1
|
Sheng X, Zeng J, Zhong Y, Tang X, Xing J, Chi H, Zhan W. Peripheral Blood B-Lymphocytes Are Involved in Lymphocystis Disease Virus Infection in Flounder ( Paralichthys olivaceus) via Cellular Receptor-Mediated Mechanism. Int J Mol Sci 2022; 23:9225. [PMID: 36012490 PMCID: PMC9409355 DOI: 10.3390/ijms23169225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/25/2022] Open
Abstract
Previous studies imply that peripheral blood leukocytes (PBLs) may play an important role in systemic lymphocystis disease virus (LCDV) dissemination, but whether the PBLs are susceptible and permissive to LCDV infection and the dissemination mechanism need to be clarified. In this study, LCDV was firstly confirmed to infect the PBLs in flounder (Paralichthys olivaceus) in vivo, and to replicate in PBLs in vitro. Subsequently, the 27.8 kDa receptor protein (27.8R), a functional receptor mediating LCDV infection in flounder gill cells, was shown to locate on the cell membrane of PBLs and co-localize with LCDV in PBLs, while blocking of the 27.8R via pre-incubation of anti-27.8R MAb with the PBLs could obviously inhibit LCDV infection, revealing the 27.8R as a receptor for LCDV entry into PBLs. Multicolor fluorescence imaging studies verified that IgM+ and IgD+ B-lymphocyte were involved in LCDV infection. In the sorted IgM+ B-cells, 27.8R+ and LCDV+ signals were simultaneously observed, and LCDV copy numbers increased with time, indicating that IgM+ B-cells expressed the 27.8R and were permissive to LCDV infection. Furthermore, the dynamic changes of IgM+, 27.8R+, LCDV+ and LCDV+/IgM+ PBLs were monitored during the early phase of LCDV infection. It was found that the percentage of IgM+ B-cells in PBLs clearly declined first and then increased, suggesting LCDV infection facilitated damage to B-cells, whereas the amounts of 27.8R+ and LCDV+ PBLs, as well as LCDV-infected IgM+ B-cells, showed an opposite trend. These results proved that IgM+ B-lymphocytes could be infected by LCDV via a receptor-mediated mechanism and support viral replication, which provided novel insights for the first time into the role of B-lymphocytes in LCDV dissemination and pathogenesis in teleost fish.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Zeng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ying Zhong
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
2
|
Bai J, Chen X, Liu Q, Zhou X, Long JE. Characteristics of enterovirus 71-induced cell death and genome scanning to identify viral genes involved in virus-induced cell apoptosis. Virus Res 2019; 265:104-114. [DOI: 10.1016/j.virusres.2019.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
|
3
|
Toll-Like Receptor 3 Is Involved in Detection of Enterovirus A71 Infection and Targeted by Viral 2A Protease. Viruses 2018; 10:v10120689. [PMID: 30563052 PMCID: PMC6315976 DOI: 10.3390/v10120689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Enterovirus A71 (EV-A71) has emerged as a major pathogen causing hand, foot, and mouth disease, as well as neurological disorders. The host immune response affects the outcomes of EV-A71 infection, leading to either resolution or disease progression. However, the mechanisms of how the mammalian innate immune system detects EV-A71 infection to elicit antiviral immunity remain elusive. Here, we report that the Toll-like receptor 3 (TLR3) is a key viral RNA sensor for sensing EV-A71 infection to trigger antiviral immunity. Expression of TLR3 in HEK293 cells enabled the cells to sense EV-A71 infection, leading to type I, IFN-mediated antiviral immunity. Viral double-stranded RNA derived from EV-A71 infection was a key ligand for TLR3 detection. Silencing of TLR3 in mouse and human primary immune cells impaired the activation of IFN-β upon EV-A71 infection, thus reinforcing the importance of the TLR3 pathway in defending against EV-A71 infection. Our results further demonstrated that TLR3 was a target of EV-A71 infection. EV-A71 protease 2A was implicated in the downregulation of TLR3. Together, our results not only demonstrate the importance of the TLR3 pathway in response to EV-A71 infection, but also reveal the involvement of EV-A71 protease 2A in subverting TLR3-mediated antiviral defenses.
