1
|
Huang J, Friedman-Moraco R, Pouch S. Infections and lung transplantation: key considerations for eligibility, management, and posttransplant care. Curr Opin Pulm Med 2025; 31:374-380. [PMID: 40314095 DOI: 10.1097/mcp.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
PURPOSE OF REVIEW Lung transplantation is a critical and evolving therapy for patients with end-stage lung disease. As the need for lung transplantation increases, careful candidate selection is vital to maximizing outcomes and ensuring appropriate organ allocation. A key challenge in lung transplant candidates is the colonization or infection of the lungs by environmental and upper airway pathogens. These lung pathogens, along with other chronic infections, can lead to posttransplant complications with high mortality and an increased risk of graft failure. RECENT FINDINGS Major infectious considerations for lung transplantation include colonization or infection by multidrug-resistant bacteria (including Burkholderia cepacia complex), nontuberculous mycobacteria, molds, and chronic viral infections. By recognizing the epidemiology, diagnosis, and management of these infections in the peri-transplant period, transplant providers can better mitigate infectious risks and improve transplant success. Similarly, advancements in diagnostics and therapeutics offer novel approaches to managing previously challenging infections. SUMMARY As experience grows in treating these difficult infectious syndromes, more candidates are becoming eligible for transplantation. A thorough understanding of infectious considerations in lung transplant candidates is essential for improving candidate selection, reducing posttransplant complications, and expanding transplant eligibility.
Collapse
Affiliation(s)
- Jonathan Huang
- Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
2
|
Forier B, Schaevers V, Spriet I, Quintens C, Desmet S, Bos S, Bleyenbergh PV, Lorent N, Sadeleer LD, Godinas L, Dupont LJ, Vos R. Outpatient parenteral antibiotic therapy in non-cystic fibrosis lung transplant recipients: characteristics, efficacy and safety. Eur J Clin Microbiol Infect Dis 2025; 44:1481-1490. [PMID: 39196488 PMCID: PMC12116863 DOI: 10.1007/s10096-024-04921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE Bacterial isolation is associated with worse outcomes after lung transplantation (LTx), and successful bacterial eradication is shown to improve long-term survival and pulmonary function. Outpatient Parenteral Antibiotic Therapy (OPAT) may be an effective therapeutic modality for bacterial eradication post-LTx. METHODS A single-center, retrospective analysis of OPAT characteristics, efficacy, safety, and costs in non-cystic fibrosis LTx recipients. RESULTS A total of 156 OPAT courses (from June 2019 to December 2022) were evaluated in 108 distinct LTx recipients. OPAT mainly consisted of dual antibiotic therapy (69%) for pulmonary bacterial isolation (97%), mostly Pseudomonas aeruginosa (66%). Successful eradication at 3 months post-OPAT was achieved in 71%. Eradication rate was significantly higher in patients treated after the first post-operative year (79%), compared to patients within the first year (61%) (p = 0.017). Eradication rate was similar for multidrug resistance (eradication rate 61%) versus no multidrug resistance (74%) (p = 0.116). Spirometry remained stable at 90 days post-OPAT. A statistically significant, but clinically negligible, increase in serum creatinine at 90 days post-OPAT was observed (1.33 mg/dL vs. 1.39 mg/dL, p < 0.001), yet unrelated to the antibiotic regimen used. OPAT-related hospital admissions occurred in 13% and line-related adverse events in 6%. Median number of hospitalization days saved per OPAT-course was 10 days (range 2-92), accounting for a total of 1841 avoided admission days and an estimated net cost reduction of 47% per treatment course. CONCLUSION OPAT is an effective and safe therapeutic modality for bacterial eradication post-LTx, associated with a significant reduction in hospitalization days and treatment costs.
Collapse
Affiliation(s)
- Bart Forier
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Veronique Schaevers
- Lung Transplant Team, Clinical Nurse Specialist, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Quintens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Stefanie Desmet
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Saskia Bos
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Pascal Van Bleyenbergh
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Natalie Lorent
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Laurens De Sadeleer
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Laurent Godinas
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Robin Vos
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium.
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Bodén E, Sveréus F, Niroomand A, Akbarshahi H, Ingemansson R, Larsson H, Lindstedt S, Olm F. Fungal colonization before or after lung transplantation has no negative impact on survival or the development of chronic lung allograft dysfunction. JHLT OPEN 2025; 8:100225. [PMID: 40144727 PMCID: PMC11935453 DOI: 10.1016/j.jhlto.2025.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Introduction Long-term survival following lung transplantation (LTx) faces impediments due to chronic lung allograft dysfunction (CLAD), while infections hinder short-term survival. Fungal colonization and invasive fungal infections (IFI) are common within the first year after LTx. There is ongoing debate regarding the impact of such events on CLAD development and mortality. This study aims to investigate this matter further. Methods A total of 134 LTx recipients transplanted between 2011 and 2020 were included. The median follow-up time was 3.9 years. Fungal colonization and IFI were defined according to international consensus guidelines and were noted if present within the first 12 months after LTx. Results Postoperative fungal colonization was found in 101 patients, and 14 patients had an IFI within twelve months of transplantation. Nineteen patients were neither colonized nor infected. Out of the 115 patients with colonization or IFI, 61 patients had growth of a yeast such as Candida species (spp.). Fifty-six patients were colonized prior to LTx. Being colonized with fungus before or within the first 12 months post-LTx did not significantly affect survival or CLAD development. Conclusions The results of the current study indicate that fungal colonization either pre-transplantation or within the first 12 months after does not correlate with increased risks of mortality or CLAD development. These findings show that while fungal colonization is a common occurrence in LTx recipients, it does not predispose the patients of the cohort to adverse outcomes.
Collapse
Affiliation(s)
- Embla Bodén
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Fanny Sveréus
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Anna Niroomand
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
- Rutgers Robert Wood Johnson Medical School, New Brunswick, 08901 New Jersey
| | - Hamid Akbarshahi
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Department of Pulmonary Medicine, Allergology and Palliative Care, Skåne University Hospital, 22242, Lund, Sweden
| | - Richard Ingemansson
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 22242 Lund, Sweden
| | - Hillevi Larsson
- Department of Pulmonary Medicine, Allergology and Palliative Care, Skåne University Hospital, 22242, Lund, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 22242 Lund, Sweden
| | - Franziska Olm
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 22242 Lund, Sweden
| |
Collapse
|
4
|
Steinack C, Krapf M, Ernst J, Gaisl T, Schuurmans M, von Känel R, Jordan KD. Psychosocial Wellbeing in Lung Transplants Before and After the COVID-19 Vaccine. EXP CLIN TRANSPLANT 2025; 23:220-226. [PMID: 40223386 DOI: 10.6002/ect.2024.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
OBJECTIVES Lung transplant recipients are vulnerable to respiratory infections because of their compromised immune response. Limited research has been published on mental health as a result of the COVID-19 pandemic on lung transplant recipients, and uncertainty remains whether the COVID-19 vaccine affected mental health in lung transplant recipients. MATERIALS AND METHODS In this longitudinal, retrospective study, we assessed the psychosocial wellbeing of lung transplant recipients during the COVID-19 pandemic at 2 different time points (before and after COVID-19 vaccination). We measured wellbeing with the Hospital Anxiety and Depression Scale (cutoff of 11 points indicated anxiety and depression) and the Symptom Checklist consisting of 9 questions. RESULTS Our study included 83 patients (mean age 52.4 ± 14.5 years, 55.4% male). Among the patients, 3.8% and 4.8% of patients with cystic fibrosis had abnormal values for anxiety before and after the vaccine, respectively; abnormal values for depression were shown in 0% and 2.4% of patients with cystic fibrosis before and after the vaccine, respectively. Sex, age, level of education, time since transplant, and chronic allograft dysfunction were not significantly associated with psychosocial wellbeing. Vaccination against COVID-19 was not associated with a change in psychosocial wellbeing. CONCLUSIONS We found no evidence that the COVID-19 vaccine affected the psychosocial wellbeing of lung transplant recipients. However, it may be important to monitor wellbeing closely during a pandemic, especially in patients with cystic fibrosis.
Collapse
|
5
|
Bery AI, Belousova N, Hachem RR, Roux A, Kreisel D. Chronic Lung Allograft Dysfunction: Clinical Manifestations and Immunologic Mechanisms. Transplantation 2025; 109:454-466. [PMID: 39104003 PMCID: PMC11799353 DOI: 10.1097/tp.0000000000005162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The term "chronic lung allograft dysfunction" has emerged to describe the clinical syndrome of progressive, largely irreversible dysfunction of pulmonary allografts. This umbrella term comprises 2 major clinical phenotypes: bronchiolitis obliterans syndrome and restrictive allograft syndrome. Here, we discuss the clinical manifestations, diagnostic challenges, and potential therapeutic avenues to address this major barrier to improved long-term outcomes. In addition, we review the immunologic mechanisms thought to propagate each phenotype of chronic lung allograft dysfunction, discuss the various models used to study this process, describe potential therapeutic targets, and identify key unknowns that must be evaluated by future research strategies.
