribute to the control of body fluid and electrolytes and the long-term regulation of blood pressure through various systems, including the endocannabinoid system. Previously, we showed that inhibition of the two major endocannabinoid-hydrolyzing enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, in the renal medulla increased the rate of urine excretion (UV) and salt excretion without affecting mean arterial pressure (MAP). The present study evaluated the effects of a selective FAAH inhibitor, N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidine carboxamide (PF-3845) on MAP and renal functions. Infusion of PF-3845 into the renal medulla of C57BL/6J mice reduced MAP during the posttreatment phases and increased UV at 15 and 30 nmol/min per gram kidney weight (g kwt), relative to the pretreatment control phase. Intravenous PF-3845 administration reduced MAP at the 7.5, 15, and 30 doses and increased UV at the 15 and 30 nmol⋅min-1⋅g-1 kwt doses. PF-3845 treatment elevated sodium and potassium urinary excretion and medullary blood flow. Homozygous FAAH knockout mice were refractory to intramedullary PF-3845-induced changes in MAP, but UV was increased. Both MAP and UV responses to intramedullary PF-3845 in C57BL/6J mice were diminished by pretreatment with the cannabinoid type 1 receptor-selective antagonist, rimonabant (3 mg/kg, ip) but not the cyclooxygenase 2-selective inhibitor, celecoxib (15 mg/kg, iv). Liquid chromatography-tandem mass spectrometry analyses showed increased anandamide in kidney tissue and 2-arachidonoyl glycerol in plasma after intramedullary PF-3845. These data suggest that inhibition of FAAH in the renal medulla leads to both a diuretic and blood pressure-lowering response mediated by elevated anandamide in kidney tissue or 2-arachidonoyl glycerol in plasma.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Sara K Dempsey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Zdravka Daneva
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| |
Collapse
|
30
|
Titze J, Luft FC. Speculations on salt and the genesis of arterial hypertension. Kidney Int 2018; 91:1324-1335. [PMID: 28501304 DOI: 10.1016/j.kint.2017.02.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022]
Abstract
Blood pressure salt sensitivity and salt resistance are mechanistically imperfectly explained. A prescient systems medicine approach by Guyton and colleagues-more than 50 years ago-suggested how salt intake might influence blood pressure. They proposed that a high-salt diet engenders sodium accumulation, volume expansion, cardiac output adjustments, and then autoregulation for flow maintenance. The autoregulation in all vascular beds increases systemic vascular resistance, causing the kidneys to excrete more salt and water, thus reducing systems to normal and minimizing any changes in blood pressure. This schema, which is remarkably all encompassing, included all regulatory mechanisms Guyton could identify at the time. Guyton introduced the idea that the kidney is central, particularly concerning the regulation of renal pressure natriuresis. Numerous criticisms have been subsequently raised, particularly recently. Kurtz and colleagues argue that the ability of individuals to respond with an appropriate vasodilatory response to increased salt intake is pivotal. Data exist to address that issue. Salt-resistant hypertensive models provide additional information. We identified a mendelian form of hypertension not related to sodium reabsorption in the distal nephron. The hypertension develops because of increased systemic vascular resistance. In addition, we rediscovered a third salt-storage glycose-aminoglycan-related compartment, largely in the skin. This compartment operates independently of renal function, and when perturbed, is associated with salt sensitivity. More recently, we found novel molecular mechanisms demonstrating how large salt quantities are excreted by the kidneys with minimal water losses. We introduce novel interpretations as to how the kidneys excrete salt when the intake is high. The findings could have relevance as to how blood pressure may be regulated at varying salt intakes. Our purposes are to provide the readership with a banquet of thoughts to digest, to pursue Guyton's ideas, and to adjust them accordingly.
Collapse
Affiliation(s)
- Jens Titze
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Friedrich C Luft
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine, Charité Medical Faculty, Berlin, Germany.