Collapse
|
4
|
Dyda A, Stelzer-Braid S, Adam D, Chughtai AA, MacIntyre CR. The association between acute flaccid myelitis (AFM) and Enterovirus D68 (EV-D68) - what is the evidence for causation? Euro Surveill 2018; 23:17-00310. [PMID: 29386095 PMCID: PMC5792700 DOI: 10.2807/1560-7917.es.2018.23.3.17-00310] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BackgroundEnterovirus D68 (EV-D68) has historically been a sporadic disease, causing occasional small outbreaks of generally mild infection. In recent years, there has been evidence of an increase in EV-D68 infections globally. Large outbreaks of EV-D68, with thousands of cases, occurred in the United States, Canada and Europe in 2014. The outbreaks were associated temporally and geographically with an increase in clusters of acute flaccid myelitis (AFM).
Aims: We aimed to evaluate a causal association between EV-D68 and AFM.
Methods: Using data from the published and grey literature, we applied the Bradford Hill criteria, a set of nine principles applied to examine causality, to evaluate the relationship between EV-D68 and AFM. Based on available evidence, we defined the Bradford Hill Criteria as being not met, or met minimally, partially or fully.
Results: Available evidence applied to EV-D68 and AFM showed that six of the Bradford Hill criteria were fully met and two were partially met. The criterion of biological gradient was minimally met. The incidence of EV-D68 infections is increasing world-wide. Phylogenetic epidemiology showed diversification from the original Fermon and Rhyne strains since the year 2000, with evolution of a genetically distinct outbreak strain, clade B1. Clade B1, but not older strains, is associated with AFM and is neuropathic in animal models.
Conclusion: While more research is needed on dose-response relationship, application of the Bradford Hill criteria supported a causal relationship between EV-D68 and AFM.
Collapse
Affiliation(s)
- Amalie Dyda
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - Sacha Stelzer-Braid
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia,Division of Serology and Virology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, Australia
| | - Dillon Adam
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - Abrar A Chughtai
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - C Raina MacIntyre
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia,College of Public Service and Community Solutions and College of Health Solutions, Arizona State University, Tempe, Arizona, United States
| |
Collapse
|
5
|
Ross C, Knox C, Tastan Bishop Ö. Interacting motif networks located in hotspots associated with RNA release are conserved in Enterovirus capsids. FEBS Lett 2017; 591:1687-1701. [PMID: 28471477 DOI: 10.1002/1873-3468.12663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/23/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022]
Abstract
Enteroviruses are responsible for a multitude of human diseases. Expansion of the virus capsid is associated with a cascade of conformational changes that allow the subsequent release of RNA. For the first time, this study presents a comprehensive bioinformatic screen for the prediction of interacting motifs within intraprotomer interfaces and across respective interfaces surrounding the fivefold and twofold axes. The results identify a network of conserved motif residues involved in interactions in enteroviruses that may be critical to capsid stabilisation, providing guidelines towards developing antivirals that interfere with viral expansion during RNA release.
Collapse
Affiliation(s)
- Caroline Ross
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Caroline Knox
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
6
|
Tissue Localization of Lymphocystis Disease Virus (LCDV) Receptor-27.8 kDa and Its Expression Kinetics Induced by the Viral Infection in Turbot (Scophthalmus maximus). Int J Mol Sci 2015; 16:26506-19. [PMID: 26556346 PMCID: PMC4661833 DOI: 10.3390/ijms161125974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 12/29/2022] Open
Abstract
The 27.8 kDa membrane protein expressed in flounder (Paralichthys olivaceus) gill cells was proved to be a receptor mediating lymphocystis disease virus (LCDV) infection. In this study, SDS-PAGE and Western blotting demonstrated that 27.8 kDa receptor (27.8R) was shared by flounder and turbot (Scophthalmus maximus). Indirect immunofluorescence assay (IIFA) and immunohistochemistry showed that 27.8R was widely expressed in tested tissues of healthy turbot. The indirect enzyme-linked immunosorbent assay indicated that 27.8R expression was relatively higher in stomach, gill, heart, and intestine, followed by skin, head kidney, spleen, blood cells, kidney and liver, and lower in ovary and brain in healthy turbot, and it was significantly up-regulated after LCDV infection. Meanwhile, real-time quantitative PCR demonstrated that LCDV was detected in heart, peripheral blood cells, and head kidney at 3 h post infection (p.i.), and then in other tested tissues at 12 h p.i. LCDV copies increased in a time-dependent manner, and were generally higher in the tissues with higher 27.8R expression. Additionally, IIFA showed that 27.8R and LCDV were detected at 3 h p.i. in some leukocytes. These results suggested that 27.8R also served as a receptor in turbot, and LCDV can infect some leukocytes which might result in LCDV spreading to different tissues in turbot.
