1
|
Feng H, Chen Z, Li J, Feng J, Yang F, Meng F, Yin H, Guo Y, Xu H, Liu Y, Liu R, Lou W, Liu L, Han X, Su H, Zhang L. Unveiling circulating targets in pancreatic cancer: Insights from proteogenomic evidence and clinical cohorts. iScience 2025; 28:111693. [PMID: 40060891 PMCID: PMC11889678 DOI: 10.1016/j.isci.2024.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/23/2024] [Accepted: 12/23/2024] [Indexed: 03/04/2025] Open
Abstract
Pancreatic cancer (PC), characterized by the absence of effective biomarkers and therapies, remains highly fatal. Data regarding the correlations between PC risk and individual plasma proteome known for minimally invasive biomarkers are scarce. Here, we analyzed 1,345 human plasma proteins using proteome-wide association studies, identifying 78 proteins significantly associated with PC risk. Of these, four proteins (ROR1, FN1, APOA5, and ABO) showed the most substantial causal link to PC, confirmed through Mendelian randomization and colocalization analyses. Data from two clinical cohorts further demonstrated that FN1 and ABO were notably overexpressed in both blood and tumor samples from PC patients, compared to healthy controls or para-tumor tissues. Additionally, elevated FN1 and ABO levels correlated with shorter median survival in patients. Multiple drugs targeting FN1 or ROR1 are available or in clinical trials. These findings suggest that plasma protein FN1 associated with PC holds potential as both prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fei Yang
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Fansheng Meng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuquan Guo
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuxin Liu
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Runjie Liu
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 201104, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hua Su
- Institutes of Biomedical Sciences, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Teixeira SK, Rossi FPN, Patane JL, Neyra JM, Jensen AVV, Horta BL, Pereira AC, Krieger JE. Assessing the predictive efficacy of European-based systolic blood pressure polygenic risk scores in diverse Brazilian cohorts. Sci Rep 2024; 14:28123. [PMID: 39548300 PMCID: PMC11568199 DOI: 10.1038/s41598-024-79683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the identification of numerous genetic variants affecting SBP in European populations, their applicability in admixed populations remains unclear. This study evaluates the predictive efficacy of a systolic blood pressure (SBP) polygenic risk score (PRS), derived from the UK Biobank data, in two Brazilian cohorts. We analyzed 944 K genetic variants consistent across an independent UK Biobank dataset, Brazilian cohorts, and HapMap database. Results show a significant association between increased PRS and SBP, as well as hypertension, in each study groups analyzed. An increase of one standard deviation in the PRS showed a significant association with SBP (β [95% CI] (mmHg) = 5.2 [5.1-5.3], 2.8 [2.1-3.5] and 2.6 [2.2-3.0]) and hypertension (odds ratio (OR) [95% CI] = 1.56 [1.54-1.56], 1.28 [1.2-1.4] and 1.47 [1.3-1.6]) in an independent UKB dataset, Baependi, and Pelotas, respectively. The associations were weaker in the Brazilian samples and the reduced association was noticeable in the Pelotas vs. the UK comparison for hypertension stages 1 and 2 (OR [95% CI] = 2.1 [1.5-3.1] and 3.0 [1.9-4.7] vs. 2.5 [2.2-2.8] and 4.9 [4.4-5.6]), whereas the Baependi data showed no significance for stage 1 hypertension. This trend mirrors findings in homogeneous African and Asian populations with diverse genetic architecture, highlighting the limitations of European-based PRS also in admixed populations. These insights are crucial for developing tailored disease prevention and management strategies in ethnically diverse groups.
Collapse
Affiliation(s)
- Samantha K Teixeira
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Fernando P N Rossi
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José L Patane
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jennifer M Neyra
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Vitória V Jensen
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bernardo L Horta
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Alexandre C Pereira
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jose E Krieger
- Laboratório de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Ogweng P, Bowden CF, Smyser TJ, Muwanika VB, Piaggio AJ, Masembe C. Ancestry and genome-wide association study of domestic pigs that survive African swine fever in Uganda. Trop Anim Health Prod 2024; 56:366. [PMID: 39467944 PMCID: PMC11519200 DOI: 10.1007/s11250-024-04195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024]
Abstract
African swine fever (ASF) is endemic to Uganda and causes annual outbreaks. Some pigs survive these outbreaks and remain asymptomatic but are African swine fever virus (ASFV) positive. The potential heritability and genetic disparities in disease susceptibility among Ugandan pigs are not fully understood. In a 12-year study, whole blood and tissue samples were collected from 212 pigs across 19 districts in Uganda. Polymerase chain reaction (PCR) assays were used to determine ASFV infection status and genotyping was completed using a commercial porcine array. The point prevalence of ASF was calculated for each district, and breed composition origins were quantified for the sampled pigs by implementing established ancestry analyses. Genome-wide associated studies (GWAS) were conducted using all available domestic swine samples (full study population; n = 206) as well as a reduced dataset (farm-level study population; n = 129). This study revealed a greater number of ASFV-positive pigs in border districts than in non-border districts, a high level of admixture among domestic pigs sampled from Ugandan smallholder farms, and 48 loci that were associated with ASFV infection status. The discovery of 48 significant SNPs and 28 putative candidate genes may imply the possibility of heritability for resistance to ASFV. However, additional investigations in ASFV-endemic regions are required to fully elucidate the heritability of ASFV susceptibility among surviving pigs in Uganda.
Collapse
Affiliation(s)
- Peter Ogweng
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Courtney F Bowden
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA
| | - Timothy J Smyser
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA
| | - Vincent B Muwanika
- Department of Environmental Management, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Antoinette J Piaggio
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA
| | - Charles Masembe
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
4
|
Sun J, Chen Y, Zhao X, Niu Z, Gu Z, Yan Z, Wang W. Effect and interaction of PINK1 genetic polymorphisms and environmental factors on blood pressure in COEs-exposed workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-12. [PMID: 39295235 DOI: 10.1080/09603123.2024.2403685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Coke oven emissions (COEs) contain a variety of polycyclic aromatic hydrocarbons (PAHs), which can cause damage to the human cardiovascular system. In addition, myocardial mitochondria are susceptible to damage in hypertensive patients. However, it is not clear whether genetic variation, in single nucleotide polymorphisms (SNPs) in PINK1 affects COEs exposure-induced abnormal blood pressure. We surveyed and tested 518 workers exposed to COEs and statistically analyzed them with SPSS 21.0 software. SBP was greater in the high-exposure group than in the low-exposure group. Generalized linear model analysis showed that the interaction of PINK1 rs3738136 (GA+AA) and COEs had an effect on SBP [β(95%CI) = -6.537(-12.072, -1.002), p = 0.021] and DBP [β(95%CI) = -4.811(-8.567, -1.056), p = 0.012]. This study is the first to identify the role of PINK1 rs3738136 in COE- induced abnormal blood pressure, and to prove that the abnormal blood pressure of workers is the result of environmental and genetic factors.
Collapse
Affiliation(s)
- Jing Sun
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| | - Yang Chen
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| | - Xiangkai Zhao
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| | - Zeming Niu
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| | - Zhiguang Gu
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| | - Zhaofan Yan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Faggion S, Bonfatti V, Carnier P. Genome-Wide Association Study for Weight Loss at the End of Dry-Curing of Hams Produced from Purebred Heavy Pigs. Animals (Basel) 2024; 14:1983. [PMID: 38998095 PMCID: PMC11240668 DOI: 10.3390/ani14131983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Dissecting the genetics of production traits in livestock is of outmost importance, both to understand biological mechanisms underlying those traits and to facilitate the design of selection programs incorporating that information. For the pig industry, traits related to curing are key for protected designation of origin productions. In particular, appropriate ham weight loss after dry-curing ensures high quality of the final product and avoids economic losses. In this study, we analyzed data (N = 410) of ham weight loss after approximately 20 months of dry-curing. The animals used for ham production were purebred pigs belonging to a commercial line. A genome-wide association study (GWAS) of 29,844 SNP markers revealed the polygenic nature of the trait: 221 loci explaining a small percentage of the variance (0.3-1.65%) were identified on almost all Sus scrofa chromosomes. Post-GWAS analyses revealed 32 windows located within regulatory regions and 94 windows located in intronic regions of specific genes. In total, 30 candidate genes encoding receptors and enzymes associated with ham weight loss (MTHFD1L, DUSP8), proteolysis (SPARCL1, MYH8), drip loss (TNNI2), growth (CDCA3, LSP1, CSMD1, AP2A2, TSPAN4), and fat metabolism (AGPAT4, IGF2R, PTDSS2, HRAS, TALDO1, BRSK2, TNNI2, SYT8, GTF2I, GTF2IRD1, LPCAT3, ATN1, GNB3, CMIP, SORCS2, CCSER1, SPP1) were detected.
Collapse
Affiliation(s)
- Sara Faggion
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Padova, Italy
| | - Valentina Bonfatti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Padova, Italy
| | - Paolo Carnier
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Padova, Italy
| |
Collapse
|
6
|
Lei C, Liu J, Zhang R, Pan Y, Lu Y, Gao Y, Ma X, Yang Y, Guan Y, Mamatyusupu D, Xu S. Ancestral Origins and Admixture History of Kazakhs. Mol Biol Evol 2024; 41:msae144. [PMID: 38995236 PMCID: PMC11272102 DOI: 10.1093/molbev/msae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Kazakh people, like many other populations that settled in Central Asia, demonstrate an array of mixed anthropological features of East Eurasian (EEA) and West Eurasian (WEA) populations, indicating a possible scenario of biological admixture between already differentiated EEA and WEA populations. However, their complex biological origin, genomic makeup, and genetic interaction with surrounding populations are not well understood. To decipher their genetic structure and population history, we conducted, to our knowledge, the first whole-genome sequencing study of Kazakhs residing in Xinjiang (KZK). We demonstrated that KZK derived their ancestries from 4 ancestral source populations: East Asian (∼39.7%), West Asian (∼28.6%), Siberian (∼23.6%), and South Asian (∼8.1%). The recognizable interactions of EEA and WEA ancestries in Kazakhs were dated back to the 15th century BCE. Kazakhs were genetically distinctive from the Uyghurs in terms of their overall genomic makeup, although the 2 populations were closely related in genetics, and both showed a substantial admixture of western and eastern peoples. Notably, we identified a considerable sex-biased admixture, with an excess of western males and eastern females contributing to the KZK gene pool. We further identified a set of genes that showed remarkable differentiation in KZK from the surrounding populations, including those associated with skin color (SLC24A5, OCA2), essential hypertension (HLA-DQB1), hypertension (MTHFR, SLC35F3), and neuron development (CNTNAP2). These results advance our understanding of the complex history of contacts between Western and Eastern Eurasians, especially those living or along the old Silk Road.
Collapse
Affiliation(s)
- Chang Lei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Lu
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xixian Ma
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yaqun Guan
- Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi 830011, China
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi 830046, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| |
Collapse
|
7
|
MacCarthy G, Pazoki R. Using Machine Learning to Evaluate the Value of Genetic Liabilities in the Classification of Hypertension within the UK Biobank. J Clin Med 2024; 13:2955. [PMID: 38792496 PMCID: PMC11122671 DOI: 10.3390/jcm13102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Background and Objective: Hypertension increases the risk of cardiovascular diseases (CVD) such as stroke, heart attack, heart failure, and kidney disease, contributing to global disease burden and premature mortality. Previous studies have utilized statistical and machine learning techniques to develop hypertension prediction models. Only a few have included genetic liabilities and evaluated their predictive values. This study aimed to develop an effective hypertension classification model and investigate the potential influence of genetic liability for multiple risk factors linked to CVD on hypertension risk using the random forest and the neural network. Materials and Methods: The study involved 244,718 European participants, who were divided into training and testing sets. Genetic liabilities were constructed using genetic variants associated with CVD risk factors obtained from genome-wide association studies (GWAS). Various combinations of machine learning models before and after feature selection were tested to develop the best classification model. The models were evaluated using area under the curve (AUC), calibration, and net reclassification improvement in the testing set. Results: The models without genetic liabilities achieved AUCs of 0.70 and 0.72 using the random forest and the neural network methods, respectively. Adding genetic liabilities improved the AUC for the random forest but not for the neural network. The best classification model was achieved when feature selection and classification were performed using random forest (AUC = 0.71, Spiegelhalter z score = 0.10, p-value = 0.92, calibration slope = 0.99). This model included genetic liabilities for total cholesterol and low-density lipoprotein (LDL). Conclusions: The study highlighted that incorporating genetic liabilities for lipids in a machine learning model may provide incremental value for hypertension classification beyond baseline characteristics.