| |
Collapse
|
31
|
Di Nicolò P. The dark side of the kidney in cardio-renal syndrome: renal venous hypertension and congestive kidney failure. Heart Fail Rev 2018; 23:291-302. [DOI: 10.1007/s10741-018-9673-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Ahmad A, Daneva Z, Li G, Dempsey SK, Li N, Poklis JL, Lichtman A, Li PL, Ritter JK. Stimulation of diuresis and natriuresis by renomedullary infusion of a dual inhibitor of fatty acid amide hydrolase and monoacylglycerol lipase. Am J Physiol Renal Physiol 2017; 313:F1068-F1076. [PMID: 28768662 DOI: 10.1152/ajprenal.00196.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/22/2022] Open
Abstract
The renal medulla, considered critical for the regulation of salt and water balance and long-term blood pressure control, is enriched in anandamide and two of its major metabolizing enzymes, cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH). Infusion of anandamide (15, 30, and 60 nmol·min-1·kg-1) into the renal medulla of C57BL/6J mice stimulated diuresis and salt excretion in a COX-2- but not COX-1-dependent manner. To determine whether endogenous endocannabinoids in the renal medulla can elicit similar effects, the effects of intramedullary isopropyl dodecyl fluorophosphate (IDFP), which inhibits the two major endocannabinoid hydrolases, were studied. IDFP treatment increased the urine formation rate and sodium excretion in a COX-2- but not COX-1-dependent manner. Neither anandamide nor IDFP affected the glomerular filtration rate. Neither systemic (0.625 mg·kg-1·30 min-1 iv) nor intramedullary (15 nmol·min-1·kg-1·30 min-1) IDFP pretreatment before intramedullary anandamide (15-30 nmol·min-1·kg-1) strictly blocked effects of anandamide, suggesting that hydrolysis of anandamide was not necessary for its diuretic effect. Intramedullary IDFP had no effect on renal blood flow but stimulated renal medullary blood flow. The effects of IDFP on urine flow rate and medullary blood flow were FAAH-dependent as demonstrated using FAAH knockout mice. Analysis of mouse urinary PGE2 concentrations by HPLC-electrospray ionization tandem mass spectrometry showed that IDFP treatment decreased urinary PGE2 These data are consistent with a role of FAAH and endogenous anandamide acting through a COX-2-dependent metabolite to regulate diuresis and salt excretion in the mouse kidney.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Zdravka Daneva
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Sara K Dempsey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Aron Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
33
|
Carter M, Abdi A, Naz F, Thabet F, Vyas A. A Mercury Toxicity Case Complicated by Hyponatremia and Abnormal Endocrinological Test Results. Pediatrics 2017; 140:peds.2016-1402. [PMID: 28701428 DOI: 10.1542/peds.2016-1402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2017] [Indexed: 11/24/2022] Open
Abstract
Mercury (Hg) poisoning is considered a rare disease by the National Institutes of Health and the diagnosis can present great challenges to clinicians. Children who are exposed to Hg can present with a wide variety of symptoms, including acrodynia, tremor, excessive salivation, and psychiatric symptoms, including insomnia. However, endocrinologic manifestations from Hg exposure are less well known. This is a case report of a 12-year-old boy who presented with body rash, irritability, insomnia, and profuse sweating after returning from a summer camp. The child was initially managed in the outpatient setting, and the investigation was mainly targeted toward infectious etiology, including Rocky Mountain spotted fever and Lyme disease. He was eventually admitted to the hospital with altered mental status and was noted to have hyponatremia with serum sodium of 121 mEq/L. Thyroid studies also revealed elevated free thyroxine levels in the presence of normal triiodothyronine and thyrotropin. The patient developed hypertension and tachycardia, and was found to have elevated 24-hour vanillylmandelic acid and metanephrines. Finally, heavy metal measurements revealed a blood Hg level that was greater than the reference values of 0 to 9 ng/mL. Chelation treatment with 2,3-dimercaptopropane-1-sulfonate was subsequently initiated and over a period of 8 months his symptoms resolved and his thyroid function test returned to normal. This case highlights some of the challenges commonly encountered in identifying Hg exposure. More importantly, it illustrates that exposure to Hg should be considered in children who present with the symptoms and abnormal endocrinologic test results described in this report.
Collapse
Affiliation(s)
- Matthew Carter
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Abdul Abdi
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Fareeha Naz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Farouq Thabet
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Arpita Vyas
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan .,Department of Pediatrics, Texas Tech University, Odessa, Texas
| |
Collapse
|
34
|
Hallow KM, Gebremichael Y. A Quantitative Systems Physiology Model of Renal Function and Blood Pressure Regulation: Application in Salt-Sensitive Hypertension. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:393-400. [PMID: 28556624 PMCID: PMC5488119 DOI: 10.1002/psp4.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 01/13/2023]
Abstract
Salt‐sensitivity (SS) refers to changes in blood pressure in response to changes in sodium intake. SS individuals are at greater risk for developing kidney disease, and also respond differently to antihypertensive therapies compared to salt‐resistant (SR) individuals. In this study we used a systems pharmacology model of renal function (presented in a companion article) to evaluate the ability of proposed mechanisms to produce salt‐sensitivity. The model reproduced previously published data on renal functional changes in response to salt‐intake, and also predicted that glomerular pressure, a variable that is not easily evaluated clinically but is a key factor in renal injury, increases with salt intake in SS hypertension. We then used the model to generate mechanistic insight into the differential blood pressure and glomerular pressure responses to angiotensin converting enzyme (ACE) inhibitors, thiazide diuretics, and calcium channel blockers observed in SS and SR hypertension.