Collapse
|
7
|
Paediatric Acute Encephalitis: Infection and Inflammation. CURRENT PEDIATRICS REPORTS 2015. [DOI: 10.1007/s40124-015-0089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Kok CC. Therapeutic and prevention strategies against human enterovirus 71 infection. World J Virol 2015; 4:78-95. [PMID: 25964873 PMCID: PMC4419123 DOI: 10.5501/wjv.v4.i2.78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved.
Collapse
|
9
|
Jiao XY, Guo L, Huang DY, Chang XL, Qiu QC. Distribution of EV71 receptors SCARB2 and PSGL-1 in human tissues. Virus Res 2014; 190:40-52. [PMID: 24997419 DOI: 10.1016/j.virusres.2014.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 02/05/2023]
Abstract
The aim of this study was to investigate the distribution of Enterovirus 71 (EV71) receptors SCARB2 and PSGL-1 in human tissues. The samples were chosen from archived specimens, and the profiles of two receptors were detected in the gastrointestinal tract, lung, and brain in situ by immunohistochemistry. SCARB2 was detected in all the tissues studied, and strong staining was observed in the gastric fundus gland, mucosal and glandular epithelia of the intestine. Similar expression was found in bronchial epithelia and pneumocytes. In addition, SCARB2 was observed in the esophagus/gastric mucosal epithelia, neuron, glial cells, and blood vessels and the perivascular tissues of the brain. By comparison, PSGL-1 was expressed weakly in the mucosal and glandular epithelia of the small intestine and colon. PSGL-1 was expressed in a few bronchial epithelia, and weak staining was observed in the pneumocytes. However, PSGL-1 was found easily in the lamina propria of all the tissues studied, and strong staining of PSGL-1 was also observed in the neurons and glial cells. The distribution of the SCARB2 and PSGL-1 in human gastrointestinal tract, lung, and brain tissues correlated with the distribution of pathological changes seen in EV71 infection. The widespread prevalence of these receptors may help explain the multiple organ involvement in infection with EV71.
Collapse
Affiliation(s)
- Xiao-Yang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China; Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Changpin Road, Shantou 515041, China.
| | - Li Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Dong-Yang Huang
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Xiao-Lan Chang
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Qian-Cheng Qiu
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Changpin Road, Shantou 515041, China.
| |
Collapse
|
10
|
Zhang B, Wu X, Huang K, Li L, Zheng L, Wan C, He ML, Zhao W. The variations of VP1 protein might be associated with nervous system symptoms caused by enterovirus 71 infection. BMC Infect Dis 2014; 14:243. [PMID: 24886383 PMCID: PMC4101859 DOI: 10.1186/1471-2334-14-243] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 04/30/2014] [Indexed: 01/24/2023] Open
Abstract
Background The VP1 protein of enterovirus 71 (EV71) is an important immunodominant protein which is responsible for host-receptor binding. Nevertheless, the relationship between VP1 and neurovirulence is still poorly understood. In this study, we investigated the relationship between mutation of VP1 and neurovirulent phenotype of EV71 infection. Methods One hundred and eighty-seven strains from Genbank were included, with a clear clinical background. They were divided into two groups, one with nervous system symptoms and one with no nervous system symptoms. After alignment, the significance of amino acid variation was determined by using the χ2 test and a phylogenetic tree was constructed with MEGA software (version 5.1). Results We showed no significant difference in neurovirulence between genotype B and C. Interestingly, we found that variations of E145G/Q, E164D/K and T292N/K were associated with nervous system infection in genotype B. In the case of genotype C, the N31D mutation increased the risk for nervous complications, whereas I262V mutation decreased the risk of nervous complications. We used a 3D model of VP1 to demonstrate the potential molecular basis for EV71 nervous system tropism. Conclusions Distinct variations are shown to be associated with neurovirulent phenotype in the different genotype. Detection of variation in genotypes and subtypes may be important for the prediction of clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Liang He
- School of Public Health and Tropical Medicine, Southern Medical University, NO,1023 Shatai Road, Guangzhou 510515, P,R, China.