Collapse
Affiliation(s)
- Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Natalia Belousova
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France
| | - Ramsey R Hachem
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Antoine Roux
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France
- Paris Transplant Group, INSERM U 970s, Paris, France
| | - Daniel Kreisel
- Departments of Surgery, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
6
|
On behalf of the KOALA study group, van Gemert JP, Luijk B, Hellemons ME, Visser KA, Hansen C, van der Meer R, Gan CT, van der Vaart H, Akkerman OW, Steenhuis WN, Verkleij M, Heijerman HG, Verschuuren EA. Evaluation of Elexacafor/Tezacaftor/Ivacaftor therapy after lung transplantation in Cystic Fibrosis: The Dutch National KOALA study. JHLT OPEN 2025; 7:100210. [PMID: 40144832 PMCID: PMC11935345 DOI: 10.1016/j.jhlto.2025.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Background Elexacaftor/Tezacaftor/Ivacaftor (ETI) for people with CF (PwCF) after lung transplantation (LTx) has been restrained due to uncertainties regarding efficacy and drug interactions. Given the persistence of extrapulmonary symptoms post-LTx, this prospective study aims to investigate the benefits and safety of ETI for PwCF post-LTx. Methods Between Nov 2022-Nov 2023 ETI was offered to PwCF post-LTx with at least one F508del mutation in 3 Dutch LTx centers. PwCF were considered eligible if they had either a BMI ≤ 19 kg/m², chronic rhinosinusitis (CRS), uncontrolled diabetes or gastrointestinal (GI) symptoms. BMI, HbA1c, SNOT-22 score, GI Symptom Tracker, CF Questionnaire-Revised (CFQ-R), FEV1, creatinine, changes in calcineurin inhibitor (CNI) doses and levels were compared between baseline and 3 months follow-up. Results Fifty-five PwCF post-LTx were included, of whom 5 were excluded because of ETI discontinuation due to side effects, within 3 month follow-up. Three months results showed a decrease in SNOT-22 score (p< 0.001) and GI symptoms (all 4, p< 0.05), an increase in BMI (p= 0.012) and CFQ-R (6 domains, p< 0.05). Median CNI daily dose had to be reduced from 6 to 4 mg (p< 0.001), to maintain stable CNI trough levels. Creatinine increased from 110 (87-141) to 115 (92-125) umol/L (p= 0.002). Conclusion ETI for PwCF post-LTx shows favorable effects on CRS, GI symptoms, and quality of life, but not on BMI and HbA1c. Due to its high cost, careful consideration and further studies are required. Monitoring renal function and CNI trough levels is recommended.
Collapse
Affiliation(s)
- On behalf of the KOALA study group
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Respiratory Diseases, Erasmus MC Transplant Institute, Erasmus University, University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pulmonology, Haga Teaching Hospital, The Hague, the Netherlands
- Amsterdam UMC location University of Amsterdam, Emma Children’s Hospital, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam, the Netherlands
| | - Johanna P. van Gemert
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart Luijk
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Merel E. Hellemons
- Department of Respiratory Diseases, Erasmus MC Transplant Institute, Erasmus University, University Medical Center, Rotterdam, the Netherlands
| | - Klara A. Visser
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Carina.M.E. Hansen
- Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Renske van der Meer
- Department of Pulmonology, Haga Teaching Hospital, The Hague, the Netherlands
| | - C. Tji Gan
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hester van der Vaart
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Onno W. Akkerman
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Willie N. Steenhuis
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marieke Verkleij
- Amsterdam UMC location University of Amsterdam, Emma Children’s Hospital, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam, the Netherlands
| | - Harry G.M. Heijerman
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik A.M. Verschuuren
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Righi I, Barone I, Rosso L, Morlacchi LC, Rossetti V, Caffarena G, Limanaqi F, Palleschi A, Clerici M, Trabattoni D. Immunopathology of lung transplantation: from infection to rejection and vice versa. Front Immunol 2024; 15:1433469. [PMID: 39286256 PMCID: PMC11402714 DOI: 10.3389/fimmu.2024.1433469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Lung transplantation offers a lifesaving option for patients with end-stage lung disease, but it is marred by a high risk of post-transplant infections, particularly involving multidrug-resistant bacteria, Cytomegalovirus, and fungal pathogens. This elevated infection rate, the highest among solid organ transplants, poses a significant challenge for clinicians, particularly within the first year post-transplantation, where infections are the leading cause of mortality. The direct exposure of lung allografts to the external environment exacerbates this vulnerability leading to constant immune stimulation and consequently to an elevated risk of triggering alloimmune responses to the lung allograft. The necessity of prolonged immunosuppression to prevent allograft rejection further complicates patient management by increasing susceptibility to infections and neoplasms, and complicating the differentiation between rejection and infection, which require diametrically opposed management strategies. This review explores the intricate balance between preventing allograft rejection and managing the heightened infection risk in lung transplant recipients.
Collapse
Affiliation(s)
- Ilaria Righi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ivan Barone
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Letizia Corinna Morlacchi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valeria Rossetti
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Caffarena
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, Italy
| | - Alessandro Palleschi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione Don C. Gnocchi IRCCS, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, Italy
| |
Collapse
|
8
|
Bogyó LZ, Török K, Illés Z, Szilvási A, Székely B, Bohács A, Pipek O, Madurka I, Megyesfalvi Z, Rényi-Vámos F, Döme B, Bogos K, Gieszer B, Bakos E. Pseudomonas aeruginosa infection correlates with high MFI donor-specific antibody development following lung transplantation with consequential graft loss and shortened CLAD-free survival. Respir Res 2024; 25:262. [PMID: 38951782 PMCID: PMC11218249 DOI: 10.1186/s12931-024-02868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Donor-specific antibodies (DSAs) are common following lung transplantation (LuTx), yet their role in graft damage is inconclusive. Mean fluorescent intensity (MFI) is the main read-out of DSA diagnostics; however its value is often disregarded when analyzing unwanted post-transplant outcomes such as graft loss or chronic lung allograft dysfunction (CLAD). Here we aim to evaluate an MFI stratification method in these outcomes. METHODS A cohort of 87 LuTx recipients has been analyzed, in which a cutoff of 8000 MFI has been determined for high MFI based on clinically relevant data. Accordingly, recipients were divided into DSA-negative, DSA-low and DSA-high subgroups. Both graft survival and CLAD-free survival were evaluated. Among factors that may contribute to DSA development we analyzed Pseudomonas aeruginosa (P. aeruginosa) infection in bronchoalveolar lavage (BAL) specimens. RESULTS High MFI DSAs contributed to clinical antibody-mediated rejection (AMR) and were associated with significantly worse graft (HR: 5.77, p < 0.0001) and CLAD-free survival (HR: 6.47, p = 0.019) compared to low or negative MFI DSA levels. Analysis of BAL specimens revealed a strong correlation between DSA status, P. aeruginosa infection and BAL neutrophilia. DSA-high status and clinical AMR were both independent prognosticators for decreased graft and CLAD-free survival in our multivariate Cox-regression models, whereas BAL neutrophilia was associated with worse graft survival. CONCLUSIONS P. aeruginosa infection rates are elevated in recipients with a strong DSA response. Our results indicate that the simultaneous interpretation of MFI values and BAL neutrophilia is a feasible approach for risk evaluation and may help clinicians when to initiate DSA desensitization therapy, as early intervention could improve prognosis.
Collapse
Affiliation(s)
- Levente Zoltán Bogyó
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Klára Török
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Zsuzsanna Illés
- Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Anikó Szilvási
- Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Bálint Székely
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
| | - Anikó Bohács
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Orsolya Pipek
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- Department of Physics of Complex Systems, Eotvos Loránd University, Budapest, Hungary
| | - Ildikó Madurka
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ferenc Rényi-Vámos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
| | - Balázs Döme
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Krisztina Bogos
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary.
| | - Balázs Gieszer
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary.
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary.
| | - Eszter Bakos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
| |
Collapse
|
9
|
Ohizumi Y, Kurokawa R, Amemiya S, Ito T, Sato M, Abe O. Restrictive Allograft Syndrome After COVID-19 Pneumonia: A Case Report. Cureus 2024; 16:e54583. [PMID: 38384867 PMCID: PMC10879649 DOI: 10.7759/cureus.54583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
Chronic lung allograft dysfunction (CLAD) continues to be the leading cause of death in the long term after lung transplantation (LTx). CLAD has the following two main subtypes: bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). BOS features obstructive lung dysfunction, while RAS features restrictive lung dysfunction. Overall, RAS has a worse prognosis. The pathophysiology of CLAD is not fully understood; however, pulmonary infections can trigger CLAD, including coronavirus disease 2019 (COVID-19) pneumonia. Here, we describe a case of a 55-year-old female who received LTx about seven years ago and developed RAS after COVID-19 pneumonia. RAS was ultimately diagnosed based on the clinical course and imaging findings. Steroid pulse therapy and empirical antimicrobial therapy were initiated, but respiratory failure progressed, and the patient died 139 days after COVID-19 diagnosis, and 83 days after dyspnea progression. Clinicians should be aware of unusual stair-step clinical courses and imaging features in a given setting of pulmonary infection including COVID-19 to suspect CLAD in lung transplant patients.
Collapse
Affiliation(s)
- Yuji Ohizumi
- Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, JPN
| | - Ryo Kurokawa
- Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, JPN
| | - Shiori Amemiya
- Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, JPN
| | - Tatsuya Ito
- Respiratory Medicine, Ome Municipal General Hospital, Tokyo, JPN
| | - Masaaki Sato
- Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, JPN
| | - Osamu Abe
- Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, JPN
| |
Collapse
|
10
|
Bansal S, Rahman M, Ravichandran R, Canez J, Fleming T, Mohanakumar T. Extracellular Vesicles in Transplantation: Friend or Foe. Transplantation 2024; 108:374-385. [PMID: 37482627 DOI: 10.1097/tp.0000000000004693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The long-term function of transplanted organs, even under immunosuppression, is hindered by rejection, especially chronic rejection. Chronic rejection occurs more frequently after lung transplantation, termed chronic lung allograft dysfunction (CLAD), than after transplantation of other solid organs. Pulmonary infection is a known risk factor for CLAD, as transplanted lungs are constantly exposed to the external environment; however, the mechanisms by which respiratory infections lead to CLAD are poorly understood. The role of extracellular vesicles (EVs) in transplantation remains largely unknown. Current evidence suggests that EVs released from transplanted organs can serve as friend and foe. EVs carry not only major histocompatibility complex antigens but also tissue-restricted self-antigens and various transcription factors, costimulatory molecules, and microRNAs capable of regulating alloimmune responses. EVs play an important role in antigen presentation by direct, indirect, and semidirect pathways in which CD8 and CD4 cells can be activated. During viral infections, exosomes (small EVs <200 nm in diameter) can express viral antigens and regulate immune responses. Circulating exosomes may also be a viable biomarker for other diseases and rejection after organ transplantation. Bioengineering the surface of exosomes has been proposed as a tool for targeted delivery of drugs and personalized medicine. This review focuses on recent studies demonstrating the role of EVs with a focus on exosomes and their dual role (immune activation or tolerance induction) after organ transplantation, more specifically, lung transplantation.