Collapse
Affiliation(s)
- K M Hallow
- University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
35
|
Hallow KM, Gebremichael Y. A quantitative systems physiology model of renal function and blood pressure regulation: Model description. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:383-392. [PMID: 28548387 PMCID: PMC5488122 DOI: 10.1002/psp4.12178] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 01/13/2023]
Abstract
Renal function plays a central role in cardiovascular, kidney, and multiple other diseases, and many existing and novel therapies act through renal mechanisms. Even with decades of accumulated knowledge of renal physiology, pathophysiology, and pharmacology, the dynamics of renal function remain difficult to understand and predict, often resulting in unexpected or counterintuitive therapy responses. Quantitative systems pharmacology modeling of renal function integrates this accumulated knowledge into a quantitative framework, allowing evaluation of competing hypotheses, identification of knowledge gaps, and generation of new experimentally testable hypotheses. Here we present a model of renal physiology and control mechanisms involved in maintaining sodium and water homeostasis. This model represents the core renal physiological processes involved in many research questions in drug development. The model runs in R and the code is made available. In a companion article, we present a case study using the model to explore mechanisms and pharmacology of salt‐sensitive hypertension.
Collapse
Affiliation(s)
- K M Hallow
- University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
36
|
Hallow KM, Gebremichael Y, Helmlinger G, Vallon V. Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis. Am J Physiol Renal Physiol 2017; 312:F819-F835. [PMID: 28148531 DOI: 10.1152/ajprenal.00497.2016] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/18/2017] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
Glomerular hypertension and hyperfiltration in early diabetes are associated with development and progression of diabetic kidney disease. The tubular hypothesis of diabetic hyperfiltration proposes that it is initiated by a primary increase in sodium (Na) reabsorption in the proximal tubule (PT) and the resulting tubuloglomerular feedback (TGF) response and lowering of Bowman space pressure (PBow). Here we utilized a mathematical model of the human kidney to investigate over acute and chronic timescales the mechanisms responsible for the magnitude of the hyperfiltration response. The model implicates that the primary hyperreabsorption of Na in the PT produces a Na imbalance that is only partially restored by the hyperfiltration induced by TGF and changes in PBow Thus secondary adaptations are needed to restore Na balance. This may include neurohumoral transport regulation and/or pressure-natriuresis (i.e., the decrease in Na reabsorption in response to increased renal perfusion pressure). We explored the role of each tubular segment in contributing to this compensation and the consequences of impairment in tubular compensation. The simulations indicate that impaired secondary downregulation of transport potentiated the rise in glomerular hypertension and hyperfiltration needed to restore Na balance at a given level of primary PT hyperreabsorption. Therefore, we propose for the first time that both the extent of primary PT hyperreabsorption and the degree of impairment of the distal tubular responsiveness to regulatory signals determine the level of glomerular hypertension and hyperfiltration in the diabetic kidney, thereby extending the tubule-centric concept of diabetic hyperfiltration and potential therapeutic approaches beyond the proximal tubule.
Collapse
Affiliation(s)
- K Melissa Hallow
- College of Engineering and College of Public Health, Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia;
| | - Yeshitila Gebremichael
- College of Engineering and College of Public Health, Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia
| | | | - Volker Vallon
- Division of Nephrology and Hypertension, Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, California; and.,Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
37
|
Cerebral Salt-Wasting Syndrome Caused by Minor Head Injury. Case Rep Emerg Med 2017; 2017:8692017. [PMID: 28194285 PMCID: PMC5282430 DOI: 10.1155/2017/8692017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/04/2016] [Indexed: 11/30/2022] Open
Abstract
A 34-year-old woman was admitted to hospital after sustaining a head injury in a motor vehicle accident (day 1). No signs of neurological deficit, skull fracture, brain contusion, or intracranial bleeding were evident. She was discharged without symptoms on day 4. However, headache and nausea worsened on day 8, at which time serum sodium level was noted to be 121 mEq/L. Treatment with sodium chloride was initiated, but serum sodium decreased to 116 mEq/L on day 9. Body weight decreased in proportion to the decrease in serum sodium. Cerebral salt-wasting syndrome was diagnosed. This case represents the first illustration of severe hyponatremia related to cerebral salt-wasting syndrome caused by a minor head injury.