Collapse
Affiliation(s)
- Gideon MacCarthy
- Cardiovascular and Metabolic Research Group, Division of Biomedical Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London UB8 3PH, UK
| | - Raha Pazoki
- Cardiovascular and Metabolic Research Group, Division of Biomedical Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London UB8 3PH, UK
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary’s Campus, Norfolk Place, Imperial College London, London W2 1PG, UK
| |
Collapse
|
8
|
Øvretveit K, Ingeström EML, Spitieris M, Tragante V, Wade KH, Thomas LF, Wolford BN, Wisløff U, Gudbjartsson DF, Holm H, Stefansson K, Brumpton BM, Hveem K. Polygenic risk scores associate with blood pressure traits across the lifespan. Eur J Prev Cardiol 2024; 31:644-654. [PMID: 38007706 PMCID: PMC11025038 DOI: 10.1093/eurjpc/zwad365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
AIMS Hypertension is a major modifiable cause of morbidity and mortality that affects over 1 billion people worldwide. Blood pressure (BP) traits have a strong genetic component that can be quantified with polygenic risk scores (PRSs). To date, the performance of BP PRSs has mainly been assessed in adults, and less is known about polygenic hypertension risk in childhood. METHODS AND RESULTS Multiple PRSs for systolic BP (SBP), diastolic BP (DBP), and pulse pressure were developed using either genome-wide significant weights, pruning and thresholding, or Bayesian regression. Among 87 total PRSs, the top performer for each trait was applied in independent cohorts of children and adult to assess genotype-phenotype associations and disease risk across the lifespan. Differences between those with low (1st decile), average (2nd-9th decile), and high (10th decile) PRS emerge in the first years of life and are maintained throughout adulthood. These diverging BP trajectories also seem to affect cardiovascular and renal disease risk, with increased risk observed among those in the top decile and reduced risk among those in the bottom decile of the polygenic risk distribution compared with the rest of the population. CONCLUSION Genetic risk factors are associated with BP traits across the lifespan, beginning in the first years of life. Given the importance of exposure time in disease pathogenesis and the early rise in BP levels among those genetically susceptible, PRSs may help identify high-risk individuals prior to hypertension onset, facilitate primordial prevention, and reduce the burden of this public health challenge.
Collapse
Affiliation(s)
- Karsten Øvretveit
- K.G. Jebsen Centre for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Postboks 8905, N-7491 Trondheim, Norway
| | - Emma M L Ingeström
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Michail Spitieris
- K.G. Jebsen Centre for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Postboks 8905, N-7491 Trondheim, Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Kaitlin H Wade
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK
- Population Health Science, Bristol Medical School, Bristol BS8 1TH, UK
- Avon Longitudinal Study of Parents and Children, Bristol BS8 1TH, UK
| | - Laurent F Thomas
- K.G. Jebsen Centre for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Postboks 8905, N-7491 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Brooke N Wolford
- K.G. Jebsen Centre for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Postboks 8905, N-7491 Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ben M Brumpton
- K.G. Jebsen Centre for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Postboks 8905, N-7491 Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Kristian Hveem
- K.G. Jebsen Centre for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Postboks 8905, N-7491 Trondheim, Norway
- Department of Innovation and Research, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
9
|
Wang J, Hill‐Jarrett T, Buto P, Pederson A, Sims KD, Zimmerman SC, DeVost MA, Ferguson E, Lacar B, Yang Y, Choi M, Caunca MR, La Joie R, Chen R, Glymour MM, Ackley SF. Comparison of approaches to control for intracranial volume in research on the association of brain volumes with cognitive outcomes. Hum Brain Mapp 2024; 45:e26633. [PMID: 38433682 PMCID: PMC10910271 DOI: 10.1002/hbm.26633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Most neuroimaging studies linking regional brain volumes with cognition correct for total intracranial volume (ICV), but methods used for this correction differ across studies. It is unknown whether different ICV correction methods yield consistent results. Using a brain-wide association approach in the MRI substudy of UK Biobank (N = 41,964; mean age = 64.5 years), we used regression models to estimate the associations of 58 regional brain volumetric measures with eight cognitive outcomes, comparing no correction and four ICV correction approaches. Approaches evaluated included: no correction; dividing regional volumes by ICV (proportional approach); including ICV as a covariate in the regression (adjustment approach); and regressing the regional volumes against ICV in different normative samples and using calculated residuals to determine associations (residual approach). We used Spearman-rank correlations and two consistency measures to quantify the extent to which associations were inconsistent across ICV correction approaches for each possible brain region and cognitive outcome pair across 2320 regression models. When the association between brain volume and cognitive performance was close to null, all approaches produced similar estimates close to the null. When associations between a regional volume and cognitive test were not null, the adjustment and residual approaches typically produced similar estimates, but these estimates were inconsistent with results from the crude and proportional approaches. For example, when using the crude approach, an increase of 0.114 (95% confidence interval [CI]: 0.103-0.125) in fluid intelligence was associated with each unit increase in hippocampal volume. However, when using the adjustment approach, the increase was 0.055 (95% CI: 0.043-0.068), while the proportional approach showed a decrease of -0.025 (95% CI: -0.035 to -0.014). Different commonly used methods to correct for ICV yielded inconsistent results. The proportional method diverges notably from other methods and results were sometimes biologically implausible. A simple regression adjustment for ICV produced biologically plausible associations.
Collapse
Affiliation(s)
- Jingxuan Wang
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| | | | - Peter Buto
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| | - Annie Pederson
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| | - Kendra D. Sims
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| | - Scott C. Zimmerman
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Michelle A. DeVost
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Erin Ferguson
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Benjamin Lacar
- Bakar Computational Health Sciences InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yulin Yang
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Minhyuk Choi
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Michelle R. Caunca
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Renaud La Joie
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ruijia Chen
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - M. Maria Glymour
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| | - Sarah F. Ackley
- Department of EpidemiologyBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
10
|
Teixeira SK, Pontes R, Zuleta LFG, Wang J, Xu D, Hildebrand S, Russell J, Zhan X, Choi M, Tang M, Li X, Ludwig S, Beutler B, Krieger JE. Genetic determinants of blood pressure and heart rate identified through ENU-induced mutagenesis with automated meiotic mapping. SCIENCE ADVANCES 2024; 10:eadj9797. [PMID: 38427739 PMCID: PMC10906923 DOI: 10.1126/sciadv.adj9797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
We used N-ethyl-N-nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics. Unexpectedly, only 18 of the 87 SBP genes were previously known, while 26 of the 144 genes linked to HR were previously identified. Furthermore, we confirmed the influence of two genes on SBP regulation and three genes on HR control through reverse genetics. This underscores the importance of our research in uncovering genes associated with these critical cardiovascular risk factors and illustrate the effectiveness of germline mutagenesis for defining key determinants of polygenic phenotypes that must be studied in an intact organism.
Collapse
Affiliation(s)
- Samantha K. Teixeira
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Pontes
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Fernando G. Zuleta
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose E. Krieger
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Yang H, Wang L, Yin L, Tang Z, Wang Z, Liu X, Xiang T, Yu M, Liu X, Li C. Searching for new signals for susceptibility to umbilical hernia through genome-wide association analysis in three pig breeds. Anim Genet 2023; 54:798-802. [PMID: 37705280 DOI: 10.1111/age.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023]
Abstract
Umbilical hernia (UH) is a prevalent congenital disorder in pigs, resulting in considerable economic losses and severe animal welfare issues. In the present study, we conducted a genome-wide association study (GWAS) using the GeneSeek 50K Chip in 2777 pigs (Duroc, n = 1267; Landrace, n = 696; and Yorkshire, n = 814) to explore the candidate genes underlying the risk of umbilical hernia in pigs. After quality control analyses, 2748 animals and 48 524 single nucleotide polymorphisms (SNPs) were retained for subsequent GWAS analysis using the FarmCPU model. The heritability of umbilical hernias was estimated to 0.51 ± 0.04, indicating a reasonable basis for investigating genetic markers associated with this disorder. We identified 54 SNPs and 517 candidate genes that showed significant associations with susceptibility to umbilical hernia across the combined population of the three pig breeds. Gene enrichment analyses highlighted several crucial pathways for platelet degranulation, inflammatory mediator regulation of TRP channels and ion transport. These findings provide further insights into the underlying genetic architecture of umbilical hernias in pigs.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lilin Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zhenshuang Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zhangxu Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Tao Xiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Calderón-Chagoya R, Vega-Murillo VE, García-Ruiz A, Ríos-Utrera Á, Martínez-Velázquez G, Montaño-Bermúdez M. Discovering Genomic Regions Associated with Reproductive Traits and Frame Score in Mexican Simmental and Simbrah Cattle Using Individual SNP and Haplotype Markers. Genes (Basel) 2023; 14:2004. [PMID: 38002947 PMCID: PMC10671695 DOI: 10.3390/genes14112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Reproductive efficiency stands as a critical determinant of profitability within beef production systems. The incorporation of molecular markers can expedite advancements in reproductive performance. While the use of SNPs in association analysis is prevalent, approaches centered on haplotypes can offer a more comprehensive insight. The study used registered Simmental and Simbrah cattle genotyped with the GGP Bovine 150 k panel. Phenotypes included scrotal circumference (SC), heifer fertility (HF), stayability (STAY), and frame score (FS). After quality control, 105,129 autosomal SNPs from 967 animals were used. Haplotype blocks were defined based on linkage disequilibrium. Comparison between haplotypes and SNPs for reproductive traits and FS was conducted using Bayesian and frequentist models. 23, 13, 7, and 2 SNPs exhibited associations with FS, SC, HF, and STAY, respectively. In addition, seven, eight, seven, and one haplotypes displayed associations with FS, SC, HF, and STAY, respectively. Within these delineated genomic segments, potential candidate genes were associated.