| | | |
Collapse
|
11
|
Leng H, Wang N, Wang YY, Zang WQ, Li M, Zhao GQ. Construction of a prokaryotic expression vector containing the EV71 VP1-VP4 fusion gene and detection of its expressions. Shijie Huaren Xiaohua Zazhi 2012; 20:3366-3369. [DOI: 10.11569/wcjd.v20.i34.3366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a prokaryotic vector expressing human enterovirus 71 (EV71) VP1-VP4 fusion antigen.
METHODS: A prokaryotic expression plasmid carrying the VP1-VP4 fusion gene was constructed and transformed into E. coli DH5α. VP1-VP4 fusion protein was induced to express with IPTG. SDS-PAGE and Western blot were performed to detect VP1-VP4 fusion protein. Purified VP1-VP4 fusion protein was coated onto ELISA plates to detect 41 serum samples for screening EV71 positive serum samples.
RESULTS: The sequence of recombinant VP1-VP4 fragment was the same as the expected sequence, indicating that the recombinant vector was successfully constructed. SDS-PAGE showed that the fusion protein had a molecular weight of 42.8 kDa. Western blot showed that fusion protein can be specifically recognized by VP1 antibody and VP4 antibody. Fusion protein coated onto ELISA plates could accurately detect 16 EV71 positive serum samples from 41 serum samples without cross-reactivity with coxsackievirus16 (CA16).
CONCLUSION: The VP1-VP4 fusion protein has good antigenicity and can be used as a diagnostic antigen to detect EV71 infection. Our results provide a experimental basis for development of EV71 diagnostic kits.
Collapse
|
12
|
Tapparel C, Siegrist F, Petty TJ, Kaiser L. Picornavirus and enterovirus diversity with associated human diseases. INFECTION GENETICS AND EVOLUTION 2012. [PMID: 23201849 DOI: 10.1016/j.meegid.2012.10.016] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Members of the Picornaviridae family are non-enveloped, positive-stranded RNA viruses with a 30nm icosahedral capsid. This virus family exhibits a considerable amount of genetic variability driven both by mutation and recombination. Recently, three previously unknown human picornaviruses, namely the human Saffold cardiovirus, cosavirus and salivirus, have been identified in stools or respiratory samples from subjects presenting symptoms ranging from gastroenteritis to acute flaccid paralysis. However, these viruses were also frequently detected in asymptomatic subjects and their clinical relevance remains to be elucidated. The Enterovirus genus is a prototype example of the Picornaviridae heterogeneity at both genetic and phenotypic levels. This genus is divided into 10 species, seven of which contain human viruses, including three Rhinovirus species. Both human rhino- and enteroviruses are also characterized by high levels of genetic variability, as exemplified by the existence of over 250 different serotypes and the recent discovery of new enterovirus genotypes and the Rhinovirus C species. Despite their common genomic features, rhinoviruses are restricted to the respiratory tract, whereas the vast majority of enteroviruses infect the gastrointestinal tract and can spread to other organs, such as the heart or the central nervous system. Understanding the genetic determinants of such phenotypic diversity is an important challenge and a field for future investigation. Better characterization of these ubiquitous human pathogens may help to develop vaccines or antiviral treatments and to monitor the emergence of new strains.
Collapse
Affiliation(s)
- Caroline Tapparel
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland.
| | | | | | | |
Collapse
|