Collapse
|
38
|
Kurtz TW, DiCarlo SE, Morris RC. Logical Issues With the Pressure Natriuresis Theory of Chronic Hypertension. Am J Hypertens 2016. [PMID: 28637271 DOI: 10.1093/ajh/hpw073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The term "abnormal pressure natriuresis" refers to a subnormal effect of a given level of blood pressure (BP) on sodium excretion. It is widely believed that abnormal pressure natriuresis causes an initial increase in BP to be sustained. We refer to this view as the "pressure natriuresis theory of chronic hypertension." The proponents of the theory contend that all forms of chronic hypertension are sustained by abnormal pressure natriuresis, irrespective of how hypertension is initiated. This theory would appear to follow from "the three laws of long-term arterial pressure regulation" stated by Guyton and Coleman more than 3 decades ago. These "laws" articulate the concept that for a given level of salt intake, the relationship between arterial pressure and sodium excretion determines the chronic level of BP. Here, we review and examine the recent assertion by Beard that these "laws" of long-term BP control amount to nothing more than a series of tautologies. Our analysis supports Beard's assertion, and also indicates that contemporary investigators often use tautological reasoning in support of the pressure natriuresis theory of chronic hypertension. Although the theory itself is not a tautology, it does not appear to be testable because it holds that abnormal pressure natriuresis causes salt-induced hypertension to be sustained through abnormal increases in cardiac output that are too small to be detected.
Collapse
Affiliation(s)
- Theodore W Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Stephen E DiCarlo
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - R Curtis Morris
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
39
|
|
40
|
Sgouralis I, Layton AT. Conduction of feedback-mediated signal in a computational model of coupled nephrons. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2016; 33:87-106. [PMID: 25795767 PMCID: PMC4803228 DOI: 10.1093/imammb/dqv005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/14/2015] [Accepted: 02/17/2015] [Indexed: 12/12/2022]
Abstract
The nephron in the kidney regulates its fluid flow by several autoregulatory mechanisms. Two primary mechanisms are the myogenic response and the tubuloglomerular feedback (TGF). The myogenic response is a property of the pre-glomerular vasculature in which a rise in intravascular pressure elicits vasoconstriction that generates a compensatory increase in vascular resistance. TGF is a negative feedback response that balances glomerular filtration with tubular reabsorptive capacity. While each nephron has its own autoregulatory response, the responses of the kidney's many nephrons do not act autonomously but are instead coupled through the pre-glomerular vasculature. To better understand the conduction of these signals along the pre-glomerular arterioles and the impacts of internephron coupling on nephron flow dynamics, we developed a mathematical model of renal haemodynamics of two neighbouring nephrons that are coupled in that their afferent arterioles arise from a common cortical radial artery. Simulations were conducted to estimate internephron coupling strength, determine its dependence on vascular properties and to investigate the effect of coupling on TGF-mediated flow oscillations. Simulation results suggest that reduced gap-junctional conductances may yield stronger internephron TGF coupling and highly irregular TGF-mediated oscillations in nephron dynamics, both of which experimentally have been associated with hypertensive rats.
Collapse
Affiliation(s)
- Ioannis Sgouralis
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, NC, USA
| |
Collapse
|
41
|
Saeki K, Obayashi K, Tone N, Kurumatani N. Daytime cold exposure and salt intake based on nocturnal urinary sodium excretion: A cross-sectional analysis of the HEIJO-KYO study. Physiol Behav 2015; 152:300-6. [PMID: 26476000 DOI: 10.1016/j.physbeh.2015.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/10/2015] [Accepted: 10/12/2015] [Indexed: 12/01/2022]
Abstract
Increased cardiovascular incidence in winter is partly explained by higher blood pressure due to cold exposure. Although higher salt intake induced by cold exposure has been reported in mice, the association remains unclear in humans. To investigate the association between salt intake and cold exposure in winter, a cross-sectional study was conducted among 860 elderly subjects (mean ± standard deviation: 72.0 ± 7.1 years). We determined ambient temperature at every 10 min according to indoor temperature measured in the subjects' home, outdoor temperature, and self-administered diary logging time spent outdoors. Salt intake was estimated by nocturnal sodium excretion rate of overnight urine collection. A 1°C lower daytime ambient temperature was significantly associated with a higher urinary sodium excretion rate by 0.07 mmol/h in the subsequent night independent of age, sex, body weight, alcohol intake, calcium channel blocker use, diabetes, household income, estimated glomerular filtration rate, daytime physical activity (p=0.02). After further adjustment for outdoor temperature and day length, the lowest tertile groups of ambient daytime temperature (10.1 ± 2.3°C) showed the nocturnal urinary sodium excretion rate was higher by 14.2% (7.62 vs. 6.54 mmol/h) compared with the highest tertile group (19.3 ± 1.8°C). Higher sodium excretion rate was associated with higher nighttime ambulatory blood pressure (p<0.01) and its lower nocturnal dipping (p<0.01). Significant association between higher salt intake and daytime cold exposure partly explain the mechanism of higher blood pressure in winter, and suggest that a reduction of cold exposure might be effective to decrease salt intake.