Collapse
Affiliation(s)
- René Calderón-Chagoya
- Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Ciudad de México 04510, Mexico;
- National Center for Disciplinary Research in Physiology and Animal Improvement, National Institute for Forestry, Agricultural and Livestock Research, Querétaro 76280, Mexico;
| | - Vicente Eliezer Vega-Murillo
- Faculty of Veterinary Medicine and Zootechnics, Veracruzana University, Veracruz 91710, Mexico; (V.E.V.-M.); (Á.R.-U.)
| | - Adriana García-Ruiz
- National Center for Disciplinary Research in Physiology and Animal Improvement, National Institute for Forestry, Agricultural and Livestock Research, Querétaro 76280, Mexico;
| | - Ángel Ríos-Utrera
- Faculty of Veterinary Medicine and Zootechnics, Veracruzana University, Veracruz 91710, Mexico; (V.E.V.-M.); (Á.R.-U.)
| | - Guillermo Martínez-Velázquez
- Experimental Field Santiago Ixcuintla, National Institute for Forestry, Agricultural and Livestock Research, Nayarit 63570, Mexico;
| | - Moisés Montaño-Bermúdez
- National Center for Disciplinary Research in Physiology and Animal Improvement, National Institute for Forestry, Agricultural and Livestock Research, Querétaro 76280, Mexico;
| |
Collapse
|
13
|
Zatybekov A, Abugalieva S, Didorenko S, Rsaliyev A, Maulenbay A, Fang C, Turuspekov Y. Genome-wide association study for charcoal rot resistance in soybean harvested in Kazakhstan. Vavilovskii Zhurnal Genet Selektsii 2023; 27:565-571. [PMID: 37965372 PMCID: PMC10641079 DOI: 10.18699/vjgb-23-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 11/16/2023] Open
Abstract
Charcoal rot (CR) caused by the fungal pathogen Macrophomina phaseolina is a devastating disease affecting soybean (Glycine max (L.) Merrill.) worldwide. Identifying the genetic factors associated with resistance to charcoal rot is crucial for developing disease-resistant soybean cultivars. In this research, we conducted a genome-wide association study (GWAS) using different models and genotypic data to unravel the genetic determinants underlying soybean resistance to сharcoal rot. The study relied on a panel of 252 soybean accessions, comprising commercial cultivars and breeding lines, to capture genetic variations associated with resistance. The phenotypic evaluation was performed under natural conditions during the 2021-2022 period. Disease severity and survival rates were recorded to quantify the resistance levels in the accessions. Genotypic data consisted of two sets: the results of genotyping using the Illumina iSelect 6K SNP (single-nucleotide polymorphism) array and the results of whole-genome resequencing. The GWAS was conducted using four different models (MLM, MLMM, FarmCPU, and BLINK) based on the GAPIT platform. As a result, SNP markers of 11 quantitative trait loci associated with CR resistance were identified. Candidate genes within the identified genomic regions were explored for their functional annotations and potential roles in plant defense responses. The findings from this study may further contribute to the development of molecular breeding strategies for enhancing CR resistance in soybean cultivars. Marker-assisted selection can be efficiently employed to accelerate the breeding process, enabling the development of cultivars with improved resistance to сharcoal rot. Ultimately, deploying resistant cultivars may significantly reduce yield losses and enhance the sustainability of soybean production, benefiting farmers and ensuring a stable supply of this valuable crop.
Collapse
Affiliation(s)
- A Zatybekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - S Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - S Didorenko
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Almaty Region, Kazakhstan
| | - A Rsaliyev
- Research Institute for Biological Safety Problems, Gvardeiskiy (Otar), Zhambyl Region, Kazakhstan
| | - A Maulenbay
- Research Institute for Biological Safety Problems, Gvardeiskiy (Otar), Zhambyl Region, Kazakhstan
| | - C Fang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Y Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| |
Collapse
|
14
|
Rivier CA, Szejko N, Renedo D, Noche RB, Acosta JN, Both CP, Sharma R, Torres-Lopez VM, Payabvash S, de Havenon A, Sheth KN, Gill TM, Falcone GJ. Polygenic Susceptibility to Hypertension and Cognitive Performance in Middle-aged Persons Without Stroke or Dementia. Neurology 2023; 101:e512-e521. [PMID: 37295956 PMCID: PMC10401683 DOI: 10.1212/wnl.0000000000207427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/04/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Mounting evidence indicates that hypertension leads to a higher risk of dementia. Hypertension is a highly heritable trait, and a higher polygenic susceptibility to hypertension (PSH) is known to associate with a higher risk of dementia. We tested the hypothesis that a higher PSH leads to worse cognitive performance in middle-aged persons without dementia. Confirming this hypothesis would support follow-up research focused on using hypertension-related genomic information to risk-stratify middle-aged adults before hypertension develops. METHODS We conducted a nested cross-sectional genetic study within the UK Biobank (UKB). Study participants with a history of dementia or stroke were excluded. We categorized participants as having low (≤20th percentile), intermediate, or high (≥80th percentile) PSH according to results of 2 polygenic risk scores for systolic and diastolic blood pressure (BP) generated with data on 732 genetic risk variants. A general cognitive ability score was calculated as the first component of an analysis that included the results of 5 cognitive tests. Primary analyses focused on Europeans, and secondary analyses included all race/ethnic groups. RESULTS Of the 502,422 participants enrolled in the UKB, 48,118 (9.6%) completed the cognitive evaluation, including 42,011 (8.4%) of European ancestry. Multivariable regression models using systolic BP-related genetic variants indicated that compared with study participants with a low PSH, those with intermediate and high PSH had reductions of 3.9% (β -0.039, SE 0.012) and 6.6% (β -0.066, SE 0.014), respectively, in their general cognitive ability score (p < 0.001). Secondary analyses including all race/ethnic groups and using diastolic BP-related genetic variants yielded similar results (p < 0.05 for all tests). Analyses evaluating each cognitive test separately indicated that reaction time, numeric memory, and fluid intelligence drove the association between PSH and general cognitive ability score (all individual tests, p < 0.05). DISCUSSION Among nondemented, community-dwelling, middle-aged Britons, a higher PSH is associated with worse cognitive performance. These findings suggest that genetic predisposition to hypertension influences brain health in persons who have not yet developed dementia. Because information on genetic risk variants for elevated BP is available long before the development of hypertension, these results lay the foundation for further research focused on using genomic data for the early identification of high-risk middle-aged adults.
Collapse
Affiliation(s)
- Cyprien A Rivier
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT.
| | - Natalia Szejko
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Daniela Renedo
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Rommell B Noche
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Julian N Acosta
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Cameron P Both
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Richa Sharma
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Victor M Torres-Lopez
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Sam Payabvash
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Adam de Havenon
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Kevin N Sheth
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Thomas M Gill
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Guido J Falcone
- From the Department of Neurology (C.A.R., N.S., D.R., J.N.A., R.S., V.M.T.-L., A.d.H., K.N.S., G.J.F.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.S.), and Department of Bioethics (N.S.), Medical University of Warsaw, Poland; Department of Neurosurgery (D.R.), Yale School of Medicine, New Haven; Frank H. Netter MD School of Medicine (R.B.N.), Quinnipiac University, North Haven, CT; UMass Chan Medical School (C.P.B.), University of Massachusetts, Worcester; and Department of Radiology (S.P.), and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| |
Collapse
|
15
|
Ivanova T, Churnosova M, Abramova M, Ponomarenko I, Reshetnikov E, Aristova I, Sorokina I, Churnosov M. Risk Effects of rs1799945 Polymorphism of the HFE Gene and Intergenic Interactions of GWAS-Significant Loci for Arterial Hypertension in the Caucasian Population of Central Russia. Int J Mol Sci 2023; 24:ijms24098309. [PMID: 37176017 PMCID: PMC10179076 DOI: 10.3390/ijms24098309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this case-control replicative study was to investigate the link between GWAS-impact for arterial hypertension (AH) and/or blood pressure (BP) gene polymorphisms and AH risk in Russian subjects (Caucasian population of Central Russia). AH (n = 939) and control (n = 466) cohorts were examined for ten GWAS AH/BP risk loci. The genotypes/alleles of these SNP and their combinations (SNP-SNP interactions) were tested for their association with the AH development using a logistic regression statistical procedure. The genotype GG of the SNP rs1799945 (C/G) HFE was strongly linked with an increased AH risk (ORrecGG = 2.53; 95%CIrecGG1.03-6.23; ppermGG = 0.045). The seven SNPs such as rs1173771 (G/A) AC026703.1, rs1799945 (C/G) HFE, rs805303 (G/A) BAG6, rs932764 (A/G) PLCE1, rs4387287 (C/A) OBFC1, rs7302981 (G/A) CERS5, rs167479 (T/G) RGL3, out of ten regarded loci, were related with AH within eight SNP-SNP interaction models (<0.001 ≤ pperm-interaction ≤ 0.047). Three polymorphisms such as rs8068318 (T/C) TBX2, rs633185 (C/G) ARHGAP42, and rs2681472 (A/G) ATP2B1 were not linked with AH. The pairwise rs805303 (G/A) BAG6-rs7302981 (G/A) CERS5 combination was a priority in determining the susceptibility to AH (included in six out of eight SNP-SNP interaction models [75%] and described 0.82% AH entropy). AH-associated variants are conjecturally functional for 101 genes involved in processes related to the immune system (major histocompatibility complex protein, processing/presentation of antigens, immune system process regulation, etc.). In conclusion, the rs1799945 polymorphism of the HFE gene and intergenic interactions of BAG6, CERS5, AC026703.1, HFE, PLCE1, OBFC1, RGL3 have been linked with AH risky in the Caucasian population of Central Russia.
Collapse
Affiliation(s)
- Tatiana Ivanova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Abramova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| |
Collapse
|
16
|
Ivanova T, Churnosova M, Abramova M, Plotnikov D, Ponomarenko I, Reshetnikov E, Aristova I, Sorokina I, Churnosov M. Sex-Specific Features of the Correlation between GWAS-Noticeable Polymorphisms and Hypertension in Europeans of Russia. Int J Mol Sci 2023; 24:ijms24097799. [PMID: 37175507 PMCID: PMC10178435 DOI: 10.3390/ijms24097799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of the study was directed at studying the sex-specific features of the correlation between genome-wide association studies (GWAS)-noticeable polymorphisms and hypertension (HTN). In two groups of European subjects of Russia (n = 1405 in total), such as men (n = 821 in total: n = 564 HTN, n = 257 control) and women (n = 584 in total: n = 375 HTN, n = 209 control), the distribution of ten specially selected polymorphisms (they have confirmed associations of GWAS level with blood pressure (BP) parameters and/or HTN in Europeans) has been considered. The list of studied loci was as follows: (PLCE1) rs932764 A > G, (AC026703.1) rs1173771 G > A, (CERS5) rs7302981 G > A, (HFE) rs1799945 C > G, (OBFC1) rs4387287 C > A, (BAG6) rs805303 G > A, (RGL3) rs167479 T > G, (ARHGAP42) rs633185 C > G, (TBX2) rs8068318 T > C, and (ATP2B1) rs2681472 A > G. The contribution of individual loci and their inter-locus interactions to the HTN susceptibility with bioinformatic interpretation of associative links was evaluated separately in men's and women's cohorts. The men-women differences in involvement in the disease of the BP/HTN-associated GWAS SNPs were detected. Among women, the HTN risk has been associated with HFE rs1799945 C > G (genotype GG was risky; ORGG = 11.15 ppermGG = 0.014) and inter-locus interactions of all 10 examined SNPs as part of 26 intergenic interactions models. In men, the polymorphism BAG6 rs805303 G > A (genotype AA was protective; ORAA = 0.30 ppermAA = 0.0008) and inter-SNPs interactions of eight loci in only seven models have been founded as HTN-correlated. HTN-linked loci and strongly linked SNPs were characterized by pronounced polyvector functionality in both men and women, but at the same time, signaling pathways of HTN-linked genes/SNPs in women and men were similar and were represented mainly by immune mechanisms. As a result, the present study has demonstrated a more pronounced contribution of BP/HTN-associated GWAS SNPs to the HTN susceptibility (due to weightier intergenic interactions) in European women than in men.