Collapse
Affiliation(s)
- Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | | | | | | | | | | |
Collapse
|
11
|
Yu Y, Kim YH, Cho WH, Kim D, So MW, Son BS, Yeo HJ. Unique Changes in the Lung Microbiome following the Development of Chronic Lung Allograft Dysfunction. Microorganisms 2024; 12:287. [PMID: 38399691 PMCID: PMC10893466 DOI: 10.3390/microorganisms12020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The importance of lung microbiome changes in developing chronic lung allograft dysfunction (CLAD) after lung transplantation is poorly understood. The lung microbiome-immune interaction may be critical in developing CLAD. In this context, examining alterations in the microbiome and immune cells of the lungs following CLAD, in comparison to the lung condition immediately after transplantation, can offer valuable insights. Four adult patients who underwent lung retransplantation between January 2019 and June 2020 were included in this study. Lung tissues were collected from the same four individuals at two different time points: at the time of the first transplant and at the time of the explantation of CLAD lungs at retransplantation due to CLAD. We analyzed whole-genome sequencing using the Kraken2 algorithm and quantified the cell fractionation from the bulk tissue gene expression profile for each lung tissue. Finally, we compared the differences in lung microbiome and immune cells between the lung tissues of these two time points. The median age of the recipients was 57 years, and most (75%) had undergone lung transplants for idiopathic pulmonary fibrosis. All patients were administered basiliximab for induction therapy and were maintained on three immunosuppressants. The median CLAD-free survival term was 693.5 days, and the median time to redo the lung transplant was 843.5 days. Bacterial diversity was significantly lower in the CLAD lungs than at transplantation. Bacterial diversity tended to decrease according to the severity of the CLAD. Aerococcus, Caldiericum, Croceibacter, Leptolyngbya, and Pulveribacter genera were uniquely identified in CLAD, whereas no taxa were identified in lungs at transplantation. In particular, six taxa, including Croceibacter atlanticus, Caldiserium exile, Dolichospermum compactum, Stappia sp. ES.058, Kinetoplastibacterium sorsogonicusi, and Pulveribacter suum were uniquely detected in CLAD. Among immune cells, CD8+ T cells were significantly increased, while neutrophils were decreased in the CLAD lung. In conclusion, unique changes in lung microbiome and immune cell composition were confirmed in lung tissue after CLAD compared to at transplantation.
Collapse
Affiliation(s)
- Yeuni Yu
- Biomedical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Yun Hak Kim
- Department of Anatomy and Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Woo Hyun Cho
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Dohyung Kim
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Min Wook So
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Bong Soo Son
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Hye Ju Yeo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
12
|
Birnie JD, Ahmed T, Kidd SE, Westall GP, Snell GI, Peleg AY, Morrissey CO. Multi-Locus Microsatellite Typing of Colonising and Invasive Aspergillus fumigatus Isolates from Patients Post Lung Transplantation and with Chronic Lung Disease. J Fungi (Basel) 2024; 10:95. [PMID: 38392766 PMCID: PMC10889758 DOI: 10.3390/jof10020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Aspergillus fumigatus can cause different clinical manifestations/phenotypes in lung transplant (LTx) recipients and patients with chronic respiratory diseases. It can also precipitate chronic lung allograft dysfunction (CLAD) in LTx recipients. Many host factors have been linked with the severity of A. fumigatus infection, but little is known about the contribution of different A. fumigatus strains to the development of different phenotypes and CLAD. We used multi-locus microsatellite typing (MLMT) to determine if there is a relationship between strain (i.e., genotype) and phenotype in 60 patients post LTx or with chronic respiratory disease across two time periods (1 November 2006-31 March 2009 and 1 November 2015-30 June 2017). The MLMT (STRAf) assay was highly discriminatory (Simpson's diversity index of 0.9819-0.9942) with no dominant strain detected. No specific genotype-phenotype link was detected, but several clusters and related strains were associated with invasive aspergillosis (IA) and colonisation in the absence of CLAD. Host factors were linked to clinical phenotypes, with prior lymphopenia significantly more common in IA cases as compared with A. fumigatus-colonised patients (12/16 [75%] vs. 13/36 [36.1%]; p = 0.01), and prior Staphylococcus aureus infection was a significant risk factor for the development of IA (odds ratio 13.8; 95% confidence interval [2.01-279.23]). A trend toward a greater incidence of CMV reactivation post-A. fumigatus isolation was observed (0 vs. 5; p = 0.06) in LTx recipients. Further research is required to determine the pathogenicity and immunogenicity of specific A. fumigatus strains.
Collapse
Affiliation(s)
- Joshua D Birnie
- University Hospital Geelong, Barwon Health, Geelong, VIC 3220, Australia
| | - Tanveer Ahmed
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, SA 5000, Australia
| | - Glen P Westall
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Gregory I Snell
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
| | - Catherine Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
13
|
Huang W, Smith AT, Korotun M, Iacono A, Wang J. Lung Transplantation in a New Era in the Field of Cystic Fibrosis. Life (Basel) 2023; 13:1600. [PMID: 37511977 PMCID: PMC10381966 DOI: 10.3390/life13071600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Lung transplantation for people with cystic fibrosis (PwCF) is a critical therapeutic option, in a disease without a cure to this day, and its overall success in this population is evident. The medical advancements in knowledge, treatment, and clinical care in the field of cystic fibrosis (CF) rapidly expanded and improved over the last several decades, starting from early pathology reports of CF organ involvement in 1938, to the identification of the CF gene in 1989. Lung transplantation for CF has been performed since 1983, and CF now accounts for about 17% of pre-transplantation diagnoses in lung transplantation recipients. Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have been the latest new therapeutic modality addressing the underlying CF protein defect with the first modulator, ivacaftor, approved in 2012. Fast forward to today, and we now have a growing CF population. More than half of PwCF are now adults, and younger patients face a better life expectancy than they ever did before. Unfortunately, CFTR modulator therapy is not effective in all patients, and efficacy varies among patients; it is not a cure, and CF remains a progressive disease that leads predominantly to respiratory failure. Lung transplantation remains a lifesaving treatment for this disease. Here, we reviewed the current knowledge of lung transplantation in PwCF, the challenges associated with its implementation, and the ongoing changes to the field as we enter a new era in the care of PwCF. Improved life expectancy in PwCF will surely influence the role of transplantation in patient care and may even lead to a change in the demographics of which people benefit most from transplantation.
Collapse
Affiliation(s)
- Wei Huang
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Alexander T Smith
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Maksim Korotun
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Aldo Iacono
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Janice Wang
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Institute of Health System Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
14
|
Boutin CA, Desjardins M, Luong ML. Fungal infection and chronic lung allograft dysfunction: A dangerous combination. Transpl Infect Dis 2022; 24:e13987. [PMID: 36380580 DOI: 10.1111/tid.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Catherine-Audrey Boutin
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Division of Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Division of Infectious Disease, Department of Medicine, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Michaël Desjardins
- Division of Infectious Disease, Department of Medicine, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Me-Linh Luong
- Division of Infectious Disease, Department of Medicine, University of Montreal Hospital Center, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Pennington KM, Aversa M, Martinu T, Johnson B, Husain S. Fungal infection and colonization in lung transplant recipients with chronic lung allograft dysfunction. Transpl Infect Dis 2022; 24:e13986. [PMID: 36380578 DOI: 10.1111/tid.13986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The incidence and impact of de novo fungal airway colonization and infection in lung transplant recipients (LTRs) with known chronic lung allograft dysfunction (CLAD) has not been established. We aimed to determine the 1-year cumulative incidence and risk factors of de novo fungal colonization or infection in LTRs with CLAD and assess the impact of colonization or infection on post-CLAD survival. METHODS Prospectively collected Toronto Lung Transplant Program database and chart review were used for double-LTRs who were diagnosed with CLAD from January 1, 2016 to January 1, 2020 and who were free of airway fungi within 1 year prior to CLAD onset. International Society for Heart and Lung Transplantation definitions were used to define clinical syndromes. Cox-Proportional Hazards Models were used for risk-factor analysis. Survival analysis could not be completed secondary to low number of fungal events; therefore, descriptive statistics were employed for survival outcomes. RESULTS We found 186 LTRs diagnosed with CLAD meeting our inclusion criteria. The 1-year cumulative incidence for any fungal event was 11.8% (7.0% for infection and 4.8% for colonization). Aspergillus fumigatus was a causative pathogen in eight of 13 (61.5%) patients with infection and six of nine (66.7%) patients with colonization. No patients with fungal colonization post-CLAD developed fungal infection. Peri-CLAD diagnosis (3 months prior or 1 month after) methylprednisolone bolus (hazards ratio: 8.84, p = .001) increased the risk of fungal events. Most patients diagnosed with fungal infections (53.8%) died within 1-year of CLAD onset. CONCLUSION De novo IFIs and fungal colonization following CLAD onset were not common. Fungal colonization did not lead to fungal infection. Methylprednisolone bolus was a significant risk factors for post-CLAD fungal events.