Collapse
Affiliation(s)
- Keigo Saeki
- Department of Community Health and Epidemiology, Nara Medical University School of Medicine, Nara, Japan.
| | - Kenji Obayashi
- Department of Community Health and Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Nobuhiro Tone
- Center for Academic Industrial and Governmental Relations, Nara Medical University School of Medicine, Nara, Japan
| | - Norio Kurumatani
- Department of Community Health and Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
42
|
Layton AT. Recent advances in renal hemodynamics: insights from bench experiments and computer simulations. Am J Physiol Renal Physiol 2015; 308:F951-5. [PMID: 25715984 DOI: 10.1152/ajprenal.00008.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/23/2015] [Indexed: 01/08/2023] Open
Abstract
It has been long known that the kidney plays an essential role in the control of body fluids and blood pressure and that impairment of renal function may lead to the development of diseases such as hypertension (Guyton AC, Coleman TG, Granger Annu Rev Physiol 34: 13-46, 1972). In this review, we highlight recent advances in our understanding of renal hemodynamics, obtained from experimental and theoretical studies. Some of these studies were published in response to a recent Call for Papers of this journal: Renal Hemodynamics: Integrating with the Nephron and Beyond.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina
| |
Collapse
|
43
|
Kaufmann H, Freeman R, Biaggioni I, Low P, Pedder S, Hewitt LA, Mauney J, Feirtag M, Mathias CJ. Droxidopa for neurogenic orthostatic hypotension: a randomized, placebo-controlled, phase 3 trial. Neurology 2014; 83:328-35. [PMID: 24944260 PMCID: PMC4115605 DOI: 10.1212/wnl.0000000000000615] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether droxidopa, an oral norepinephrine precursor, improves symptomatic neurogenic orthostatic hypotension (nOH). METHODS Patients with symptomatic nOH due to Parkinson disease, multiple system atrophy, pure autonomic failure, or nondiabetic autonomic neuropathy underwent open-label droxidopa dose optimization (100-600 mg 3 times daily), followed, in responders, by 7-day washout and then a 7-day double-blind trial of droxidopa vs placebo. Outcome measures included patient self-ratings on the Orthostatic Hypotension Questionnaire (OHQ), a validated, nOH-specific tool that assesses symptom severity and symptom impact on daily activities. RESULTS From randomization to endpoint (n = 162), improvement in mean OHQ composite score favored droxidopa over placebo by 0.90 units (p = 0.003). Improvement in OHQ symptom subscore favored droxidopa by 0.73 units (p = 0.010), with maximum change in "dizziness/lightheadedness." Improvement in symptom-impact subscore favored droxidopa by 1.06 units (p = 0.003), with maximum change for "standing a long time." Mean standing systolic blood pressure (BP) increased by 11.2 vs 3.9 mm Hg (p < 0.001), and mean supine systolic BP by 7.6 vs 0.8 mm Hg (p < 0.001). At endpoint, supine systolic BP >180 mm Hg was observed in 4.9% of droxidopa and 2.5% of placebo recipients. Adverse events reported in ≥ 3% of double-blind droxidopa recipients were headache (7.4%) and dizziness (3.7%). No patients discontinued double-blind treatment because of adverse events. CONCLUSIONS In patients with symptomatic nOH, droxidopa improved symptoms and symptom impact on daily activities, with an associated increase in standing systolic BP, and was generally well tolerated. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that in patients with symptomatic nOH who respond to open-label droxidopa, droxidopa improves subjective and objective manifestation of nOH at 7 days.
Collapse
Affiliation(s)
- Horacio Kaufmann
- From the Department of Neurology (H.K.), NYU Medical Center, New York; Department of Neurology (R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Medicine (I.B.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (P.L.), Mayo Clinic, Rochester, MN; Chelsea Therapeutics, Inc. (S.P., L.A.H.), Charlotte, NC; Chiltern (J.M.), Wilmington, NC; The Curry Rockefeller Group, LLC (M.F.), Tarrytown, NY; Autonomic and Neurovascular Medicine Departments (C.J.M.), Imperial College London; and Institute of Neurology (C.J.M.), University College London, UK.