Collapse
Affiliation(s)
- Tatiana Ivanova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Abramova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Denis Plotnikov
- Genetic Epidemiology Lab, Kazan State Medical University, 420012 Kazan, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| |
Collapse
|
17
|
Zhao X, Guo S, Zhang R, Liu L, Guo L, Liu G, Jiang L, Li Q, Pan B, Nie J, Yang J. The interaction effects of secondhand smoke exposure and overweight on the prevalence of hypertension in Chinese coke oven workers and NHANES participants (2013-2016). CHEMOSPHERE 2022; 303:135120. [PMID: 35644234 DOI: 10.1016/j.chemosphere.2022.135120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The prevalence of hypertension may be affected by environmental pollution and personal behavior. OBJECTIVES We aimed to evaluate the interaction effects of secondhand smoke exposure and overweight on hypertension. METHODS In this cross-sectional study, a total of 627 workers from a coking plant in China and 1011 individuals from the NHANES database in the United States from 2013 to 2016 were selected as the research participants. The concentrations of 11 urinary polycyclic aromatic hydrocarbons (PAHs) metabolites and 3 tobacco metabolites were measured. An interaction effect was tested in the modified Poisson regression models. RESULTS For smokers among Chinese coke oven workers, the only statistically significant positive association was with hypertension in the highest tertile of nicotine metabolized ratio (NMR) (PR: 1.539, 95% CI: 1.013-2.337). Nonsmoking Chinese workers with 3rd tertile urinary nicotine levels were associated with a 114.8% significantly increased prevalence of hypertension (PR: 2.148, 95% CI: 1.025-4.500) compared to nonsmokers 1st tertile with nicotine levels. Association between tobacco exposure and hypertension is possibly modified by PAHs exposure (PR: 2.335, 95% CI: 0.933-5.841). Nonsmokers in the NHANES database with high urinary nicotine levels were associated with a 17.3% significantly increased prevalence of hypertension (PR: 1.173, 95% CI: 1.028-1.338) compared to those with low nicotine levels. We observed that overweight people with high nicotine levels had a significantly higher likelihood of hypertension than no overweight people with low nicotine levels among nonsmoking Chinese coke oven workers and NHANES participants (PR = 4.686, 95% CI: 1.488-14.754; PR = 1.251, 95% CI: 1.039-1.506). CONCLUSIONS Tobacco exposure and overweight are important risk factors for hypertension, and secondhand smoke exposure and overweight have an interactive effect on the incidence of hypertension in nonsmoking Chinese coke oven workers and NHANES participants.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis, China
| | - Shugang Guo
- Shanxi Provincial Center for Disease Control and Prevention, China
| | - Rui Zhang
- Shanxi Provincial Center for Disease Control and Prevention, China
| | - Lu Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis, China
| | - Lan Guo
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis, China
| | - Gaisheng Liu
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Liuquan Jiang
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Qiang Li
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Baolong Pan
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd., China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis, China.
| |
Collapse
|
18
|
Du L, Li K, Chang T, An B, Liang M, Deng T, Cao S, Du Y, Cai W, Gao X, Xu L, Zhang L, Li J, Gao H. Integrating genomics and transcriptomics to identify candidate genes for subcutaneous fat deposition in beef cattle. Genomics 2022; 114:110406. [PMID: 35709924 DOI: 10.1016/j.ygeno.2022.110406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
Fat deposition is a complex economic trait regulated by polygenic genetic basis and environmental factors. Therefore, integrating multi-omics data to uncover its internal regulatory mechanism has attracted extensive attention. Here, we performed genomics and transcriptomics analysis to detect candidates affecting subcutaneous fat (SCF) deposition in beef cattle. The association of 770K SNPs with the backfat thickness captured nine significant SNPs within or near 11 genes. Additionally, 13 overlapping genes regarding fat deposition were determined via the analysis of differentially expressed genes and weighted gene co-expression network analysis (WGCNA). We then calculated the correlations of these genes with BFT and constructed their interaction network. Finally, seven biomarkers including ACACA, SCD, FASN, ACOX1, ELOVL5, HACD2, and HSD17B12 were screened. Notably, ACACA, identified by the integration of genomics and transcriptomics, was more likely to exert profound effects on SCF deposition. These findings provided novel insights into the regulation mechanism underlying bovine fat accumulation.
Collapse
Affiliation(s)
- Lili Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Keanning Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianpeng Chang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bingxing An
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mang Liang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianyu Deng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sheng Cao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Tianjin Agricultural University, Tianjin 300000, China
| | - Yueying Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Qingdao Agricultural University, Shandong 266000, China
| | - Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
19
|
Wang Y, Jia H, Mu JJ. Reply to 'Plasma PAPP-A2 and genetic variations with hypertension'. J Hypertens 2022; 40:837-838. [PMID: 35241638 DOI: 10.1097/hjh.0000000000003083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University.,Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hao Jia
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University
| | - Jian-Jun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
20
|
Aldehyde dehydrogenase 2-associated metabolic abnormalities and cardiovascular diseases: current status, underlying mechanisms, and clinical recommendations. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Ning Y, Hu M, Diao J, Gong Y, Huang R, Chen S, Zhang F, Liu Y, Chen F, Zhang P, Zhao G, Chang Y, Xu K, Zhou R, Li C, Zhang F, Lammi M, Wang X, Guo X. Genetic Variants and Protein Alterations of Selenium- and T-2 Toxin-Responsive Genes Are Associated With Chondrocytic Damage in Endemic Osteoarthropathy. Front Genet 2022; 12:773534. [PMID: 35087566 PMCID: PMC8787141 DOI: 10.3389/fgene.2021.773534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanism of environmental factors in Kashin–Beck disease (KBD) remains unknown. We aimed to identify single nucleotide polymorphisms (SNPs) and protein alterations of selenium- and T-2 toxin–responsive genes to provide new evidence of chondrocytic damage in KBD. This study sampled the cubital venous blood of 258 subjects including 129 sex-matched KBD patients and 129 healthy controls for SNP detection. We applied an additive model, a dominant model, and a recessive model to identify significant SNPs. We then used the Comparative Toxicogenomics Database (CTD) to select selenium- and T-2 toxin–responsive genes with the candidate SNP loci. Finally, immunohistochemistry was applied to verify the protein expression of candidate genes in knee cartilage obtained from 15 subjects including 5 KBD, 5 osteoarthritis (OA), and 5 healthy controls. Forty-nine SNPs were genotyped in the current study. The C allele of rs6494629 was less frequent in KBD than in the controls (OR = 0.63, p = 0.011). Based on the CTD database, PPARG, ADAM12, IL6, SMAD3, and TIMP2 were identified to interact with selenium, sodium selenite, and T-2 toxin. KBD was found to be significantly associated with rs12629751 of PPARG (additive model: OR = 0.46, p = 0.012; dominant model: OR = 0.45, p = 0.049; recessive model: OR = 0.18, p = 0.018), rs1871054 of ADAM12 (dominant model: OR = 2.19, p = 0.022), rs1800796 of IL6 (dominant model: OR = 0.30, p = 0.003), rs6494629 of SMAD3 (additive model: OR = 0.65, p = 0.019; dominant model: OR = 0.52, p = 0.012), and rs4789936 of TIMP2 (recessive model: OR = 5.90, p = 0.024). Immunohistochemistry verified significantly upregulated PPARG, ADAM12, SMAD3, and TIMP2 in KBD compared with OA and normal controls (p < 0.05). Genetic polymorphisms of PPARG, ADAM12, SMAD3, and TIMP2 may contribute to the risk of KBD. These genes could promote the pathogenesis of KBD by disturbing ECM homeostasis.
Collapse
Affiliation(s)
- Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Minhan Hu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Jiayu Diao
- Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yi Gong
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Ruitian Huang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Yanli Liu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Feihong Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Pan Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | | | - Yanhai Chang
- Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ke Xu
- Xi'an Honghui Hospital, Xi'an, China
| | - Rong Zhou
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China.,Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Cheng Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China.,Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Mikko Lammi
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, National Health Commission of the People's Republic of China, Xi'an, China
| |
Collapse
|
22
|
Chen J, Wang W, Li Z, Xu C, Tian X, Zhang D. Heritability and genome-wide association study of blood pressure in Chinese adult twins. Mol Genet Genomic Med 2021; 9:e1828. [PMID: 34586716 PMCID: PMC8606211 DOI: 10.1002/mgg3.1828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Blood pressure (BP) is an independent and important factor for chronic diseases such as cardiovascular diseases and diabetes. METHODS We firstly conducted twin modeling analyses to explore the heritability of BP, including systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP) and mean arterial pressure (MAP), and then performed genome-wide association studies to explore the associated genomic loci, genes, and pathways. RESULTS A total of 380 Chinese twin pairs were included. The AE model containing additive genetic parameter (A) and unique/non-shared environmental parameter (E) was the best fit model, with A accounting for 53.7%, 50.1%, 48.1%, and 53.3% for SBP, DBP, PP and MAP, respectively. No SNP was found to reach the genome-wide significance level (p < 5 × 10-8 ), however, three, four, 14 and nine SNPs were found to exceed suggestive significance level (p < 1 × 10-5 ) for SBP, DBP, PP, and MAP, respectively. And after imputation, 46, 37, 91 and 61 SNPs were found to exceed the suggestive significance level for SBP, DBP, PP, and MAP, respectively. In gene-based analysis, 53 common genes were found among SBP, DBP, PP, and MAP. In pathway enrichment analysis, 672, 706, 701, and 596 biological pathways were associated with SBP, DBP, PP, and MAP, respectively (p < 0.05). CONCLUSION Our study suggests that BP is moderately heritable in the Chinese population and could be mediated by a series of genomic loci, genes, and pathways. Future larger-scale studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Epidemiology and Health StatisticsPublic Health CollegeQingdao UniversityQingdaoChina
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingP. R. China
| | - Weijing Wang
- Department of Epidemiology and Health StatisticsPublic Health CollegeQingdao UniversityQingdaoChina
| | - Zhaoying Li
- Department of Epidemiology and Health StatisticsPublic Health CollegeQingdao UniversityQingdaoChina
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and PreventionQingdao Institute of Preventive MedicineQingdaoShandongChina
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and PreventionQingdao Institute of Preventive MedicineQingdaoShandongChina
| | - Dongfeng Zhang
- Department of Epidemiology and Health StatisticsPublic Health CollegeQingdao UniversityQingdaoChina
| |
Collapse
|
23
|
Niu M, Zhang L, Wang Y, Tu R, Liu X, Wang C, Bie R. Lifestyle Score and Genetic Factors With Hypertension and Blood Pressure Among Adults in Rural China. Front Public Health 2021; 9:687174. [PMID: 34485217 PMCID: PMC8416040 DOI: 10.3389/fpubh.2021.687174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Although high genetic risk and unhealthful lifestyles are associated with a high risk of hypertension, but the combined relationship between lifestyle score and genetic factors on blood pressure remains limited, especially in resource-constrained areas. Aim: To explore the separate and joint effects between genetic and lifestyle factors on blood pressure and hypertension in rural areas. Methods: In 4,592 adults from rural China with a 3-year of follow-up, a genetic risk score (GRS) was established using 13 single nucleotide polymorphisms (SNPs) and the lifestyle score was calculated including factors diet, body mass index (BMI), smoking status, drinking status, and physical activity. The associations of genetic and lifestyle factors with blood pressure and hypertension were determined with generalized linear and logistic regression models, respectively. Results: The high-risk GRS was found to be associated with evaluated blood pressure and hypertension and the healthful lifestyle with diastolic blood pressure (DBP) level. Individuals with unhealthful lifestyles in the high GRS risk group had an odds ratio (OR) (95% CI) of 1.904 (1.006, 3.603) for hypertension than those with a healthful lifestyle in the low GRS risk group. Besides, the relative risk (RR), attributable risk (AR), and population attributable risk (PAR) for unhealthful lifestyle are 1.39, 5.87, 0.04%, respectively, and the prevented fraction for the population (PFP) for healthful lifestyle is 9.47%. Conclusion: These results propose a joint effect between genetic and lifestyle factors on blood pressure and hypertension. The findings provide support for adherence to a healthful lifestyle in hypertension precision prevention. Clinical Trial Registration: The Henan Rural Cohort Study has been registered at the Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). http://www.chictr.org.cn/showproj.aspx?proj=11375.