Collapse
Affiliation(s)
- Kelly M Pennington
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Meghan Aversa
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Tereza Martinu
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Bradley Johnson
- Department of Biostatistics, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahid Husain
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada.,Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Bazemore K, Permpalung N, Mathew J, Lemma M, Haile B, Avery R, Kong H, Jang MK, Andargie T, Gopinath S, Nathan SD, Aryal S, Orens J, Valantine H, Agbor-Enoh S, Shah P. Elevated cell-free DNA in respiratory viral infection and associated lung allograft dysfunction. Am J Transplant 2022; 22:2560-2570. [PMID: 35729715 DOI: 10.1111/ajt.17125] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023]
Abstract
Respiratory viral infection (RVI) in lung transplant recipients (LTRs) is a risk for chronic lung allograft dysfunction (CLAD). We hypothesize that donor-derived cell-free DNA (%ddcfDNA), at the time of RVI predicts CLAD progression. We followed 39 LTRs with RVI enrolled in the Genomic Research Alliance for Transplantation for 1 year. Plasma %ddcfDNA was measured by shotgun sequencing, with high %ddcfDNA as ≥1% within 7 days of RVI. We examined %ddcfDNA, spirometry, and a composite (progression/failure) of CLAD stage progression, re-transplant, and death from respiratory failure. Fifty-nine RVI episodes, 38 low and 21 high %ddcfDNA were analyzed. High %ddcfDNA subjects had a greater median %FEV1 decline at RVI (-13.83 vs. -1.83, p = .007), day 90 (-7.97 vs. 0.91, p = .04), and 365 (-20.05 vs. 1.09, p = .047), compared to those with low %ddcfDNA and experienced greater progression/failure within 365 days (52.4% vs. 21.6%, p = .01). Elevated %ddcfDNA at RVI was associated with an increased risk of progression/failure adjusting for symptoms and days post-transplant (HR = 1.11, p = .04). No difference in %FEV1 decline was seen at any time point when RVIs were grouped by histopathology result at RVI. %ddcfDNA delineates LTRs with RVI who will recover lung function and who will experience sustained decline, a utility not seen with histopathology.
Collapse
Affiliation(s)
- Katrina Bazemore
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nitipong Permpalung
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Mycology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joby Mathew
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Merte Lemma
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | | | - Robin Avery
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hyesik Kong
- Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Moon Kyoo Jang
- Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Temesgen Andargie
- Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Shilpa Gopinath
- Division of Transplant Oncology Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia.,Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Shambhu Aryal
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | - Jonathan Orens
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Hannah Valantine
- Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Sean Agbor-Enoh
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Pali Shah
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| |
Collapse
|
17
|
Matthaiou EI, Chiu W, Conrad C, Hsu J. Macrophage Lysosomal Alkalinization Drives Invasive Aspergillosis in a Mouse Cystic Fibrosis Model of Airway Transplantation. J Fungi (Basel) 2022; 8:751. [PMID: 35887506 PMCID: PMC9321820 DOI: 10.3390/jof8070751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) lung transplant recipients (LTRs) exhibit a disproportionately high rate of life-threatening invasive aspergillosis (IA). Loss of the cystic fibrosis transmembrane conductance regulator (CFTR-/-) in macrophages (mφs) has been associated with lyosomal alkalinization. We hypothesize that this alkalinization would persist in the iron-laden post-transplant microenvironment increasing the risk of IA. To investigate our hypothesis, we developed a murine CF orthotopic tracheal transplant (OTT) model. Iron levels were detected by immunofluorescence staining and colorimetric assays. Aspergillus fumigatus (Af) invasion was evaluated by Grocott methenamine silver staining. Phagocytosis and killing of Af conidia were examined by flow cytometry and confocal microscopy. pH and lysosomal acidification were measured by LysoSensorTM and LysotrackerTM, respectively. Af was more invasive in the CF airway transplant recipient compared to the WT recipient (p < 0.05). CFTR-/- mφs were alkaline at baseline, a characteristic that was increased with iron-overload. These CFTR-/- mφs were unable to phagocytose and kill Af conidia (p < 0.001). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles acidified lysosomes, restoring the CFTR-/- mφs’ ability to clear conidia. Our results suggest that CFTR-/- mφs’ alkalinization interacts with the iron-loaded transplant microenvironment, decreasing the CF-mφs’ ability to kill Af conidia, which may explain the increased risk of IA. Therapeutic pH modulation after transplantation could decrease the risk of IA.
Collapse
Affiliation(s)
- Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| | - Wayland Chiu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Conrad
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Joe Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| |
Collapse
|
18
|
Glanville AR, Benden C, Bergeron A, Cheng GS, Gottlieb J, Lease ED, Perch M, Todd JL, Williams KM, Verleden GM. Bronchiolitis obliterans syndrome after lung or haematopoietic stem cell transplantation: current management and future directions. ERJ Open Res 2022; 8:00185-2022. [PMID: 35898810 PMCID: PMC9309343 DOI: 10.1183/23120541.00185-2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) may develop after either lung or haematopoietic stem cell transplantation (HSCT), with similarities in histopathological features and clinical manifestations. However, there are differences in the contributory factors and clinical trajectories between the two conditions. BOS after HSCT occurs due to systemic graft-versus-host-disease (GVHD), whereas BOS after lung transplantation is limited to the lung allograft. BOS diagnosis after HSCT is more challenging, as the lung function decline may occur due to extrapulmonary GVHD, causing sclerosis or inflammation in the fascia or muscles of the respiratory girdle. Treatment is generally empirical with no established effective therapies. This review provides rare insights and commonalities of both conditions, that are not well elaborated elsewhere in contemporary literature, and highlights the importance of cross disciplinary learning from experts in other transplant modalities. Treatment algorithms for each condition are presented, based on the published literature and consensus clinical opinion. Immunosuppression should be optimised, and other conditions or contributory factors treated where possible. When initial treatment fails, the ultimate therapeutic option is lung transplantation (or re-transplantation in the case of BOS after lung transplantation) in carefully selected candidates. Novel therapies under investigation include aerosolised liposomal cyclosporine, Janus kinase inhibitors, antifibrotic therapies, and (in patients with BOS after lung transplantation) B-cell–directed therapies. Effective novel treatments that have a tangible impact on survival and thereby avoid the need for lung transplantation or re-transplantation are urgently required.
Collapse
|
19
|
Kim T, Yeo HJ, Jang JH, Kim D, Jeon D, Kim YS, Cho WH. Prognostic impact of preoperative respiratory colonization on early-onset pneumonia after lung transplantation. J Thorac Dis 2022; 14:1900-1908. [PMID: 35813721 PMCID: PMC9264098 DOI: 10.21037/jtd-21-1724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/29/2022] [Indexed: 11/15/2022]
Abstract
Background The number of lung transplantation procedures is rapidly increasing worldwide. Little is known about the effect of perioperative respiratory microbial colonization on pneumonia during lung transplantation. We evaluated the microbiome composition and incidence of early pneumonia in patients undergoing lung transplantation. We investigated factors related to post-transplant pneumonia (PTP) after lung transplantation. Methods A retrospective analysis of patients subjected to lung transplantation between May 2013 and December 2019 was performed. Perioperative microbial colonization, and its relationship with early pneumonia, were examined in specimens from bronchial washing, bronchoalveolar lavage, and sputum aspiration before and after surgery. One-year mortality, as the primary outcome, was analyzed using the Kaplan-Meier curve model. Results Among 76 patients who underwent lung transplantation, 34 donors (44.7%) and 28 recipients (36.8%) showed positive respiratory cultures with respect to preoperative respiratory colonization. A separate analysis of donors and recipients showed that 42 donors and 48 recipients were in respiratory non-colonized state, and 28 (53.8%) donors and 36 (69.2%) recipients survived 1 year after lung transplantation. Acinectobacter baumannii was the most common respiratory multidrug-resistant (MDR) pathogen. PTP was significantly lower in the survivor group (38.5% vs. 70.8%, P=0.009). Out of the recipients with preoperative respiratory colonization, 57.1% survived 1 year after lung transplantation. Patients with PTP had significantly higher 1-year mortality than those without PTP (P=0.009). Preoperative respiratory colonization of the recipients (P=0.010) and PTP patients (P=0.005) was associated with high 1-year mortality rate. Perioperative respiratory colonization of donors was not associated with the incidence of PTP and 1-year survival. Conclusions Perioperative colonization of recipients was a powerful predictive factor for PTP, which was associated with 1-year mortality in patients subjected to lung transplantation. Our results suggest that donor acceptance criteria may change to better address potential shortages in organ donation.
Collapse
Affiliation(s)
- Taehwa Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Research Institute for Convergence of Biomedical Science and Technology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hye Ju Yeo
- Division of Pulmonology, Allergy and Critical Care Medicine, Research Institute for Convergence of Biomedical Science and Technology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jin Ho Jang
- Division of Pulmonology, Allergy and Critical Care Medicine, Research Institute for Convergence of Biomedical Science and Technology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Dohyung Kim
- Department of Cardiovascular and Thoracic Surgery, Pusan National University Yangsan Hospital, Yangsan, Korea.,Department of Internal Medicine, School of Medicine, Pusan National University, Pusan, Korea
| | - Doosoo Jeon
- Division of Pulmonology, Allergy and Critical Care Medicine, Research Institute for Convergence of Biomedical Science and Technology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea.,Department of Internal Medicine, School of Medicine, Pusan National University, Pusan, Korea
| | - Yun Seong Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Research Institute for Convergence of Biomedical Science and Technology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea.,Department of Internal Medicine, School of Medicine, Pusan National University, Pusan, Korea
| | - Woo Hyun Cho
- Division of Pulmonology, Allergy and Critical Care Medicine, Research Institute for Convergence of Biomedical Science and Technology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea.,Department of Internal Medicine, School of Medicine, Pusan National University, Pusan, Korea
| |
Collapse
|
20
|
de Fays C, Carlier FM, Gohy S, Pilette C. Secretory Immunoglobulin A Immunity in Chronic Obstructive Respiratory Diseases. Cells 2022; 11:1324. [PMID: 35456002 PMCID: PMC9027823 DOI: 10.3390/cells11081324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), asthma and cystic fibrosis (CF) are distinct respiratory diseases that share features such as the obstruction of small airways and disease flare-ups that are called exacerbations and are often caused by infections. Along the airway epithelium, immunoglobulin (Ig) A contributes to first line mucosal protection against inhaled particles and pathogens. Dimeric IgA produced by mucosal plasma cells is transported towards the apical pole of airway epithelial cells by the polymeric Ig receptor (pIgR), where it is released as secretory IgA. Secretory IgA mediates immune exclusion and promotes the clearance of pathogens from the airway surface by inhibiting their adherence to the epithelium. In this review, we summarize the current knowledge regarding alterations of the IgA/pIgR system observed in those major obstructive airway diseases and discuss their implication for disease pathogenesis.