| | - Roy Freeman
- From the Department of Neurology (H.K.), NYU Medical Center, New York; Department of Neurology (R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Medicine (I.B.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (P.L.), Mayo Clinic, Rochester, MN; Chelsea Therapeutics, Inc. (S.P., L.A.H.), Charlotte, NC; Chiltern (J.M.), Wilmington, NC; The Curry Rockefeller Group, LLC (M.F.), Tarrytown, NY; Autonomic and Neurovascular Medicine Departments (C.J.M.), Imperial College London; and Institute of Neurology (C.J.M.), University College London, UK
| | - Italo Biaggioni
- From the Department of Neurology (H.K.), NYU Medical Center, New York; Department of Neurology (R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Medicine (I.B.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (P.L.), Mayo Clinic, Rochester, MN; Chelsea Therapeutics, Inc. (S.P., L.A.H.), Charlotte, NC; Chiltern (J.M.), Wilmington, NC; The Curry Rockefeller Group, LLC (M.F.), Tarrytown, NY; Autonomic and Neurovascular Medicine Departments (C.J.M.), Imperial College London; and Institute of Neurology (C.J.M.), University College London, UK
| | - Phillip Low
- From the Department of Neurology (H.K.), NYU Medical Center, New York; Department of Neurology (R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Medicine (I.B.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (P.L.), Mayo Clinic, Rochester, MN; Chelsea Therapeutics, Inc. (S.P., L.A.H.), Charlotte, NC; Chiltern (J.M.), Wilmington, NC; The Curry Rockefeller Group, LLC (M.F.), Tarrytown, NY; Autonomic and Neurovascular Medicine Departments (C.J.M.), Imperial College London; and Institute of Neurology (C.J.M.), University College London, UK
| | - Simon Pedder
- From the Department of Neurology (H.K.), NYU Medical Center, New York; Department of Neurology (R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Medicine (I.B.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (P.L.), Mayo Clinic, Rochester, MN; Chelsea Therapeutics, Inc. (S.P., L.A.H.), Charlotte, NC; Chiltern (J.M.), Wilmington, NC; The Curry Rockefeller Group, LLC (M.F.), Tarrytown, NY; Autonomic and Neurovascular Medicine Departments (C.J.M.), Imperial College London; and Institute of Neurology (C.J.M.), University College London, UK
| | - L Arthur Hewitt
- From the Department of Neurology (H.K.), NYU Medical Center, New York; Department of Neurology (R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Medicine (I.B.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (P.L.), Mayo Clinic, Rochester, MN; Chelsea Therapeutics, Inc. (S.P., L.A.H.), Charlotte, NC; Chiltern (J.M.), Wilmington, NC; The Curry Rockefeller Group, LLC (M.F.), Tarrytown, NY; Autonomic and Neurovascular Medicine Departments (C.J.M.), Imperial College London; and Institute of Neurology (C.J.M.), University College London, UK
| | - Joe Mauney
- From the Department of Neurology (H.K.), NYU Medical Center, New York; Department of Neurology (R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Medicine (I.B.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (P.L.), Mayo Clinic, Rochester, MN; Chelsea Therapeutics, Inc. (S.P., L.A.H.), Charlotte, NC; Chiltern (J.M.), Wilmington, NC; The Curry Rockefeller Group, LLC (M.F.), Tarrytown, NY; Autonomic and Neurovascular Medicine Departments (C.J.M.), Imperial College London; and Institute of Neurology (C.J.M.), University College London, UK
| | - Michael Feirtag
- From the Department of Neurology (H.K.), NYU Medical Center, New York; Department of Neurology (R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Medicine (I.B.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (P.L.), Mayo Clinic, Rochester, MN; Chelsea Therapeutics, Inc. (S.P., L.A.H.), Charlotte, NC; Chiltern (J.M.), Wilmington, NC; The Curry Rockefeller Group, LLC (M.F.), Tarrytown, NY; Autonomic and Neurovascular Medicine Departments (C.J.M.), Imperial College London; and Institute of Neurology (C.J.M.), University College London, UK
| | - Christopher J Mathias
- From the Department of Neurology (H.K.), NYU Medical Center, New York; Department of Neurology (R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Medicine (I.B.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (P.L.), Mayo Clinic, Rochester, MN; Chelsea Therapeutics, Inc. (S.P., L.A.H.), Charlotte, NC; Chiltern (J.M.), Wilmington, NC; The Curry Rockefeller Group, LLC (M.F.), Tarrytown, NY; Autonomic and Neurovascular Medicine Departments (C.J.M.), Imperial College London; and Institute of Neurology (C.J.M.), University College London, UK
| | | |
Collapse
|
44
|