Collapse
Affiliation(s)
- Miaomiao Niu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liying Zhang
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yikang Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ronghai Bie
- Department of Preventive Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
24
|
Cheng B, Liang C, Yang X, Li P, Liu L, Cheng S, Jia Y, Zhang L, Ma M, Qi X, Yao Y, Chu X, Ye J, Lu C, Guo X, Wen Y, Zhang F. Genetic association scan of 32 osteoarthritis susceptibility genes identified TP63 associated with an endemic osteoarthritis, Kashin-Beck disease. Bone 2021; 150:115997. [PMID: 33964467 DOI: 10.1016/j.bone.2021.115997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Kashin-Beck disease (KBD) is an endemic chronic osteochondropathy. The clinical manifestations and radiographic features of adult KBD were similar to those of osteoarthritis (OA). METHODS We first performed a genetic association scan of 32 OA susceptibility genes with KBD in 898 Han Chinese subjects. The MassARRAY genotyping system (Agena) was used for SNP genotyping. PLINK 1.9 was used for quality control and association testing. Using articular cartilage specimens from 7 adult KBD patients and 4 control subjects, lentivirus-mediated RNA interference (RNAi), qRT-PCR, Western blot and immunohistochemistry were employed to explore the functional relevance of TP63 to KBD chondrocyte. RESULTS SNP genotyping and association analysis identified TP63 (rs12107036, P = 0.005, OR = 0.71) and OARD1 (rs11280, P = 0.004, OR = 1.51) were significantly associated with KBD. It was also found that TP63 was significantly up-regulated in KBD articular cartilage in both mRNA and protein level compared with the controls (P < 0.05). TP63 suppression by lentivirus-mediated RNAi notably decreased the abundance of Caspase3 and SOX9 in chondrocytes. Most importantly, compared with the scrambled sequence (shControl) group, the protein level of ACAN was increased in the shTP63 group. The mRNA expression of chondrocyte marker genes (COL2A1 and ACAN) was not significantly changed after TP63 knockdown relative to shControl group. CONCLUSION Our study identifies TP63 as a novel susceptibility gene for KBD, and demonstrates that the inhibition of TP63 suppresses chondrocyte apoptosis and partly facilitates chondrogenesis. The combination of SNP genotyping and molecular biology techniques provides a useful tool for understanding the biological mechanism and differential diagnosis studies of KBD and OA.
Collapse
Affiliation(s)
- Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Chao Lu
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China.
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China.
| |
Collapse
|
25
|
Sehgal H, Toscano WA. Neighborhood Exposures and Blood Pressure Outcomes: A Cross-Sectional Environmental Study among 19-53 Years-Old Parsis in Mumbai. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168594. [PMID: 34444346 PMCID: PMC8391786 DOI: 10.3390/ijerph18168594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
The correlation between high blood pressure (BP) and urban neighborhood-level environmental determinants is understudied in low-income and middle-income countries (LMICs). We hypothesized that neighborhoods constitute exposures that affect resident-behaviors, metabolism and increased susceptibility to high BP. We studied urban clusters of Mumbai-Parsis (Zoroastrians), a founder population group, to minimize genetic variation and maximize exposure assessment. Participants from four neighborhoods were 19–53 years old and comprised 756 females and 774 males. We recorded healthy BPs (≤120/80 mmHg) in 59%, pre-hypertensive (≥121–139/81–89 mmHg) in 21% and high BP (≥140/90 mmHg) in 21% of the participants. A family history of hypertension had no correlation with high BP. We used the Neighborhood Accessibility Framework to compile a questionnaire in order to collect data on participants’ perception of space, third places, streetscape and experience, land use, connectivity, surveillance, pedestrian safety and public transport. Our results suggested that participants in neighborhoods with poorer BP outcomes reported lower accessibility scores for space, streetscape and experience, third places and connectivity. Our study evaluates how neighborhood-level determinants affect BP outcomes in order to contribute to the body of knowledge on primary preventive measures for high BP in urban LMIC populations. We concluded that neighborhood exposures affect resident-behaviors, which cause metabolic changes and increase susceptibility to high BP.
Collapse
|
26
|
Li AL, Peng Q, Shao YQ, Fang X, Zhang YY. The interaction on hypertension between family history and diabetes and other risk factors. Sci Rep 2021; 11:4716. [PMID: 33633182 PMCID: PMC7907071 DOI: 10.1038/s41598-021-83589-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
To explore the individual effect and interaction of diabetes and family history and other risk factors on hypertension in Han in Shanghai China. The method of case-control study with l:l matched pairs was used, 342 cases of hypertension and 342 controls were selected and investigate their exposed factors with face-to-face. The method of epidemiology research was used to explore the individual effect and interaction of diabetes and family history and other risk factors on hypertension. The individual effect of family history (OR = 4.103, 95%CI 2.660-6.330), diabetes (OR = 4.219, 95%CI 2.926-6.083), personal taste (OR = 1.256, 95%CI 1.091-1.593), drinking behavior (OR = 1.391, 95%CI 1.010-1.914) and smoking behavior (OR = 1.057, 95%CI 1.00-1.117) were significant (p < 0.05). But individual effect of sex, education, occupation, work/life pressure, environmental noise, sleeping time and sports habit were not significant (p > 0.05). The OR of interaction between FH and DM to hypertension was 16.537 (95%CI 10.070-21.157), between FH and drinking behavior was 4.0 (95%CI 2.461-6.502), FH and sport habit was 7.668 (95%CI 3.598-16.344), FH and personal taste was 6.521 (95%CI 3.858-11.024), FH and smoking behavior was 5.526 (95%CI 3.404-8.972), FH and work/life pressure was 4.087 (95%CI 2.144-7.788). The SI of FH and DM was 2.27, RERI was 8.68, AP was 52.48% and PAP was 55.86%. FH and DM, personal taste, smoking behavior had positive interaction on hypertension, but FH and sport habits, drinking behavior, work/life pressure had reverse interaction on hypertension. FH and diabetes were very important risk factors with significant effect for hypertension. FH and diabetes, personal taste, smoking behavior had positive interaction on hypertension, but FH and sport habits, drinking behavior, work/life pressure had reverse interaction on hypertension.
Collapse
Affiliation(s)
- An-le Li
- Jiading District Center for Disease Control and Prevention, Shanghai, China.
| | - Qian Peng
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Yue-Qin Shao
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Xiang Fang
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Yi-Ying Zhang
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
27
|
Identification of Genomic Regions for Carcass Quality Traits within the American Simmental Association Carcass Merit Program. Animals (Basel) 2021; 11:ani11020471. [PMID: 33579007 PMCID: PMC7916785 DOI: 10.3390/ani11020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
USDA quality and yield grade are primary driving forces for carcass value in the United States. Carcass improvements can be achieved by making selection decisions based on the results of genetic evaluations in the form of expected progeny differences (EPD), real-time ultrasound imaging, and physical evaluation of candidate breeding animals. In an effort to advance their ability to accurately predict the breeding value of potential sires for carcass traits, the American Simmental Association launched the Carcass Merit Program as a means to collect progeny sire group carcass information. All records were extracted from the American Simmental Association database. Progeny data were organized by sire family and progeny performance phenotypes were constructed. Sire genotypes were filtered, and a multi-locus mixed linear model was used to perform an association analysis on the genotype data, while correcting for cryptic relatedness and pedigree structure. Three chromosomes were found to have genome-wide significance and this conservative approach identified putative QTL in those regions. Three hundred ninety-three novel regions were identified across all traits, as well as 290 novel positional candidate genes. Correlations between carcass characteristics and maternal traits were less unfavorable than those previously reported.
Collapse
|
28
|
Seifi Moroudi R, Ansari Mahyari S, Vaez Torshizi R, Lanjanian H, Masoudi-Nejad A. Identification of new genes and quantitative trait locis associated with growth curve parameters in F2 chicken population using genome-wide association study. Anim Genet 2021; 52:171-184. [PMID: 33428266 DOI: 10.1111/age.13038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 11/30/2022]
Abstract
The markers which are correlated with the growth curve parameters help in understanding the characteristics of individual growth during the rearing of livestock. This study aimed to identify a set of biomarkers through a GWAS for growth curve parameters in crossbred chickens using the Illumnia 60K chicken SNP Beadchip. Growth data were collected from a total of 301 birds from cross of a broiler line and native chickens. Using the Gompertz-Laird model, two growth curve parameters, the instantaneous growth rate per day (L) and the coefficient of relative growth or maturing index (k), were estimated. The L and k were used to estimate five derived parameters, namely asymptotic (mature) body weight, body weight at inflection point, age at the inflection point, average growth rate and maximum growth rate. These parameters were considered as phenotypic values in the GWAS based on generalized linear models. The results of the GWAS indicated 21 significant markers, which were located near or within 46 genes. A number of these genes, such as GH, RET, GRB14, FTSJ3 and CCK, are important for growth and meat quality in chickens, and some of them are growth related in other species such as sheep and cattle (GPI, XIRP2, GALNTL6, BMS1, THSD4, TRHDE, SHISA9, ACSL6 and DYNC1LI2). The other genes are associated with developmental biological pathways. These genes are particuarly related to body weight, average daily gain and growth QTL. The results of this study can shed light on the genetic mechanism of biological functions of growth factors in broiler chickens, which is useful for developing management practices and accelerating genetic progress in breeding programs.
Collapse
Affiliation(s)
- R Seifi Moroudi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, PO Box 841583111, Isfahan, Iran
| | - S Ansari Mahyari
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, PO Box 841583111, Isfahan, Iran
| | - R Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - H Lanjanian
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran
| | - A Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran
| |
Collapse
|
29
|
El Shamieh S, Stathopoulou MG, Bonnefond A, Ndiaye NC, Lecoeur C, Meyre D, Dadé S, Chedid P, Salami A, Shahabi P, Dedoussis GV, Froguel P, Visvikis-Siest S. Obesity status modifies the association between rs7556897T>C in the intergenic region SLC19A3-CCL20 and blood pressure in French children. Clin Chem Lab Med 2020; 58:1819-1827. [PMID: 32238601 DOI: 10.1515/cclm-2019-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Background Growing evidence reports an association between inflammatory markers, obesity and blood pressure (BP). Specifically, the intergenic single nucleotide polymorphism (SNP) rs7556897T > C (MAF = 0.34) located between SLC19A3 and the CCL20 was shown to be associated with chronic inflammatory diseases. In addition, CCL20 expression was found increased in pancreatic islets of obese rodents and human pancreatic β cells under the influence of inflammation. In this study, we hypothesized that SNP rs7556897 could affect BP levels, thus providing a link between inflammation, BP and obesity. Methods BP was measured under supine position with a manual sphygmomanometer; values reported were the means of three readings. We analyzed rs7556897 in 577 normal weight and 689 obese French children. Using real-time polymerase chain reaction (PCR), we quantified CCL20 and SLC19A3 expression in adipose tissue and peripheral blood mononuclear cells (PBMCs) of normal weight and overweight children. Results The rs7556897C allele was negatively associated with diastolic BP in normal weight children (β = -0.012 ± 0.004, p = 0.006) but positively associated in obese children (β = 2.178 ± 0.71, p = 0.002). A significant interaction between rs7556897T > C and the obesity status (obese or normal weight) was detected (β = 3.49, p = 9.79 × 10-5) for BP in a combined population analysis. CCL20 mRNA was only expressed in the adipose tissue of overweight children, and its expression levels were 10.7× higher in PBMCs of overweight children than normal weight children. Finally, CCL20 mRNA levels were positively associated with rs7556897T > C in PBMCs of 58 normal weight children (β = 0.43, p = 0.002). SLC19A3 was not expressed in PBMCs, and in adipose tissue, it showed same levels of expression in normal weight and overweight children. The gene expression results may highlight a specific involvement of CCL20 via communicating obesity/inflammation pathways that regulate BP. Conclusions Childhood obesity reverses the effect of rs7556897T > C on diastolic BP, possibly via the modulation of CCL20 expression levels.