Collapse
Affiliation(s)
- Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
| | - François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, CHU UCL Namur, Site Mont-Godinne, 5530 Yvoir, Belgium
- Lung Transplant Centre, CHU UCL Namur, Site Mont-Godinne, 5530 Yvoir, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
21
|
Vos R, Van Herck A. Pseudomonas aeruginosa and chronic lung allograft dysfunction: does evading an iceberg prevent the ship from sinking? Eur Respir J 2021; 58:13993003.00041-2021. [PMID: 34326173 DOI: 10.1183/13993003.00041-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/09/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Robin Vos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium .,Dept CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Anke Van Herck
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Dery KJ, Górski A, Międzybrodzki R, Farmer DG, Kupiec-Weglinski JW. Therapeutic Perspectives and Mechanistic Insights of Phage Therapy in Allotransplantation. Transplantation 2021; 105:1449-1458. [PMID: 33273319 DOI: 10.1097/tp.0000000000003565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterio(phages) are bacteria-infecting viruses that employ host translation machinery to replicate, and upon cell lysis, release new particles into the environment. As a result, phages are prey-specific, thus making targeted phage therapy (PT) possible. Indeed, pre- and posttransplant bacterial infections pose a substantial risk to allograft recipients in their clinical course. Moreover, with the increasing threat of antibiotic resistance, the interest in PT as a potential solution to the crisis of multidrug-resistant bacterial pathogens has rapidly grown. Although little is known about the specific characteristics of the phage-directed immune responses, recent studies indicate phages exert anti-inflammatory and immunomodulatory functions, which could be beneficial in allotransplantation (allo-Tx). PT targeting multidrug-resistant Klebsiella pneumoniae, Mycobacterium abscessus, and Pseudomonas aeruginosa have been successfully applied in renal, lung, and liver allo-Tx patients. In parallel, the gastrointestinal microbiota appears to influence allo-Tx immunity by modulating the endoplasmic reticulum stress and autophagy signaling pathways through hepatic EP4/CHOP/LC3B platforms. This review highlights the current relevant immunobiology, clinical developments, and management of PT, and lays the foundation for future potential standard care use of PT in allo-Tx to mitigate early allograft dysfunction and improve outcomes. In conclusion, with novel immunobiology and metabolomics insights, harnessing the potential of PT to modulate microbiota composition/diversity may offer safe and effective refined therapeutic means to reduce risks of infections and immunosuppression in allo-Tx recipients.
Collapse
Affiliation(s)
- Kenneth J Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Infant Jesus Teaching Hospital, Department of Clinical Immunology, The Medical University of Warsaw, Warsaw, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Clinical Immunology, The Medical University of Warsaw, Warsaw, Poland
| | - Douglas G Farmer
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jerzy W Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
23
|
Kwon DE, Lee HS, Lee KH, La Y, Han SH, Song YG. Incidence of herpes zoster in adult solid organ transplant recipients: A meta-analysis and comprehensive review. Transpl Infect Dis 2021; 23:e13674. [PMID: 34153168 DOI: 10.1111/tid.13674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic immunosuppressive therapy in solid organ transplant (SOT) recipients can trigger latent varicella zoster virus reactivation even in those with stable graft function. The inactivated herpes zoster (HZ) vaccine can be effective in preventing post-transplant HZ, which can cause severe neuralgia or disseminated disease. This meta-analysis aims to assess the incidences of HZ across transplant organs in SOT recipients. METHODS We included 12 observational studies (6560 recipients) from a PubMed and EMBASE search of articles through October 2019 and collected data from single-center dating from January 2001 to December 2017 (3498 recipients). The pooled HZ incidence and its differences between subgroups were obtained from random-effect models and meta-analysis of variance tests using R package. RESULTS The overall pooled crude incidence was 9.1% (95% confidence interval [CI], 7.6%-10.8%). The pooled incidence was similar between sexes but significantly different between transplanted organs (P < .001). Heart transplants (HT) (n = 644) have the highest pooled incidence with 15.2% (95% CI, 12.7%-18.2%), followed by lung transplants (LTX) (n = 780) with 11.0% (8.3%-14.4%). Kidney transplants (n = 5435) have the lowest incidence of 6.7 (5.1%-8.8%). The meta-regression analysis revealed that HZ development had a relationship with past graft rejection (P = .024). CONCLUSION These data support the need for subunit HZ vaccination in SOT recipients with a high risk for HZ, especially HT and LTX recipients, without respect to the late post-transplant period.
Collapse
Affiliation(s)
- Da Eun Kwon
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeonju La
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Han
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Goo Song
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
24
|
Bazemore K, Rohly M, Permpalung N, Yu K, Timofte I, Brown AW, Orens J, Iacono A, Nathan SD, Avery RK, Valantine H, Agbor-Enoh S, Shah PD. Donor derived cell free DNA% is elevated with pathogens that are risk factors for acute and chronic lung allograft injury. J Heart Lung Transplant 2021; 40:1454-1462. [PMID: 34344623 DOI: 10.1016/j.healun.2021.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute and chronic forms of lung allograft injury are associated with specific respiratory pathogens. Donor-derived cell free DNA (ddcfDNA) has been shown to be elevated with acute lung allograft injury and predictive of long-term outcomes. We examined the %ddcfDNA values at times of microbial isolation from bronchoalveolar lavage (BAL). METHODS Two hundred and six BAL samples from 51 Lung Transplant Recipients (LTRs) with concurrently available plasma %ddcfDNA were analyzed along with microbiology and histopathology. Microbial species were grouped into bacterial, fungal, and viral and "higher risk" and "lower risk" cohorts based on historical association with downstream allograft dysfunction. Analyses were performed to determine pathogen category association with %ddcfDNA, independent of inter-subject variability. RESULTS Presence of microbial isolates in BAL was not associated with elevated %ddcfDNA compared to samples without isolates. However, "higher risk" bacterial and viral microbes showed greater %ddcfDNA values than lower risk species (1.19% vs. 0.65%, p < 0.01), independent of inter-subject variability. Histopathologic abnormalities concurrent with pathogen isolation were associated with higher %ddcfDNA compared to isolation episodes with normal histopathology (medians 1.23% and 0.66%, p = 0.05). Assessments showed no evidence of correlation between histopathology or bronchoscopy indication and presence of higher risk vs. lower risk pathogens. CONCLUSION %ddcfDNA is higher among cases of microbial isolation with concurrent abnormal histopathology and with isolation of higher risk pathogens known to increase risk of allograft dysfunction. Future studies should assess if %ddcfDNA can be used to stratify pathogens for risk of CLAD and identify pathogen associated injury prior to histopathology.
Collapse
Affiliation(s)
- Katrina Bazemore
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | | | - Nitipong Permpalung
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Kai Yu
- National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Irina Timofte
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Department of Medicine, University of Maryland, College Park, Maryland
| | - A Whitney Brown
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | - Jonathan Orens
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Aldo Iacono
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Department of Medicine, University of Maryland, College Park, Maryland
| | - Steven D Nathan
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Department of Medicine, University of Maryland, College Park, Maryland
| | - Robin K Avery
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Hannah Valantine
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| | - Pali D Shah
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland.
| |
Collapse
|
25
|
Le Pavec J, Pradère P, Gigandon A, Dauriat G, Dureault A, Aguilar C, Henry B, Lanternier F, Savale L, Dolidon S, Gazengel P, Mussot S, Mercier O, Husain S, Lortholary O, Fadel E. Risk of Lung Allograft Dysfunction Associated With Aspergillus Infection. Transplant Direct 2021; 7:e675. [PMID: 34113715 PMCID: PMC8184025 DOI: 10.1097/txd.0000000000001128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/26/2020] [Indexed: 11/25/2022] Open
Abstract
We sought to determine whether invasive aspergillosis (IA) during the first year after lung transplantation increased the risk of chronic lung allograft dysfunction (CLAD). Methods We retrospectively reviewed the records of 191 patients who underwent lung transplantation at our institution between January 2013 and December 2017. Screening for Aspergillus was with bronchial aspirates, bronchoalveolar lavage if indicated or during surveillance bronchoscopy, radiography, and computed tomography. We used Fine and Gray multivariable regression to identify potential risk factors for CLAD. Results During the first posttransplant year, 72 patients had at least 1 deep-airway sample positive for Aspergillus; 63 were classified as having IA and were included in the study. Median number of endoscopies per patient during the first year was 9 (range, 1-44). Median time from transplantation to first Aspergillus-positive sample was 121 d. Bronchial aspirate samples and bronchoalveolar lavage fluid were positive in 71 and 44 patients, respectively. Aspergillus fumigatus (n = 36, 50%) predominated; bacterial samples were also positive in 22 (31%) patients. IA within 4 mo after transplantation was independently associated with CLAD development (subdistribution hazard ratio, 3.75; 95% confidence interval [CI], 1.61-8.73; P < 0.01) by regression analysis. Survival at 3 and 5 y conditional on 1-y CLAD-free survival was 37% (95% CI, 24%-58%), and 24% (95% CI, 11%-52%) in the IA <4 mo group compared to 65% (95% CI, 57%-73%) and 54% (95% CI, 43%-66%) in the non-IA group and to 69% (95% CI, 58%-83%) and 54% (95% CI, 35%-82%) in the IA ≥4 mo group, respectively (P < 0.01, logrank test). Conclusions Our evaluation of de novo IA showed that this infection was most strongly associated with CLAD when found within 4 mo after transplantation.