Tu W, Eckert GJ, Hannon TS, Liu H, Pratt LM, Wagner MA, Dimeglio LA, Jung J, Pratt JH. Racial differences in sensitivity of blood pressure to aldosterone. Hypertension 2014; 63:1212-8. [PMID: 24711519 DOI: 10.1161/hypertensionaha.113.02989] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Blacks in comparison with whites are at risk for a more serious form of hypertension with high rates of complications. Greater sodium retention is thought to underlie the blood pressure (BP)-determining physiology of blacks, but specific mechanisms have not been identified. In a prospective observational study of BP, 226 black children and 314 white children (mean age, 10.6 years) were enrolled initially. Assessments were repeated in 85 blacks and 136 whites after reaching adulthood (mean age, 31 years). The relationship of BP to plasma aldosterone concentration in the context of the prevailing level of plasma renin activity was studied in blacks and whites. In a secondary interventional study, 9-α fludrocortisone was administered for 2 weeks to healthy adult blacks and whites to simulate hyperaldosteronism. BP responses in the 2 race groups were then compared. Although black children had lower levels of plasma renin activity and plasma aldosterone, their BP was positively associated with the plasma aldosterone concentration, an effect that increased as plasma renin activity decreased (P=0.004). Data from black adults yielded similar results. No similar relationship was observed in whites. In the interventional study, 9-α fludrocortisone increased BP in blacks but not in whites. In conclusion, aldosterone sensitivity is a significant determinant of BP in young blacks. Although its role in establishing the risk of hypertension is not known, it could be as relevant as the actual level of aldosterone.
Collapse
Affiliation(s)
- Wanzhu Tu
- 541 Clinical Dr, CL 365a, Indianapolis, IN 46202-5111.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fine DM, Selting K, Backus RC, Rossi NF, Harmon MW, Durham HE, Spier AW. Hemodynamic and biochemical alterations in dogs with lymphoma after induction of chemotherapy. J Vet Intern Med 2014; 28:887-93. [PMID: 24655048 PMCID: PMC4895476 DOI: 10.1111/jvim.12344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 11/29/2022] Open
Abstract
Background Doxorubicin is a common antineoplastic agent with dose‐dependent cardiotoxic adverse effects, and pre‐existing myocardial dysfunction is a contraindication to its use. Objectives To systematically define the hemodynamic and biochemical alterations in dogs undergoing chemotherapy for newly diagnosed lymphoma and assess the reversibility of these alterations with fluid administration. Animals Twenty‐one client‐owned dogs with newly diagnosed lymphoma were evaluated 1 week after induction of chemotherapy. Underlying degenerative valve disease was exclusionary. Eighteen healthy age‐ and weight‐matched dogs were used as controls. Methods Physical examination, blood pressure by Doppler, echocardiography, and biochemical evaluation (routine serum biochemistry, plasma renin activity and aldosterone concentrations, plasma and urine osmolalities, and urine electrolyte concentrations) were measured in dogs with lymphoma and compared to controls. Dogs with lymphoma received crystalloids IV at 6 mL/kg/h for 24 hours. All variables were reassessed at 4 and 24 hours. Deuterium oxide dilution and bromide dilution were used to determine total body water and extracellular water space, respectively. Results Baseline echocardiograms showed significantly smaller chamber dimensions in dogs with lymphoma compared to controls. These changes were reversed by fluid administration. Systolic blood pressure and urine sodium concentration were significantly increased, and bromide dilution space, PCV, urine specific gravity, and urine potassium concentration were significantly decreased compared to controls. Conclusion and Clinical Importance Echocardiographic and biochemical abnormalities in dogs with lymphoma appear consistent with volume depletion, and may be the result of systemic hypertension and subsequent pressure natriuresis.
Collapse
Affiliation(s)
- D M Fine
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO
| | | | | | | | | | | | | |
Collapse
|
46
|
Moss R, Layton AT. Dominant factors that govern pressure natriuresis in diuresis and antidiuresis: a mathematical model. Am J Physiol Renal Physiol 2014; 306:F952-69. [PMID: 24553433 DOI: 10.1152/ajprenal.00500.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have developed a whole kidney model of the urine concentrating mechanism and renal autoregulation. The model represents the tubuloglomerular feedback (TGF) and myogenic mechanisms, which together affect the resistance of the afferent arteriole and thus glomerular filtration rate. TGF is activated by fluctuations in macula densa [Cl(-)] and the myogefnic mechanism by changes in hydrostatic pressure. The model was used to investigate the relative contributions of medullary blood flow autoregulation and inhibition of transport in the proximal convoluted tubule to pressure natriuresis in both diuresis and antidiuresis. The model predicts that medullary blood flow autoregulation, which only affects the interstitial solute composition in the model, has negligible influence on the rate of NaCl excretion. However, it exerts a significant effect on urine flow, particularly in the antidiuretic kidney. This suggests that interstitial washout has significant implications for the maintenance of hydration status but little direct bearing on salt excretion, and that medullary blood flow may only play a signaling role for stimulating a pressure-natriuresis response. Inhibited reabsorption in the model proximal convoluted tubule is capable of driving pressure natriuresis when the known actions of vasopressin on the collecting duct epithelium are taken into account.