Collapse
Affiliation(s)
- Said El Shamieh
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Maria G Stathopoulou
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Amélie Bonnefond
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France
| | - Ndeye Coumba Ndiaye
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Cécile Lecoeur
- CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France
| | - David Meyre
- CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France.,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Sébastien Dadé
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Pia Chedid
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Ali Salami
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,Rammal Hassan Rammal Research Laboratory, Physio-toxicity (PhyTox) Research Group, Lebanese University, Faculty of Sciences (V), Nabatieh, Lebanon
| | - Payman Shahabi
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - George V Dedoussis
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,Department of Nutrition - Dietetics, Harokopio University, Athens, Greece
| | - Philippe Froguel
- CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France.,Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK
| | - Sophie Visvikis-Siest
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| |
Collapse
|
30
|
Osazuwa-Peters OL, Waken RJ, Schwander KL, Sung YJ, de Vries PS, Hartz SM, Chasman DI, Morrison AC, Bierut LJ, Xiong C, de las Fuentes L, Rao DC. Identifying blood pressure loci whose effects are modulated by multiple lifestyle exposures. Genet Epidemiol 2020; 44:629-641. [PMID: 32227373 PMCID: PMC7717887 DOI: 10.1002/gepi.22292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/30/2019] [Accepted: 03/06/2020] [Indexed: 12/27/2022]
Abstract
Although multiple lifestyle exposures simultaneously impact blood pressure (BP) and cardiovascular health, most analysis so far has considered each single lifestyle exposure (e.g., smoking) at a time. Here, we exploit gene-multiple lifestyle exposure interactions to find novel BP loci. For each of 6,254 Framingham Heart Study participants, we computed lifestyle risk score (LRS) value by aggregating the risk of four lifestyle exposures (smoking, alcohol, education, and physical activity) on BP. Using the LRS, we performed genome-wide gene-environment interaction analysis in systolic and diastolic BP using the joint 2 degree of freedom (DF) and 1 DF interaction tests. We identified one genome-wide significant (p < 5 × 10-8 ) and 11 suggestive (p < 1 × 10-6 ) loci. Gene-environment analysis using single lifestyle exposures identified only one of the 12 loci. Nine of the 12 BP loci detected were novel. Loci detected by the LRS were located within or nearby genes with biologically plausible roles in the pathophysiology of hypertension, including KALRN, VIPR2, SNX1, and DAPK2. Our results suggest that simultaneous consideration of multiple lifestyle exposures in gene-environment interaction analysis can identify additional loci missed by single lifestyle approaches.
Collapse
Affiliation(s)
| | - R J Waken
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Karen L Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel I Chasman
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, Missouri
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Kim B, Dai X, Zhang W, Zhuang Z, Sanchez DL, Lübberstedt T, Kang Y, Udvardi MK, Beavis WD, Xu S, Zhao PX. GWASpro: a high-performance genome-wide association analysis server. Bioinformatics 2020; 35:2512-2514. [PMID: 30508039 PMCID: PMC6612817 DOI: 10.1093/bioinformatics/bty989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 11/30/2018] [Indexed: 12/25/2022] Open
Abstract
Summary We present GWASpro, a high-performance web server for the analyses of large-scale genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for large-scale molecular genetic data, coupled with complex replicated experimental designs such as found in plant science investigations and to overcome the steep learning curves of existing GWAS software tools. GWASpro supports building complex design matrices, by which complex experimental designs that may include replications, treatments, locations and times, can be accounted for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an interface that significantly reduces the learning curve for new GWAS investigators. Availability and implementation GWASpro is freely available at https://bioinfo.noble.org/GWASPRO. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Xinbin Dai
- Noble Research Institute, Ardmore, OK, USA
| | | | | | | | | | - Yun Kang
- Noble Research Institute, Ardmore, OK, USA
| | | | | | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | | |
Collapse
|
32
|
Association of plasma cyclooxygenase-2 levels and genetic polymorphisms with salt sensitivity, blood pressure changes and hypertension incidence in Chinese adults. J Hypertens 2020; 38:1745-1754. [DOI: 10.1097/hjh.0000000000002473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Head GA. Integrative Physiology: Update to the Grand Challenge 2020. Front Physiol 2020; 11:489. [PMID: 32499720 PMCID: PMC7243031 DOI: 10.3389/fphys.2020.00489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Calderón-Chagoya R, Hernandez-Medrano JH, Ruiz-López FJ, Garcia-Ruiz A, Vega-Murillo VE, Montano-Bermudez M, Arechavaleta-Velasco ME, Gonzalez-Padilla E, Mejia-Melchor EI, Saunders N, Bonilla-Cardenas JA, Garnsworthy PC, Román-Ponce SI. Genome-Wide Association Studies for Methane Production in Dairy Cattle. Genes (Basel) 2019; 10:genes10120995. [PMID: 31810242 PMCID: PMC6969927 DOI: 10.3390/genes10120995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022] Open
Abstract
Genomic selection has been proposed for the mitigation of methane (CH4) emissions by cattle because there is considerable variability in CH4 emissions between individuals fed on the same diet. The genome-wide association study (GWAS) represents an important tool for the detection of candidate genes, haplotypes or single nucleotide polymorphisms (SNP) markers related to characteristics of economic interest. The present study included information for 280 cows in three dairy production systems in Mexico: 1) Dual Purpose (n = 100), 2) Specialized Tropical Dairy (n = 76), 3) Familiar Production System (n = 104). Concentrations of CH4 in a breath of individual cows at the time of milking (MEIm) were estimated through a system of infrared sensors. After quality control analyses, 21,958 SNPs were included. Associations of markers were made using a linear regression model, corrected with principal component analyses. In total, 46 SNPs were identified as significant for CH4 production. Several SNPs associated with CH4 production were found at regions previously described for quantitative trait loci of composition characteristics of meat, milk fatty acids and characteristics related to feed intake. It was concluded that the SNPs identified could be used in genomic selection programs in developing countries and combined with other datasets for global selection.
Collapse
Affiliation(s)
- R. Calderón-Chagoya
- Instituto Nacional de Investigaciones Forestales, Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Agrícolas y Pecuaria, SADER, Querétaro 76230, Mexico; (R.C.-C.); (A.G.-R.); (M.M.-B.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 300, Ciudad de México 04510, Mexico (E.G.-P.)
- Red de Investigación e Innovación Tecnológica para la Ganadería Bovina Tropical (REDGATRO), National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | - J. H. Hernandez-Medrano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 300, Ciudad de México 04510, Mexico (E.G.-P.)
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (N.S.)
- Red de Investigación e Innovación Tecnológica para la Ganadería Bovina Tropical (REDGATRO), National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | - F. J. Ruiz-López
- Instituto Nacional de Investigaciones Forestales, Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Agrícolas y Pecuaria, SADER, Querétaro 76230, Mexico; (R.C.-C.); (A.G.-R.); (M.M.-B.)
- Red de Investigación e Innovación Tecnológica para la Ganadería Bovina Tropical (REDGATRO), National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | - A. Garcia-Ruiz
- Instituto Nacional de Investigaciones Forestales, Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Agrícolas y Pecuaria, SADER, Querétaro 76230, Mexico; (R.C.-C.); (A.G.-R.); (M.M.-B.)
- Red de Investigación e Innovación Tecnológica para la Ganadería Bovina Tropical (REDGATRO), National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | - V. E. Vega-Murillo
- Campo Experimental La Posta, Centro de Investigación Regional Golfo-Centro, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, SADER, Veracruz 94277, Mexico;
- Red de Investigación e Innovación Tecnológica para la Ganadería Bovina Tropical (REDGATRO), National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | - M. Montano-Bermudez
- Instituto Nacional de Investigaciones Forestales, Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Agrícolas y Pecuaria, SADER, Querétaro 76230, Mexico; (R.C.-C.); (A.G.-R.); (M.M.-B.)
- Red de Investigación e Innovación Tecnológica para la Ganadería Bovina Tropical (REDGATRO), National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | - M. E. Arechavaleta-Velasco
- Instituto Nacional de Investigaciones Forestales, Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Agrícolas y Pecuaria, SADER, Querétaro 76230, Mexico; (R.C.-C.); (A.G.-R.); (M.M.-B.)
- Red de Investigación e Innovación Tecnológica para la Ganadería Bovina Tropical (REDGATRO), National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | - E. Gonzalez-Padilla
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 300, Ciudad de México 04510, Mexico (E.G.-P.)
- Red de Investigación e Innovación Tecnológica para la Ganadería Bovina Tropical (REDGATRO), National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | - E. I. Mejia-Melchor
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 300, Ciudad de México 04510, Mexico (E.G.-P.)
- Red de Investigación e Innovación Tecnológica para la Ganadería Bovina Tropical (REDGATRO), National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | - N. Saunders
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (N.S.)
| | - J. A. Bonilla-Cardenas
- Campo Experimental Santiago-Ixcuintla, Centro de Investigación Regional Pacifico-Centro, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, SADER, Nayarit 63300, Mexico;
| | - P. C. Garnsworthy
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (N.S.)
| | - S. I. Román-Ponce
- Instituto Nacional de Investigaciones Forestales, Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Agrícolas y Pecuaria, SADER, Querétaro 76230, Mexico; (R.C.-C.); (A.G.-R.); (M.M.-B.)
- Red de Investigación e Innovación Tecnológica para la Ganadería Bovina Tropical (REDGATRO), National Autonomous University of Mexico, Ciudad de México 04510, Mexico
- Correspondence:
| |
Collapse
|
35
|
Li AL, Fang X, Zhang YY, Peng Q, Yin XH. Familial aggregation and heritability of hypertension in Han population in Shanghai China: a case-control study. Clin Hypertens 2019; 25:17. [PMID: 31428454 PMCID: PMC6694643 DOI: 10.1186/s40885-019-0122-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background To explore the familial aggregation and heritability of hypertension in Han in Shanghai China. Methods According to l:l matched pairs design, 342 patients of hypertension and 342 controls were selected and investigate their nuclear family members in the case-control study. The method of genetic epidemiology research was used to explore the familial aggregation and heritability of hypertension. Results The prevalence rate of hypertension of first-degree relatives was significantly higher (34.44%) than that of second- degree relatives (17.60%) and third-degree relatives (13.51%) in Han Population in Shanghai China. Separation ratio p was 0.217, and prevalence rate of case group relatives was higher than that of control group relatives. The results showed a phenomenon of familial aggregation in the distribution of hypertension. The heritability of first- degree relatives was 49.51%; that of second-degree relatives and third-degree relatives were respectively 23.42 and 21.41%. Conclusion The distribution of essential hypertension has phenomenon of familial aggregation in Han Population in Shanghai China. The separation ratio of essential hypertension in this study shows that essential hypertension conform to the characteristics of multigene genetic disease. The heritability of first-degree relatives is bigger than that of second-degree relatives and third-degree relatives.
Collapse
Affiliation(s)
- An-le Li
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Xiang Fang
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Yi-Ying Zhang
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Qian Peng
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Xian-Hong Yin
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
36
|
Fowokan A, Punthakee Z, Waddell C, Rosin M, Morrison KM, Gupta M, Rangarajan S, Teo K, Lear S. Multifactorial correlates of blood pressure in South Asian children in Canada: a cross-sectional study. BMJ Open 2019; 9:e027844. [PMID: 30962241 PMCID: PMC6500289 DOI: 10.1136/bmjopen-2018-027844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE We sought to explore various correlates of blood pressure (BP) and hypertension, and to identify the most important aggregate combination of correlates for BP in South Asian children. DESIGN Cross-sectional study SETTING: Community-based recruitment in two Canadian cities PARTICIPANTS: South Asian children (n=762) provided a range of physiological, lifestyle and social variables. BP was assessed using an automated device. Body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHtR) and BP were transformed to z-scores using published standards. OUTCOME MEASURES Linear and logistic regression analyses were used to explore associations between the range of variables with BP z-scores and hypertension while stepwise regression was used to identify aggregate factors that provided explanatory capacity for systolic BP (SBP) and diastolic BP (DBP) z-scores. RESULTS A range of variables were associated with BP z-score and hypertension in unadjusted analysis. On adjustment for confounders, the association between age (β=-0.054, 95% CI=-0.078 to 0.029), female sex (β=-0.208, 95% CI=-0.350 to -0.067), height (β=0.022, 95% CI=0.011 to 0.033), weight (β=0.047, 95% CI=0.040 to 0.055), BMI z-score (β=0.292, 95% CI=0.249 to 0.336), WC z-score (β=0.273, 95% CI=0.219 to 0.326), WHtR z-score (β=0.289, 95% CI=0.236 to 0.342), heart rate (β=0.016, 95% CI=0.010 to 0.022), child's perception of body image (β=0.183, 95% CI=0.128 to 0.239) and grip strength (β=0.025, 95% CI=0.007 to 0.043) with SBP z-score remained. In stepwise regression, age, sex, BMI z-score, heart rate and weight accounted for 30% of the variance of SBP z-score, while age, BMI z-score, heart rate and daily fast food intake accounted for 23% of the DBP z-score variance. CONCLUSION Our findings suggest that variables, such as age, sex, height, adiposity and heart rate, provide stronger explanatory capacity to BP variance and hypertension risk than other variables in South Asian children.