Collapse
Affiliation(s)
- Jérôme Le Pavec
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Pauline Pradère
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Anne Gigandon
- Service de microbiologie, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Gaëlle Dauriat
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Amélie Dureault
- Molecular Mycology Unit, UMR2000, CNRS, Institut Pasteur, Paris, France.,Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Hôpital Necker Enfants malades, AP-HP, IHU Imagine, Paris Descartes University, Université de Paris, Paris, France
| | - Claire Aguilar
- Molecular Mycology Unit, UMR2000, CNRS, Institut Pasteur, Paris, France.,Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Hôpital Necker Enfants malades, AP-HP, IHU Imagine, Paris Descartes University, Université de Paris, Paris, France
| | - Benoît Henry
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Service de microbiologie, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Molecular Mycology Unit, UMR2000, CNRS, Institut Pasteur, Paris, France
| | - Fanny Lanternier
- Molecular Mycology Unit, UMR2000, CNRS, Institut Pasteur, Paris, France.,Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Hôpital Necker Enfants malades, AP-HP, IHU Imagine, Paris Descartes University, Université de Paris, Paris, France
| | - Laurent Savale
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France.,AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Samuel Dolidon
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Pierre Gazengel
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Sacha Mussot
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Olaf Mercier
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Shahid Husain
- University of Toronto, University Health Network, Toronto, ON, Canada
| | - Olivier Lortholary
- Molecular Mycology Unit, UMR2000, CNRS, Institut Pasteur, Paris, France.,Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Hôpital Necker Enfants malades, AP-HP, IHU Imagine, Paris Descartes University, Université de Paris, Paris, France
| | - Elie Fadel
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
26
|
Effects of Multidrug-resistant Bacteria in Donor Lower Respiratory Tract on Early Posttransplant Pneumonia in Lung Transplant Recipients Without Pretransplant Infection. Transplantation 2020; 104:e98-e106. [PMID: 31895333 DOI: 10.1097/tp.0000000000003102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria in the lower respiratory tracts of allografts may be risk factors for early posttransplant pneumonia (PTP) that causes detrimental outcomes in lung transplant recipients (LTRs). We evaluated the effects of immediate changes in MDR bacteria in allografts on early PTP and mortality rates in LTRs. METHODS We reviewed 90 adult bilateral LTRs without pretransplant infections who underwent lung transplantation between October 2012 and May 2018. Quantitative cultures were performed with the bronchoalveolar lavage fluids of the allografts preanastomosis and within 3 days posttransplant. The International Society for Heart and Lung Transplantation consensus defines early PTP as pneumonia acquired within 30 days posttransplant and not associated with acute rejection. RESULTS MDR Acinetobacter baumannii (11/34, 32.4%) and Staphylococcus aureus (9/34, 26.5%) were identified in 24.4% (22/90) of the preanastomosis allografts. Four LTRs had the same MDR bacteria in allografts preanastomosis and posttransplant. Allograft MDR bacteria disappeared in 50% of the LTRs within 3 days posttransplant. Early PTP and all-cause in-hospital mortality rates were not different between LTRs with and without preanastomosis MDR bacteria (P = 0.75 and 0.93, respectively). MDR bacteria ≥10 CFU/mL in the lungs within 3 days posttransplant was associated with early PTP (odds ratio, 5.8; 95% confidence interval, 1.3-27.0; P = 0.03). CONCLUSIONS High levels of preexisting MDR bacteria in allografts did not increase early PTP and mortality rates in LTRs. Despite the small and highly selective study population, lung allografts with MDR bacteria may be safely transplanted with appropriate posttransplant antibiotic therapy.
Collapse
|
27
|
Peghin M, Los-Arcos I, Hirsch HH, Codina G, Monforte V, Bravo C, Berastegui C, Jauregui A, Romero L, Cabral E, Ferrer R, Sacanell J, Román A, Len O, Gavaldà J. Community-acquired Respiratory Viruses Are a Risk Factor for Chronic Lung Allograft Dysfunction. Clin Infect Dis 2020; 69:1192-1197. [PMID: 30561555 PMCID: PMC7797743 DOI: 10.1093/cid/ciy1047] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023] Open
Abstract
Background The relationship between community-acquired respiratory viruses (CARVs) and chronic lung allograft dysfunction (CLAD) in lung transplant recipients is still controversial. Methods We performed a prospective cohort study (2009–2014) in all consecutive adult patients (≥18 years) undergoing lung transplantation in the Hospital Universitari Vall d’Hebron (Barcelona, Spain). We systematically collected nasopharyngeal swabs from asymptomatic patients during seasonal changes, from patients with upper respiratory tract infectious disease, lower respiratory tract infectious disease (LRTID), or acute rejection. Nasopharyngeal swabs were analyzed by multiplex polymerase chain reaction. Primary outcome was to evaluate the potential association of CARVs and development of CLAD. Time-dependent Cox regression models were performed to identify the independent risk factors for CLAD. Results Overall, 98 patients (67 bilateral lung transplant recipients; 63.3% male; mean age, 49.9 years) were included. Mean postoperative follow-up was 3.4 years (interquartile range [IQR], 2.5–4.0 years). Thirty-eight lung transplant recipients (38.8%) developed CLAD, in a median time of 20.4 months (IQR, 12–30.4 months). In time-controlled multivariate analysis, CARV-LRTID (hazard ratio [HR], 3.00 [95% confidence interval {CI}, 1.52–5.91]; P = .002), acute rejection (HR, 2.97 [95% CI, 1.51–5.83]; P = .002), and cytomegalovirus pneumonitis (HR, 3.76 [95% CI, 1.23–11.49]; P = .02) were independent risk factors associated with developing CLAD. Conclusions Lung transplant recipients with CARVs in the lower respiratory tract are at increased risk to develop CLAD.
Collapse
Affiliation(s)
- Maddalena Peghin
- Infectious Diseases Research Group, Vall d'Hebron Research Institute, Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid.,Infectious Diseases Clinic, Department of Medicine, University of Udine and Santa Maria Misericordia Hospital, Italy
| | - Ibai Los-Arcos
- Infectious Diseases Research Group, Vall d'Hebron Research Institute, Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona.,Department of Medicine, Universitat Autònoma de Barcelona, Spain
| | - Hans H Hirsch
- Division of Infectious Diseases and Hospital Epidemiology, Basel University Hospital, Switzerland
| | - Gemma Codina
- Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid.,Department of Microbiology, Hospital Universitari Vall d'Hebron, Barcelona
| | - Víctor Monforte
- Department of Pulmonology and Lung Transplant Unit, Hospital Universitari Vall d'Hebron, Barcelona
| | - Carles Bravo
- Department of Pulmonology and Lung Transplant Unit, Hospital Universitari Vall d'Hebron, Barcelona
| | - Cristina Berastegui
- Department of Pulmonology and Lung Transplant Unit, Hospital Universitari Vall d'Hebron, Barcelona
| | - Alberto Jauregui
- Department of Thoracic Surgery, Hospital Universitari Vall d'Hebron, Barcelona
| | - Laura Romero
- Department of Thoracic Surgery, Hospital Universitari Vall d'Hebron, Barcelona
| | - Evelyn Cabral
- Infectious Diseases Research Group, Vall d'Hebron Research Institute, Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona
| | - Ricard Ferrer
- Intensive Care Department, Hospital Universitari Vall d'Hebron, Barcelona.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d' Hebron Research Institute, Barcelona
| | - Judith Sacanell
- Intensive Care Department, Hospital Universitari Vall d'Hebron, Barcelona.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d' Hebron Research Institute, Barcelona
| | - Antonio Román
- Department of Pulmonology and Lung Transplant Unit, Hospital Universitari Vall d'Hebron, Barcelona.,Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Len
- Infectious Diseases Research Group, Vall d'Hebron Research Institute, Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid
| | - Joan Gavaldà
- Infectious Diseases Research Group, Vall d'Hebron Research Institute, Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid
| |
Collapse
|
28
|
Dugger DT, Fung M, Zlock L, Caldera S, Sharp L, Hays SR, Singer JP, Leard LE, Golden JA, Shah RJ, Kukreja J, Gordon E, Finkbeiner W, Kleinhenz ME, Langelier C, Greenland JR. Cystic Fibrosis Lung Transplant Recipients Have Suppressed Airway Interferon Responses during Pseudomonas Infection. CELL REPORTS MEDICINE 2020; 1. [PMID: 32754722 PMCID: PMC7402593 DOI: 10.1016/j.xcrm.2020.100055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung transplantation can be lifesaving in end-stage cystic fibrosis (CF), but long-term survival is limited by chronic lung allograft dysfunction (CLAD). Persistent upper airway Pseudomonas aeruginosa (PsA) colonization can seed the allograft. While de novo PsA infection is associated with CLAD in non-CF recipients, this association is less clear for CF recipients experiencing PsA recolonization. Here, we evaluate host and pathogen contributions to this phenomenon. In the context of PsA infection, brushings from the airways of CF recipients demonstrate type 1 interferon gene suppression. Airway epithelial cell (AEC) cultures demonstrate similar findings in the absence of pathogens or immune cells, contrasting with the pre-transplant CF AEC phenotype. Type 1 interferon promoters are relatively hypermethylated in CF AECs. CF subjects in this cohort have more mucoid PsA, while non-CF PsA subjects have decreased microbiome α diversity. Peri-transplant protocols may benefit from consideration of this host and microbiome equilibrium. Lung allograft Pseudomonas infection outcomes are better for recipients with CF In CF, infected allograft airway cells demonstrate suppression of interferon genes Differential DNA methylation may contribute to this distinct epithelial phenotype Increased α diversity and mucoid forms characterize CF Pseudomonas infection
Collapse
Affiliation(s)
- Daniel T Dugger
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Monica Fung
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorna Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Saharai Caldera
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Louis Sharp
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steven R Hays
