1
|
Garbuzova-Davis S, Kurien C, Thomson A, Falco D, Ahmad S, Staffetti J, Steiner G, Abraham S, James G, Mahendrasah A, Sanberg PR, Borlongan CV. Endothelial and Astrocytic Support by Human Bone Marrow Stem Cell Grafts into Symptomatic ALS Mice towards Blood-Spinal Cord Barrier Repair. Sci Rep 2017; 7:884. [PMID: 28408761 PMCID: PMC5429840 DOI: 10.1038/s41598-017-00993-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
Vascular pathology, including blood-CNS barrier (B-CNS-B) damage via endothelial cell (EC) degeneration, is a recently recognized hallmark of Amyotrophic Lateral Sclerosis (ALS) pathogenesis. B-CNS-B repair may be a new therapeutic approach for ALS. This study aimed to determine effects of transplanted unmodified human bone marrow CD34+ (hBM34+) cells into symptomatic G93A mice towards blood-spinal cord barrier (BSCB) repair. Thirteen weeks old G93A mice intravenously received one of three different doses of hBM34+ cells. Cell-treated, media-treated, and control mice were euthanized at 17 weeks of age. Immunohistochemical (anti-human vWF, CD45, GFAP, and Iba-1) and motor neuron histological analyses were performed in cervical and lumbar spinal cords. EB levels in spinal cord parenchyma determined capillary permeability. Transplanted hBM34+ cells improved behavioral disease outcomes and enhanced motor neuron survival, mainly in high-cell-dose mice. Transplanted cells differentiated into ECs and engrafted within numerous capillaries. Reduced astrogliosis, microgliosis, and enhanced perivascular end-feet astrocytes were also determined in spinal cords, mostly in high-cell-dose mice. These mice also showed significantly decreased parenchymal EB levels. EC differentiation, capillary engraftment, reduced capillary permeability, and re-established perivascular end-feet astrocytes in symptomatic ALS mice may represent BSCB repair processes, supporting hBM34+ cell transplantation as a future therapeutic strategy for ALS patients.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America. .,Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America. .,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.
| | - Crupa Kurien
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Avery Thomson
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Dimitri Falco
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Sohaib Ahmad
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Joseph Staffetti
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - George Steiner
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Sophia Abraham
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Greeshma James
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Ajay Mahendrasah
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| |
Collapse
|
2
|
Glial influences on BBB functions and molecular players in immune cell trafficking. Biochim Biophys Acta Mol Basis Dis 2015; 1862:472-82. [PMID: 26454208 DOI: 10.1016/j.bbadis.2015.10.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) constitutes an elaborate structure formed by specialized capillary endothelial cells, which together with pericytes and perivascular glial cells regulates the exchanges between the central nervous system (CNS) and the periphery. Intricate interactions between the different cellular constituents of the BBB are crucial in establishing a functional BBB and maintaining the delicate homeostasis of the CNS microenvironment. In this review, we discuss the role of astrocytes and microglia in inducing and maintaining barrier properties under physiological conditions as well as their involvement during neuroinflammatory pathologies. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
|
3
|
Ehrhart J, Smith AJ, Kuzmin-Nichols N, Zesiewicz TA, Jahan I, Shytle RD, Kim SH, Sanberg CD, Vu TH, Gooch CL, Sanberg PR, Garbuzova-Davis S. Humoral factors in ALS patients during disease progression. J Neuroinflammation 2015; 12:127. [PMID: 26126965 PMCID: PMC4487852 DOI: 10.1186/s12974-015-0350-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/19/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons in the CNS and leading to paralysis and death. There are currently no effective treatments for ALS due to the complexity and heterogeneity of factors involved in motor neuron degeneration. A complex of interrelated effectors have been identified in ALS, yet systemic factors indicating and/or reflecting pathological disease developments are uncertain. The purpose of the study was to identify humoral effectors as potential biomarkers during disease progression. METHODS Thirteen clinically definite ALS patients and seven non-neurological controls enrolled in the study. Peripheral blood samples were obtained from each ALS patient and control at two visits separated by 6 months. The Revised ALS Functional Rating Scale (ALSFRS-R) was used to evaluate overall ALS-patient functional status at each visit. Eleven humoral factors were analyzed in sera. Cytokine levels (GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and TNF-α) were determined using the Bio-Rad Bio-Plex® Luminex 200 multiplex assay system. Nitrite, a breakdown product of NO, was quantified using a Griess Reagent System. Glutathione (GSH) concentrations were measured using a Glutathione Fluorometric Assay Kit. RESULTS ALS patients had ALSFRS-R scores of 30.5 ± 1.9 on their first visit and 27.3 ± 2.7 on the second visit, indicating slight disease progression. Serum multiplex cytokine panels revealed statistically significant changes in IL-2, IL-5, IL-6, and IL-8 levels in ALS patients depending on disease status at each visit. Nitrite serum levels trended upwards in ALS patients while serum GSH concentrations were drastically decreased in sera from ALS patients versus controls at both visits. CONCLUSIONS Our results demonstrated a systemic pro-inflammatory state and impaired antioxidant system in ALS patients during disease progression. Increased levels of pro-inflammatory IL-6, IL-8, and nitrite and significantly decreased endogenous antioxidant GSH levels could identify these humoral constituents as systemic biomarkers for ALS. However, systemic changes in IL-2, IL-5, and IL-6 levels determined between visits in ALS patients might indicate adaptive immune system responses dependent on current disease stage. These novel findings, showing dynamic changes in humoral effectors during disease progression, could be important for development of an effective treatment for ALS.