Collapse
Affiliation(s)
- Adeleke Fowokan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Zubin Punthakee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Charlotte Waddell
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Miriam Rosin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Milan Gupta
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sumathy Rangarajan
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Koon Teo
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Scott Lear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Kolifarhood G, Daneshpour MS, Khayat BS, Saadati HM, Guity K, Khosravi N, Akbarzadeh M, Sabour S. Generality of genomic findings on blood pressure traits and its usefulness in precision medicine in diverse populations: A systematic review. Clin Genet 2019; 96:17-27. [PMID: 30820929 DOI: 10.1111/cge.13527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
Remarkable findings from genome-wide association studies (GWAS) on blood pressure (BP) traits have made new insights for developing precision medicine toward more effective screening measures. However, generality of GWAS findings in diverse populations is hampered by some technical limitations. There is no comprehensive study to evaluate source(s) of the non-generality of GWAS results on BP traits, so to fill the gap, this systematic review study was carried out. Using MeSH terms, 1545 records were detected through searching in five databases and 49 relevant full-text articles were included in our review. Overall, 749 unique variants were reported, of those, majority of variants have been detected in Europeans and were associated to systolic and diastolic BP traits. Frequency of genetic variants with same position was low in European and non-European populations (n = 38). However, more than 200 (>25%) single nucleotide polymorphisms were found on same loci or linkage disequilibrium blocks (r2 ≥ 80%). Investigating for locus position and linkage disequilibrium of infrequent unique variants showed modest to high reproducibility of findings in Europeans that in some extent was generalizable in other populations. Beyond theoretical limitations, our study addressed other possible sources of non-generality of GWAS findings for BP traits in the same and different origins.
Collapse
Affiliation(s)
- Goodarz Kolifarhood
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh S Khayat
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein M Saadati
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Guity
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khosravi
- Department of Community Health Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Nel M, Mulder N, Europa TA, Heckmann JM. Using Whole Genome Sequencing in an African Subphenotype of Myasthenia Gravis to Generate a Pathogenetic Hypothesis. Front Genet 2019; 10:136. [PMID: 30881381 PMCID: PMC6406016 DOI: 10.3389/fgene.2019.00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Myasthenia gravis (MG) is a rare, treatable antibody-mediated disease which is characterized by muscle weakness. The pathogenic antibodies are most frequently directed at the acetylcholine receptors (AChRs) at the skeletal muscle endplate. An ophthalmoplegic subphenotype of MG (OP-MG), which is characterized by treatment resistant weakness of the extraocular muscles (EOMs), occurs in a proportion of myasthenics with juvenile symptom onset and African genetic ancestry. Since the pathogenetic mechanism(s) underlying OP-MG is unknown, the aim of this study was to use a hypothesis-generating genome-wide analysis to identify candidate OP-MG susceptibility genes and pathways. Whole genome sequencing (WGS) was performed on 25 AChR-antibody positive myasthenic individuals of African genetic ancestry sampled from the phenotypic extremes: 15 with OP-MG and 10 individuals with control MG (EOM treatment-responsive). Variants were called according to the Genome Analysis Toolkit (GATK) best practice guidelines using the hg38 reference genome. In addition to single variant association analysis, variants were mapped to genes (±200 kb) using VEGAS2 to calculate gene-based test statistics and HLA allele group assignment was inferred through "best-match" alignment of reads against the IMGT/HLA database. While there were no single variant associations that reached genome-wide significance in this exploratory sample, several genes with significant gene-based test statistics and known to be expressed in skeletal muscle had biological functions which converge on muscle atrophy signaling and myosin II function. The closely linked HLA-DPA1 and HLA-DPB1 genes were associated with OP-MG subjects (gene-based p < 0.05) and the frequency of a functional A > G SNP (rs9277534) in the HLA-DPB1 3'UTR, which increases HLA-DPB1 expression, differed between the two groups (G-allele 0.30 in OP-MG vs. 0.60 in control MG; p = 0.04). Furthermore, we show that rs9277534 is an HLA-DBP1 expression quantitative trait locus in patient-derived myocytes (p < 1 × 10-3). The application of a SNP to gene to pathway approach to this exploratory WGS dataset of African myasthenic individuals, and comparing dichotomous subphenotypes, resulted in the identification of candidate genes and pathways that may contribute to OP-MG susceptibility. Overall, the hypotheses generated by this work remain to be verified by interrogating candidate gene and pathway expression in patient-derived extraocular muscle.
Collapse
Affiliation(s)
- Melissa Nel
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicola Mulder
- Computational Biology Division, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Tarin A Europa
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jeannine M Heckmann
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
39
|
Tagetti A, Bonafini S, Ohlsson T, Engström G, Almgren P, Minuz P, Smith G, Melander O, Fava C. A genetic risk score for hypertension is associated with risk of thoracic aortic aneurysm. J Hum Hypertens 2019; 33:658-663. [PMID: 30659280 DOI: 10.1038/s41371-018-0159-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/17/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022]
Abstract
A genetic risk score (GRS) based on 29 single nucleotide polymorpysms (SNPs) associated with high blood pressure (BP) was prospectively associated with development of hypertension, stroke and cardiovascular events. The aim of the present study was to evaluate the impact of this GRS on the incidence of aortic disease, including aortic dissection (AD), rupture or surgery of a thoracic (TAA) or abdominal (AAA) aortic aneurysm. More than 25,000 people from the Swedish Malmo Diet and Cancer Study had information on at least 24 SNPs and were followed up for a median ≥ 18 years. The number of BP elevating alleles of each SNPs, weighted by their effect size in the discovery studies, was summed into a BP-GRS. In Cox regression models, adjusted for traditional cardiovascular risk factors including hypertension, we found significant associations of the BP-GRS, prospectively, with incident TAA (hazard ratio (HR) 1.64 (95% confidence interval (CI) 1.081-2.475 comparing the third vs. the first tertile; p = 0.020) but not with either AAA or aortic dissection. Calibration, discrimination and reclassification analyses show modest improvement in prediction using the BP-GRS in addition to the model which used only traditional risk factors. A GRS for hypertension associates with TAA suggesting a link between genetic determinants of BP and aortic disease. The effect size is small but the addition of more SNPs to the GRS might improve its discriminatory capability.
Collapse
Affiliation(s)
- A Tagetti
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy
| | - S Bonafini
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy
| | - T Ohlsson
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - G Engström
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - P Almgren
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - P Minuz
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy
| | - G Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - O Melander
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - C Fava
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy. .,Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden.
| |
Collapse
|
40
|
Tamura T, Kadomatsu Y, Tsukamoto M, Okada R, Sasakabe T, Kawai S, Hishida A, Hara M, Tanaka K, Shimoshikiryo I, Takezaki T, Watanabe I, Matsui D, Nishiyama T, Suzuki S, Endoh K, Kuriki K, Kita Y, Katsuura-Kamano S, Arisawa K, Ikezaki H, Furusyo N, Koyanagi YN, Oze I, Nakamura Y, Mikami H, Naito M, Wakai K. Association of exposure level to passive smoking with hypertension among lifetime nonsmokers in Japan: a cross-sectional study. Medicine (Baltimore) 2018; 97:e13241. [PMID: 30508907 PMCID: PMC6283225 DOI: 10.1097/md.0000000000013241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Brief exposure to passive smoking immediately elevates blood pressure. However, little is known about the association between exposure to passive smoking and chronic hypertension. We aimed to examine this association in a cross-sectional study, after controlling multiple potential confounders.Participants included 32,098 lifetime nonsmokers (7,216 men and 24,882 women) enrolled in the Japan Multi-Institutional Collaborative Cohort Study. Passive smoking was assessed using a self-administered questionnaire. The single question about exposure to passive smoking had five response options: "sometimes or almost never," "almost every day, 2 hours/day or less," "almost every day, 2 to 4 hours/day," "almost every day, 4 to 6 hours/day," and "almost every day, 6 hours/day or longer." Hypertension was defined as any of the following: systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg, or use of antihypertensive medication. Multivariate-adjusted odds ratio (OR) and 95% confidence interval (CI) for hypertension were estimated by exposure level to passive smoking using unconditional logistic regression models.The multivariate-adjusted OR for hypertension in those exposed almost every day was 1.11 (95% CI: 1.03-1.20) compared with those exposed sometimes or almost never. The OR for a 1-hour per day increase in exposure was 1.03 (95% CI: 1.01-1.06, Pfor trend = .006). This association was stronger in men than in women; the ORs were 1.08 (95% CI: 1.01-1.15, Pfor trend = .036) and 1.03 (95% CI: 1.00-1.05, Pfor trend = .055), respectively.Our findings suggest importance of tobacco smoke control for preventing hypertension.
Collapse
Affiliation(s)
- Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya
| | - Yuka Kadomatsu
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya
| | - Mineko Tsukamoto
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya
| | - Tae Sasakabe
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga
| | - Ippei Shimoshikiryo
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima
| | - Isao Watanabe
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto
| | - Takeshi Nishiyama
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Kaori Endoh
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka
| | - Yoshikuni Kita
- Faculty of Nursing Science, Tsuruga Nursing University, Tsuruga
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima
| | - Hiroaki Ikezaki
- Department of Environmental Medicine and Infectious Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Norihiro Furusyo
- Department of Environmental Medicine and Infectious Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Yuriko N Koyanagi
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya
- Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya
| | | |
Collapse
|
41
|
Aldehyde dehydrogenase II rs671 polymorphism in essential hypertension. Clin Chim Acta 2018; 487:153-160. [PMID: 30273545 DOI: 10.1016/j.cca.2018.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
|
42
|
Hieber JK, Endecott RL, Thomson JM. Identification of genetic markers and QTL for carcass quality traits within the American Simmental Association Carcass Merit Program1. Transl Anim Sci 2018; 2:S39-S43. [PMID: 32704734 PMCID: PMC7200903 DOI: 10.1093/tas/txy032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/14/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jordan K Hieber
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| | - Rachel L Endecott
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| | - Jennifer M Thomson
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| |
Collapse
|
43
|
Combined linkage and association analysis identifies rare and low frequency variants for blood pressure at 1q31. Eur J Hum Genet 2018; 27:269-277. [PMID: 30262922 DOI: 10.1038/s41431-018-0277-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/12/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
High blood pressure (BP) is a major risk factor for cardiovascular disease (CVD) and is more prevalent in African Americans as compared to other US groups. Although large, population-based genome-wide association studies (GWAS) have identified over 300 common polymorphisms modulating inter-individual BP variation, largely in European ancestry subjects, most of them do not localize to regions previously identified through family-based linkage studies. This discrepancy has remained unexplained despite the statistical power differences between current GWAS and prior linkage studies. To address this issue, we performed genome-wide linkage analysis of BP traits in African-American families from the Family Blood Pressure Program (FBPP) and genotyped on the Illumina Human Exome BeadChip v1.1. We identified a genomic region on chromosome 1q31 with LOD score 3.8 for pulse pressure (PP), a region we previously implicated in DBP studies of European ancestry families. Although no reported GWAS variants map to this region, combined linkage and association analysis of PP identified 81 rare and low frequency exonic variants accounting for the linkage evidence. Replication analysis in eight independent African ancestry cohorts (N = 16,968) supports this specific association with PP (P = 0.0509). Additional association and network analyses identified multiple potential candidate genes in this region expressed in multiple tissues and with a strong biological support for a role in BP. In conclusion, multiple genes and rare variants on 1q31 contribute to PP variation. Beyond producing new insights into PP, we demonstrate how family-based linkage and association studies can implicate specific rare and low frequency variants for complex traits.