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan P Singer
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorriana E Leard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jefferey A Golden
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rupal J Shah
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jasleen Kukreja
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erin Gordon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mary Ellen Kleinhenz
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chaz Langelier
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94143, USA
| | - John R Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Medical Service, Veterans Affairs Health Care System, San Francisco, CA 94121, USA.,Lead Contact
| |
Collapse
|
29
|
De Muynck B, Van Herck A, Sacreas A, Heigl T, Kaes J, Vanstapel A, Verleden SE, Neyrinck AP, Ceulemans LJ, Van Raemdonck DE, Lagrou K, Vanaudenaerde BM, Verleden GM, Vos R. Successful Pseudomonas aeruginosa eradication improves outcomes after lung transplantation: a retrospective cohort analysis. Eur Respir J 2020; 56:13993003.01720-2020. [DOI: 10.1183/13993003.01720-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Abstract
Long-term survival after lung transplantation (LTx) is hampered by development of chronic lung allograft dysfunction (CLAD). Pseudomonas aeruginosa is an established risk factor for CLAD. Therefore, we investigated the effect of P. aeruginosa eradication on CLAD-free and graft survival.Patients who underwent first LTx between July, 1991, and February, 2016, and were free from CLAD, were retrospectively classified according to P. aeruginosa presence in respiratory samples between September, 2011, and September, 2016. P. aeruginosa-positive patients were subsequently stratified according to success of P. aeruginosa eradication following targeted antibiotic treatment. CLAD-free and graft survival were compared between P. aeruginosa-positive and P. aeruginosa-negative patients; and between patients with or without successful P. aeruginosa eradication. In addition, pulmonary function was assessed during the first year following P. aeruginosa isolation in both groups.CLAD-free survival of P. aeruginosa-negative patients (n=443) was longer compared with P. aeruginosa-positive patients (n=95) (p=0.045). Graft survival of P. aeruginosa-negative patients (n=443, 82%) was better compared with P. aeruginosa-positive patients (n=95, 18%) (p<0.0001). Similarly, P. aeruginosa-eradicated patients demonstrated longer CLAD-free and graft survival compared with patients with persistent P. aeruginosa. Pulmonary function was higher in successfully P. aeruginosa-eradicated patients compared with unsuccessfully eradicated patients (p=0.035).P. aeruginosa eradication after LTx improves CLAD-free and graft survival and maintains pulmonary function. Therefore, early P. aeruginosa detection and eradication should be pursued.
Collapse
|
30
|
Kulkarni HS, Tsui K, Sunder S, Ganninger A, Tague LK, Witt CA, Byers DE, Trulock EP, Nava R, Puri V, Kreisel D, Mohanakumar T, Gelman AE, Hachem RR. Pseudomonas aeruginosa and acute rejection independently increase the risk of donor-specific antibodies after lung transplantation. Am J Transplant 2020; 20:1028-1038. [PMID: 31677358 PMCID: PMC7103544 DOI: 10.1111/ajt.15687] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/06/2019] [Accepted: 10/24/2019] [Indexed: 01/25/2023]
Abstract
Factors contributing to donor-specific HLA antibody (DSA) development after lung transplantation have not been systematically evaluated. We hypothesized that the isolation of Pseudomonas aeruginosa in respiratory specimens would increase the risk of DSA development. Our objective was to determine the risk of DSA development associated with the isolation of Pseudomonas aeruginosa after lung transplantation. We conducted a single-center retrospective cohort study of primary lung transplant recipients and examined risk factors for DSA development using Cox regression models. Of 460 recipients, 205 (45%) developed DSA; the majority developed Class II DSA (n = 175, 85%), and 145 of 205 (71%) developed DSA to HLA-DQ alleles. Univariate time-dependent analyses revealed that isolation of Pseudomonas from respiratory specimens, acute cellular rejection, and lymphocytic bronchiolitis are associated with an increased risk of DSA development. In multivariable analyses, Pseudomonas isolation, acute cellular rejection, and lymphocytic bronchiolitis remained independent risk factors for DSA development. Additionally, there was a direct association between the number of positive Pseudomonas cultures and the risk of DSA development. Our findings suggest that pro-inflammatory events including acute cellular rejection, lymphocytic bronchiolitis, and Pseudomonas isolation after transplantation are associated with an increased risk of DSA development.
Collapse
Affiliation(s)
| | - Kevin Tsui
- Advocate Christ Medical Center, Chicago, IL
| | - Suraj Sunder
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Alex Ganninger
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Laneshia K. Tague
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Chad A. Witt
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Derek E. Byers
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Elbert P. Trulock
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Ruben Nava
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Varun Puri
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | | | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Ramsey R. Hachem
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
31
|
Villalobos APC, Husain S. Infection prophylaxis and management of fungal infections in lung transplant. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:414. [PMID: 32355858 PMCID: PMC7186682 DOI: 10.21037/atm.2020.03.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung transplantation has emerged as a lifesaving treatment for a wide range of advanced lung diseases. While the survival of lung transplant recipients continues to improve, infectious complications contribute substantially to morbidity and mortality following lung transplantation. The incidence of invasive fungal infections is variable, with a mean occurrence of 8.6%. The majority of fungal infections in lung transplant recipients are caused Aspergillus and Candida species. This review provides an update in the current approaches for the diagnosis, management and prevention of fungal infections and the late complications that are associated.
Collapse
Affiliation(s)
| | - Shahid Husain
- Multi-Organ Transplant Unit, Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
| |
Collapse
|
32
|
Marron RM, Vega Sanchez ME, Clauss H, Mamary AJ. Acute Hypoxemic Respiratory Failure and Native Lung Idiopathic Pulmonary Fibrosis Exacerbation in Single-lung Transplant Patients with Cytomegalovirus Disease: A Case Series. Transplant Proc 2019; 51:3391-3394. [PMID: 31733804 DOI: 10.1016/j.transproceed.2019.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Our case series describes three patients who have received single-lung transplantations for idiopathic pulmonary fibrosis (IPF) that develop cytomegalovirus (CMV) disease and hypoxemic respiratory failure with radiographic opacification of the native lung and sparing of the allograft. RESULTS Hypoxemia resolved with treatment and with resolution of CMV viremia. Viral infections causing IPF exacerbations have been described in the literature, however, pulmonary CMV disease in single-lung transplant recipients has typically been observed as pneumonitis of the allograft. CONCLUSIONS These clinical scenarios are consistent with acute exacerbation of native-lung IPF and subradiographic pneumonitis of the allograft caused by CMV disease.
Collapse
Affiliation(s)
- Robert M Marron
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA.
| | - Maria Elena Vega Sanchez
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Heather Clauss
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - A James Mamary
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
33
|
Paul P, Pedini P, Lyonnet L, Di Cristofaro J, Loundou A, Pelardy M, Basire A, Dignat-George F, Chiaroni J, Thomas P, Reynaud-Gaubert M, Picard C. FCGR3A and FCGR2A Genotypes Differentially Impact Allograft Rejection and Patients' Survival After Lung Transplant. Front Immunol 2019; 10:1208. [PMID: 31249568 PMCID: PMC6582937 DOI: 10.3389/fimmu.2019.01208] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Fc gamma receptors (FcγRs) play a major role in the regulation of humoral immune responses. Single-nucleotide polymorphisms (SNPs) of FCGR2A and FCGR3A can impact the expression level, IgG affinity and function of the CD32 and CD16 FcγRs in response to their engagement by the Fc fragment of IgG. The CD16 isoform encoded by FCGR3A [158V/V] controls the intensity of antibody-dependent cytotoxic alloimmune responses of natural killer cells (NK) and has been identified as a susceptibility marker predisposing patients to cardiac allograft vasculopathy after heart transplant. This study aimed to investigate whether FCGR2A and FCGR3A polymorphisms can also be associated with the clinical outcome of lung transplant recipients (LTRs). The SNPs of FCGR2A ([131R/H], rs1801274) and FCGR3A ([158V/F], rs396991) were identified in 158 LTRs and 184 Controls (CTL). The corresponding distribution of genotypic and allelic combinations was analyzed for potential links with the development of circulating donor-specific anti-HLA alloantibodies (DSA) detected at months 1 and 3 after lung transplant (LTx), the occurrence of acute rejection (AR) and chronic lung allograft dysfunction (CLAD), and the overall survival of LTRs. The FCGR3A [158V/V] genotype was identified as an independent susceptibility factor associated with higher rates of AR during the first trimester after LTx (HR 4.8, p < 0.0001, 95% CI 2.37-9.61), but it could not be associated with the level of CD16- mediated NK cell activation in response to the LTR's DSA, whatever the MFI intensity and C1q binding profiles of the DSA evaluated. The FCGR2A [131R/R] genotype was associated with lower CLAD-free survival of LTRs, independently of the presence of DSA at 3 months (HR 1.8, p = 0.024, 95% CI 1.08-3.03). Our data indicate that FCGR SNPs differentially affect the clinical outcome of LTRs and may be of use to stratify patients at higher risk of experiencing graft rejection. Furthermore, these data suggest that in the LTx setting, specific mechanisms of humoral alloreactivity, which cannot be solely explained by the complement and CD16-mediated pathogenic effects of DSA, may be involved in the development of acute and chronic lung allograft rejection.