Collapse
Affiliation(s)
- Robert Moss
- Dept. of Mathematics, Duke Univ., Box 90320, Durham, NC 27708-0320.
| | | |
Collapse
|
47
|
Warnock DG, Kusche-Vihrog K, Tarjus A, Sheng S, Oberleithner H, Kleyman TR, Jaisser F. Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. Nat Rev Nephrol 2014; 10:146-57. [PMID: 24419567 DOI: 10.1038/nrneph.2013.275] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.
Collapse
Affiliation(s)
- David G Warnock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 34294-0007, USA
| | - Kristina Kusche-Vihrog
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Antoine Tarjus
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Shaohu Sheng
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Hans Oberleithner
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Thomas R Kleyman
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Frederic Jaisser
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
48
|
Zhu Q, Hu J, Han WQ, Zhang F, Li PL, Wang Z, Li N. Silencing of HIF prolyl-hydroxylase 2 gene in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats. Am J Hypertens 2014; 27:107-13. [PMID: 24190904 DOI: 10.1093/ajh/hpt207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In response to high salt intake, transcription factor hypoxia-inducible factor (HIF) 1α activates many antihypertensive genes, such as heme oxygenase 1 (HO-1) 1 and cyclooxygenase 2 (COX-2) in the renal medulla, which is an important molecular adaptation to promote extra sodium excretion. We recently showed that high salt inhibited the expression of HIF prolyl-hydroxylase 2 (PHD2), an enzyme that promotes the degradation of HIF-1α, thereby upregulating HIF-1α, and that high salt-induced inhibition in PHD2 and subsequent activation of HIF-1α in the renal medulla was blunted in Dahl salt-sensitive hypertensive rats. This study tested the hypothesis that silencing the PHD2 gene to increase HIF-1α levels in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats. METHODS PHD2 short hairpin RNA (shRNA) plasmids were transfected into the renal medulla in uninephrectomized Dahl S rats. Renal function and blood pressure were then measured. RESULTS PHD2 shRNA reduced PHD2 levels by >60% and significantly increased HIF-1α protein levels and the expression of HIF-1α target genes HO-1 and COX-2 by >3-fold in the renal medulla. Functionally, pressure natriuresis was remarkably enhanced, urinary sodium excretion was doubled after acute intravenous sodium loading, and chronic high salt-induced sodium retention was remarkably decreased, and as a result, salt-sensitive hypertension was significantly attenuated in PHD2 shRNA rats compared with control rats. CONCLUSIONS Impaired PHD2 response to high salt intake in the renal medulla may represent a novel mechanism for hypertension in Dahl S rats, and inhibition of PHD2 in the renal medulla could be a therapeutic approach for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
SIGNIFICANCE Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. RECENT ADVANCES Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. CRITICAL ISSUES AND FUTURE DIRECTIONS Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2(-•) rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension.
Collapse
Affiliation(s)
- Magali Araujo
- Hypertension, Kidney and Vascular Research Center, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
50
|
Moss R, Thomas SR. Hormonal regulation of salt and water excretion: a mathematical model of whole kidney function and pressure natriuresis. Am J Physiol Renal Physiol 2013; 306:F224-48. [PMID: 24107423 DOI: 10.1152/ajprenal.00089.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present a lumped-nephron model that explicitly represents the main features of the underlying physiology, incorporating the major hormonal regulatory effects on both tubular and vascular function, and that accurately simulates hormonal regulation of renal salt and water excretion. This is the first model to explicitly couple glomerulovascular and medullary dynamics, and it is much more detailed in structure than existing whole organ models and renal portions of multiorgan models. In contrast to previous medullary models, which have only considered the antidiuretic state, our model is able to regulate water and sodium excretion over a variety of experimental conditions in good agreement with data from experimental studies of the rat. Since the properties of the vasculature and epithelia are explicitly represented, they can be altered to simulate pathophysiological conditions and pharmacological interventions. The model serves as an appropriate starting point for simulations of physiological, pathophysiological, and pharmacological renal conditions and for exploring the relationship between the extrarenal environment and renal excretory function in physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Robert Moss
- Mathematics Dept., Duke Univ., Box 90320, Durham, NC 27708-0320.
| | | |
Collapse
|