Collapse
|
44
|
Hachiya T, Narita A, Ohmomo H, Sutoh Y, Komaki S, Tanno K, Satoh M, Sakata K, Hitomi J, Nakamura M, Ogasawara K, Yamamoto M, Sasaki M, Hozawa A, Shimizu A. Genome-wide analysis of polymorphism × sodium interaction effect on blood pressure identifies a novel 3'-BCL11B gene desert locus. Sci Rep 2018; 8:14162. [PMID: 30242241 PMCID: PMC6155053 DOI: 10.1038/s41598-018-32074-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022] Open
Abstract
Excessive sodium intake is a global risk factor for hypertension. Sodium effects on blood pressure vary from person to person; hence, high-risk group targeting based on personal genetic information can play a complementary role to ongoing population preventive approaches to reduce sodium consumption. To identify genetic factors that modulate sodium effects on blood pressure, we conducted a population-based genome-wide interaction analysis in 8,768 Japanese subjects, which was >3 times larger than a similar previous study. We tested 7,135,436 polymorphisms in the discovery cohort, and loci that met suggestive significance were further examined in an independent replication cohort. We found that an interaction between a novel 3'-BCL11B gene desert locus and daily sodium consumption was significantly associated with systolic blood pressure in both discovery and replication cohorts under the recessive model. Further statistical analysis of rs8022678, the sentinel variant of the 3'-BCL11B gene desert locus, showed that differences in mean systolic blood pressure between high and low sodium consumption subgroups were 5.9 mm Hg (P = 8.8 × 10-12) in rs8022678 A carriers and -0.3 mm Hg (P = 0.27) in rs8022678 A non-carriers, suggesting that the rs8022678 genotype can classify persons into sodium-sensitive (A carriers) and sodium-insensitive (A non-carriers) subgroups. Our results implied that rs8022678 A carriers may receive a greater benefit from sodium-lowering interventions than non-carriers.
Collapse
Affiliation(s)
- Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
| | - Akira Narita
- Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
| | - Shohei Komaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
| | - Kozo Tanno
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Department of Hygiene and Preventive Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Mamoru Satoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, Shiwa, Japan
| | - Kiyomi Sakata
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Department of Hygiene and Preventive Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Jiro Hitomi
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Department of Anatomy, School of Medicine, Iwate Medical University, Shiwa, Japan
| | - Motoyuki Nakamura
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kuniaki Ogasawara
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Masayuki Yamamoto
- Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Shiwa, Japan
| | - Atsushi Hozawa
- Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Shiwa, Japan.
| |
Collapse
|
45
|
Doostparast Torshizi A, Wang K. Next-generation sequencing in drug development: target identification and genetically stratified clinical trials. Drug Discov Today 2018; 23:1776-1783. [PMID: 29758342 DOI: 10.1016/j.drudis.2018.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/09/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Next-generation sequencing (NGS) enabled high-throughput analysis of genotype-phenotype relationships on human populations, ushering in a new era of genetics-informed drug development. The year 2017 was remarkable, with the first FDA-approved gene therapy for cancer (Kymriah™) and for inherited diseases (LUXTURNA™), the first multiplex NGS panel for companion diagnostics (MSK-IMPACT™) and the first drug targeting a genetic signature rather than a disease (Keytruda®). We envision that population-scale NGS with paired electronic health records (EHRs) will become a routine measure in the drug development process for the identification of novel drug targets, and that genetically stratified clinical trials could be widely adopted to improve power in precision-medicine-guided drug development.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Zhou X, Wang J, Fa Y, Ye H. Signature microRNA expression profile is associated with spontaneous hypertension in African green monkey. Clin Exp Hypertens 2018; 41:287-291. [PMID: 29787292 DOI: 10.1080/10641963.2018.1469646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Chlorocebus aethiops sabaeus, the African Green monkey (AGM), has been proved to exhibit renal vascular remodeling and spontaneous hypertension. However, little is known about the roles of microRNAs (miRNAs) in this process.Using small RNA deep sequencing, we compared the plasma miRNA expression patterns between hypertensive (HT) AGMs and normotensive (NT) AGMs. Expression of miRNAs (miR-122, miR-339, miR-296-5p) was validated independently in plasma samples from 10 HT AGMs and 10 NT AGMs (fold changes are 2.0, 1.6, 2.7 respectively; all P< 0.001). Potential BP (blood pressure)-regulating mRNA targets were predicted by TargetScan and confirmed in the Vero cells. We report for the first time a circulating miRNA profile for AGM. miRNAs, such as miR-122, miR-339, miR-296-5p, may be involved in renal pathologies and spontaneous hypertension of AGM.
Collapse
Affiliation(s)
- Xiaojun Zhou
- a Laboratory Animal Center , Academy of Military Medical Sciences , Beijing , China
| | - Jin Wang
- a Laboratory Animal Center , Academy of Military Medical Sciences , Beijing , China
| | - Yunzhi Fa
- a Laboratory Animal Center , Academy of Military Medical Sciences , Beijing , China
| | - Huahu Ye
- a Laboratory Animal Center , Academy of Military Medical Sciences , Beijing , China
| |
Collapse
|
47
|
Teixeira SK, Pereira AC, Krieger JE. Genetics of Resistant Hypertension: the Missing Heritability and Opportunities. Curr Hypertens Rep 2018; 20:48. [PMID: 29779058 DOI: 10.1007/s11906-018-0852-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF THE REVIEW Blood pressure regulation in humans has long been known to be a genetically determined trait. The identification of causal genetic modulators for this trait has been unfulfilling at the least. Despite the recent advances of genome-wide genetic studies, loci associated with hypertension or blood pressure still explain a very low percentage of the overall variation of blood pressure in the general population. This has precluded the translation of discoveries in the genetics of human hypertension to clinical use. Here, we propose the combined use of resistant hypertension as a trait for mapping genetic determinants in humans and the integration of new large-scale technologies to approach in model systems the multidimensional nature of the problem. RECENT FINDINGS New large-scale efforts in the genetic and genomic arenas are paving the way for an increased and granular understanding of genetic determinants of hypertension. New technologies for whole genome sequence and large-scale forward genetic screens can help prioritize gene and gene-pathways for downstream characterization and large-scale population studies, and guided pharmacological design can be used to drive discoveries to the translational application through better risk stratification and new therapeutic approaches. Although significant challenges remain in the mapping and identification of genetic determinants of hypertension, new large-scale technological approaches have been proposed to surpass some of the shortcomings that have limited progress in the area for the last three decades. The incorporation of these technologies to hypertension research may significantly help in the understanding of inter-individual blood pressure variation and the deployment of new phenotyping and treatment approaches for the condition.
Collapse
Affiliation(s)
- Samantha K Teixeira
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Alexandre C Pereira
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Jose E Krieger
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
48
|
Associations of NADPH oxidase-related genes with blood pressure changes and incident hypertension: The GenSalt Study. J Hum Hypertens 2018; 32:287-293. [PMID: 29463833 PMCID: PMC5889722 DOI: 10.1038/s41371-018-0041-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/03/2018] [Accepted: 01/22/2018] [Indexed: 01/19/2023]
Abstract
Previous studies have indicated that reactive oxygen species produced by NADPH oxidase (Nox) are important risk factors of hypertension. The current study aims to examine the associations of Nox-related genes with longitudinal blood pressure (BP) changes and the risk of incident hypertension in the Genetic Epidemiology Network of Salt Sensitivity (GenSalt) follow-up study. A total of 1,768 participants from 633 families were included in our analysis. Nine BP measurements were obtained in the morning at baseline and during two follow-up visits. The mixed-effect models were used to investigate the associations of 52 tagged single-nucleotide polymorphisms in 11 Nox-related genes with BP changes and incident hypertension. Gene-based analyses were performed by truncated product method (TPM) and Versatile Gene-based Association Study (VEGAS). Over the 7.2 years of follow-up, systolic BP (SBP) and diastolic BP (DBP) increased, and 32.1% (512) of participants developed hypertension. SNPs rs12094228, rs16861188 and rs12066019 in NCF2 were significantly associated with longitudinal change in SBP (Pinteraction = 1.1 × 10-3, 2.8 × 10-3 and 1.2 × 10-3, respectively). Gene-based analyses revealed that NCF2 was significantly associated with SBP (PTPM = 1.00 × 10-6, PVEGAS = 1.26 × 10-4) and DBP changes (PTPM = 5.84 × 10-4, PVEGAS = 1.04 × 10-3). These findings suggested that NCF2 may play an important role in BP changes over time in the Han Chinese population.
Collapse
|
49
|
|
50
|
Loo RL, Zou X, Appel LJ, Nicholson JK, Holmes E. Characterization of metabolic responses to healthy diets and association with blood pressure: application to the Optimal Macronutrient Intake Trial for Heart Health (OmniHeart), a randomized controlled study. Am J Clin Nutr 2018; 107:323-334. [PMID: 29506183 DOI: 10.1093/ajcn/nqx072] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023] Open
Abstract
Background Interindividual variation in the response to diet is common, but the underlying mechanism for such variation is unclear. Objective The objective of this study was to use a metabolic profiling approach to identify a panel of urinary metabolites representing individuals demonstrating typical (homogeneous) metabolic responses to healthy diets, and subsequently to define the association of these metabolites with improvement of risk factors for cardiovascular diseases (CVDs). Design 24-h urine samples from 158 participants with pre-hypertension and stage 1 hypertension, collected at baseline and following the consumption of a carbohydrate-rich, a protein-rich, and a monounsaturated fat-rich healthy diet (6 wk/diet) in a randomized, crossover study, were analyzed by proton (1H) nuclear magnetic resonance (NMR) spectroscopy. Urinary metabolite profiles were interrogated to identify typical and variable responses to each diet. We quantified the differences in absolute excretion of metabolites, distinguishing between dietary comparisons within the typical response groups, and established their associations with CVD risk factors using linear regression. Results Globally all 3 diets induced a similar pattern of change in the urinary metabolic profiles for the majority of participants (60.1%). Diet-dependent metabolic variation was not significantly associated with total cholesterol or low-density lipoprotein (LDL) cholesterol concentration. However, blood pressure (BP) was found to be significantly associated with 6 urinary metabolites reflecting dietary intake [proline-betaine (inverse), carnitine (direct)], gut microbial co-metabolites [hippurate (direct), 4-cresyl sulfate (inverse), phenylacetylglutamine (inverse)], and tryptophan metabolism [N-methyl-2-pyridone-5-carboxamide (inverse)]. A dampened clinical response was observed in some individuals with variable metabolic responses, which could be attributed to nonadherence to diet (≤25.3%), variation in gut microbiome activity (7.6%), or a combination of both (7.0%). Conclusions These data indicate interindividual variations in BP in response to dietary change and highlight the potential influence of the gut microbiome in mediating this relation. This approach provides a framework for stratification of individuals undergoing dietary management. The original OmniHeart intervention study and the metabolomics study were registered at www.clinicaltrials.gov as NCT00051350 and NCT03369535, respectively.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Xin Zou
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.,Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lawrence J Appel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
| | - Jeremy K Nicholson
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom.,MRC-HPA Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Elaine Holmes
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom.,MRC-HPA Centre for Environment and Health, Imperial College London, London, United Kingdom
| |
Collapse
|