Collapse
Affiliation(s)
- Pascale Paul
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France.,INSERM 1263, INRA, C2VN, Aix-Marseille Université (AMU), INSERM, Marseille, France
| | - Pascal Pedini
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Luc Lyonnet
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France
| | - Julie Di Cristofaro
- "Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| | - Anderson Loundou
- Département de santé Publique - EA 3279, Assistance Publique-Hôpitaux Marseille (AP-HM), Aix-Marseille Université, Marseille, France
| | - Mathieu Pelardy
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Agnes Basire
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Françoise Dignat-George
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France.,INSERM 1263, INRA, C2VN, Aix-Marseille Université (AMU), INSERM, Marseille, France
| | - Jacques Chiaroni
- Établissement Français du Sang PACA-Corse 13005, Marseille, France.,"Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| | - Pascal Thomas
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, CHU Nord Assistance Publique-Hôpitaux Marseille (AP-HM), Aix-Marseille Université, Marseille, France
| | - Martine Reynaud-Gaubert
- Service de Pneumologie et Transplantation Pulmonaire, CHU Nord Assistance Publique-Hôpitaux Marseille (AP-HM) - IHU Méditerranée Infection Aix-Marseille-Université, Marseille, France
| | - Christophe Picard
- Établissement Français du Sang PACA-Corse 13005, Marseille, France.,"Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| |
Collapse
|
34
|
Koshizuka T, Matsuda Y, Suzuki H, Kanno R, Ikuta K, Kobayashi T, Kondo T, Okada Y, Suzutani T. Detection of engraftment of donor-derived antibody producing cells in a lung transplant recipient by anti-cytomegalovirus IgG avidity test. Transpl Immunol 2019; 53:34-37. [DOI: 10.1016/j.trim.2018.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022]
|
35
|
Qiao W, Zou J, Ping F, Han Z, Li L, Wang X. Fungal infection in lung transplant recipients in perioperative period from one lung transplant center. J Thorac Dis 2019; 11:1554-1561. [PMID: 31179099 DOI: 10.21037/jtd.2019.03.18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background This study aimed to analyze the distribution and prophylaxis strategy of pathogens causing fungal infection in lung transplant recipients from cardiac-brain dead donors in the perioperative period to provide evidence for antifungal prophylaxis and treatment in lung transplant recipients. Methods This retrospective study evaluated 194 lung transplant recipients from January 2015 to December 2016. Fungal pathogens were isolated and identified from respiratory tract cultures before and after transplantation in the perioperative period. The galactomannan (GM) testing of bronchoalveolar lavage fluid (BALF) might facilitate the diagnosis of Aspergillus infection. Data were statistically analyzed using SPSS 19.0. Results A total of 31 cases of fungal strains isolated from the 194 recipients were identified prior to lung transplantation, and the positive rate was 16.0% (31/194). A total of 27 cases of isolated fungal strains in the 194 recipients were identified, and the positive rate after lung transplantation was 13.9% (27/194) in the perioperative period. A total of 54 cases with positive fungal infection (27.8%) were detected before and after lung transplantation. Overall, 10.3% (20/194) of the lung transplant recipients developed fungal infection in the observation period. The most common fungal pathogens were filamentous fungi and Candida albicans. Conclusions Our data suggested that fungi were frequently isolated before and after transplantation from respiratory samples. However, the incidence of invasive fungal infection in lung transplant recipients in the perioperative period was relatively low. Targeted antifungal prophylaxis and treatment should be applied on the basis of the fungal distribution status of different individuals.
Collapse
Affiliation(s)
- Weizhen Qiao
- Center of Clinical Research, Wuxi Institute of Translational Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Jian Zou
- Center of Clinical Research, Wuxi Institute of Translational Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Fengfeng Ping
- Center of Clinical Research, Wuxi Institute of Translational Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Zhenge Han
- Department of Clinical Laboratory, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200052, China
| | - Lingling Li
- Center of Clinical Research, Wuxi Institute of Translational Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Xiuzhi Wang
- Institute of Medical and Technology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
36
|
Harlander M, Vos R, Kneževič I. Is there a place for dornase alfa therapy in lung transplantation? Transpl Int 2019; 32:598-599. [PMID: 30793383 DOI: 10.1111/tri.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Matevž Harlander
- Department of Pulmonary Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Robin Vos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), Laboratory of Respiratory Diseases, KU Leuven, Leuven, Belgium
| | - Ivan Kneževič
- Transplantation Centre, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
37
|
Neuringer IP. The evolving classification of chronic lung allograft dysfunction: Phenotypes and causes known and unknown. J Heart Lung Transplant 2019; 38:585-588. [PMID: 30733154 DOI: 10.1016/j.healun.2019.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Isabel P Neuringer
- Pulmonary Division, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
38
|
Küppers L, Holz O, Schuchardt S, Gottlieb J, Fuge J, Greer M, Hohlfeld JM. Breath volatile organic compounds of lung transplant recipients with and without chronic lung allograft dysfunction. J Breath Res 2018; 12:036023. [PMID: 29771243 DOI: 10.1088/1752-7163/aac5af] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Chronic lung allograft dysfunction with its clinical correlative of bronchiolitis obliterans syndrome (BOS) remains the major limiting factor for long-term graft survival. Currently there are no established methods for the early diagnosis or prediction of BOS. To assess the feasibility of breath collection as a non-invasive tool and the potential of breath volatile organic compounds (VOC) for the early detection of BOS, we compared the breath VOC composition between transplant patients without and different stages of BOS. METHODS 75 outpatients (25 BOS stage 0, 25 BOS stage 1 + 2, 25 BOS stage 3) after bilateral lung transplantation were included. Exclusion criteria were active smoking, oxygen therapy and acute infection. Patients inhaled room air through a VOC and sterile filter and exhaled into an aluminum reservoir tube. Breath was loaded directly onto Tenax® TA adsorption tubes and was subsequently analyzed by gas-chromatography/mass-spectrometry. RESULTS The three groups were age and gender matched, but differed with respect to time since transplantation, the spectrum of underlying disease, and treatment regimes. Relative to patients without BOS, BOS stage 3 patients showed a larger number of different VOCs, and more pronounced differences in the level of VOCs as compared to BOS stage 1 + 2 patients. Logistic regression analysis found no differences between controls and BOS 1 + 2, but four VOCs (heptane, isopropyl-myristate, ethyl-acetate, ionone) with a significant contribution to the discrimination between controls and BOS stage 3. A combination of these four VOCs separated these groups with an area under the curve of 0.87. CONCLUSION Breath sample collection using our reservoir sampler in the clinical environment was feasible. Our results suggest that breath VOCs can discriminate severe BOS. However, convincing evidence for VOCs with a potential to detect early onset BOS is lacking.
Collapse
Affiliation(s)
- L Küppers
- Fraunhofer ITEM, Clinical Airway Research-Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Dunn SP, Horslen S. Posttransplant Complications and Comorbidities. SOLID ORGAN TRANSPLANTATION IN INFANTS AND CHILDREN 2018. [PMCID: PMC7123596 DOI: 10.1007/978-3-319-07284-5_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Stephen P. Dunn
- Department of Surgery, Jefferson Medical College, Wilmington, Delaware USA
| | - Simon Horslen
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, Washington USA
| |
Collapse
|
40
|
Lewandowska DW, Schreiber PW, Schuurmans MM, Ruehe B, Zagordi O, Bayard C, Greiner M, Geissberger FD, Capaul R, Zbinden A, Böni J, Benden C, Mueller NJ, Trkola A, Huber M. Metagenomic sequencing complements routine diagnostics in identifying viral pathogens in lung transplant recipients with unknown etiology of respiratory infection. PLoS One 2017; 12:e0177340. [PMID: 28542207 PMCID: PMC5441588 DOI: 10.1371/journal.pone.0177340] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
Background Lung transplant patients are a vulnerable group of immunosuppressed patients that are prone to frequent respiratory infections. We studied 60 episodes of respiratory symptoms in 71 lung transplant patients. Almost half of these episodes were of unknown infectious etiology despite extensive routine diagnostic testing. Methods We re-analyzed respiratory samples of all episodes with undetermined etiology in order to detect potential viral pathogens missed/not accounted for in routine diagnostics. Respiratory samples were enriched for viruses by filtration and nuclease digestion, whole nucleic acids extracted and randomly amplified before high throughput metagenomic virus sequencing. Viruses were identified by a bioinformatic pipeline and confirmed and quantified using specific real-time PCR. Results In completion of routine diagnostics, we identified and confirmed a viral etiology of infection by our metagenomic approach in four patients (three Rhinovirus A, one Rhinovirus B infection) despite initial negative results in specific multiplex PCR. Notably, the majority of samples were also positive for Torque teno virus (TTV) and Human Herpesvirus 7 (HHV-7). While TTV viral loads increased with immunosuppression in both throat swabs and blood samples, HHV-7 remained at low levels throughout the observation period and was restricted to the respiratory tract. Conclusion This study highlights the potential of metagenomic sequencing for virus diagnostics in cases with previously unknown etiology of infection and in complex diagnostic situations such as in immunocompromised hosts.
Collapse
Affiliation(s)
| | - Peter W. Schreiber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Macé M. Schuurmans
- Division of Pulmonary Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Bettina Ruehe
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Osvaldo Zagordi
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Cornelia Bayard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Greiner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Riccarda Capaul
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Andrea Zbinden
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christian Benden
- Division of Pulmonary Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Nicolas J. Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
41
|
Chalmers JD. Microbial Dysbiosis after Lung Transplantation. Am J Respir Crit Care Med 2016; 194:1184-1186. [DOI: 10.1164/rccm.201606-1178ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|