Collapse
Affiliation(s)
| | - Adam J Smith
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | | | - Theresa A Zesiewicz
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Israt Jahan
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - R Douglas Shytle
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA.
| | - Seol-Hee Kim
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | | | - Tuan H Vu
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Clifton L Gooch
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA. .,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA. .,Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
4
|
Assi E, Cazzato D, De Palma C, Perrotta C, Clementi E, Cervia D. Sphingolipids and brain resident macrophages in neuroinflammation: an emerging aspect of nervous system pathology. Clin Dev Immunol 2013; 2013:309302. [PMID: 24078816 PMCID: PMC3775448 DOI: 10.1155/2013/309302] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/01/2013] [Indexed: 12/25/2022]
Abstract
Sphingolipid metabolism is deeply regulated along the differentiation and development of the central nervous system (CNS), and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system. Microglia are resident macrophages of the CNS involved in general maintenance of neural environment. Modulations in microglia phenotypes may contribute to pathogenic forms of inflammation. Since defects in macrophage/microglia activity contribute to neurodegenerative diseases, it will be essential to systematically identify the components of the microglial cell response that contribute to disease progression. In such complex processes, the sphingolipid systems have recently emerged to play important roles, thus appearing as a key new player in CNS disorders. This review provides a rationale for harnessing the sphingolipid metabolic pathway as a potential target against neuroinflammation.
Collapse
Affiliation(s)
- Emma Assi
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Denise Cazzato
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Clara De Palma
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
- E. Medea Scientific Institute, 23842 Bosisio Parini, Italy
| | - Davide Cervia
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, CNR Institute of Neuroscience, “Luigi Sacco” University Hospital, University of Milan, 20157 Milan, Italy
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Garbuzova-Davis S, Rodrigues MCO, Mirtyl S, Turner S, Mitha S, Sodhi J, Suthakaran S, Eve DJ, Sanberg CD, Kuzmin-Nichols N, Sanberg PR. Multiple intravenous administrations of human umbilical cord blood cells benefit in a mouse model of ALS. PLoS One 2012; 7:e31254. [PMID: 22319620 PMCID: PMC3272008 DOI: 10.1371/journal.pone.0031254] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/04/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25 × 10⁶ cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. METHODOLOGY/PRINCIPAL FINDINGS Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 10⁶ or 2.5 × 10⁶ cells from 13 weeks of age. A third, pre-symptomatic, group received 10⁶ cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 10⁶ cells pre-symptomatically or 2.5 × 10⁶ cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. CONCLUSIONS/SIGNIFICANCE These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, Florida, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Garbuzova-Davis S, Woods RL, Louis MK, Zesiewicz TA, Kuzmin-Nichols N, Sullivan KL, Miller AM, Hernandez-Ontiveros DG, Sanberg PR. Reduction of circulating endothelial cells in peripheral blood of ALS patients. PLoS One 2010; 5:e10614. [PMID: 20485543 PMCID: PMC2868893 DOI: 10.1371/journal.pone.0010614] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 04/20/2010] [Indexed: 01/21/2023] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) treatment is complicated by the various mechanisms underlying motor neuron degeneration. Recent studies showed that the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) are compromised in an animal model of ALS due to endothelial cell degeneration. A later study demonstrated a loss of endothelium integrity in the spinal cords of ALS patients. Since circulating endothelial cells (CECs) in the peripheral blood are associated with endothelium damage, being detached dysfunctional endothelial cells, we hypothesized that CEC levels may reflect endothelium condition in ALS patients. Methodology/Principal Findings CEC levels were estimated in whole blood smears from ALS patients with moderate stage (MALS), severe stage (SALS), and healthy controls by CD146 expression using immunocytochemistry. A significant reduction of CECs was detected in MALS and SALS patients. Conclusions/Significance CECs did not predict endothelium state in ALS patients; however, endothelial damage and/or impaired endothelium repair may occur in ALS leading to BBB/BSCB dysfunction. Reduced CECs in peripheral blood of ALS patients may indicate different mechanisms of endothelial damage and repair, rather than only detachment of dysfunctional endothelial cells. Although a potential mechanism of CEC reduction is discussed, establishing a reliable indicator of endothelial dysfunction/damage is important for evaluation of BBB/BSCB status in ALS patients during disease progression.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Andjus PR, Bataveljić D, Vanhoutte G, Mitrecic D, Pizzolante F, Djogo N, Nicaise C, Gankam Kengne F, Gangitano C, Michetti F, van der Linden A, Pochet R, Bacić G. In vivo morphological changes in animal models of amyotrophic lateral sclerosis and Alzheimer's-like disease: MRI approach. Anat Rec (Hoboken) 2010; 292:1882-92. [PMID: 19943341 DOI: 10.1002/ar.20995] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) is the only noninvasive technique that provides structural information on both cell loss and metabolic changes. After reviewing all the results obtained in clinical studies, reliable biomarkers in neurological diseases are still lacking. Diffusional MRI, MR spectroscopy, and the assessment of regional atrophy are promising approaches, but they cannot be simultaneously used on a single patient. Thus, for further research progress, reliable animal models are needed. To this aim, we have used the clinical MRI to assess neurodegenerative processes in the hSOD-1(G93A) ALS rat model and in the trimethyltin (TMT)-treated model of Alzheimer's-like disease. T2-weighted (T2W) hyperintensive neurodegenerative foci were found in the brainstem of the ALS rat with apparent lateral ventricle dilation (T1W-hypointensity vs. T2W-hyperintensity). Degenerative processes in these areas were also confirmed by confocal images of GFAP-positive astrogliosis. MRI after i.v.i. of magnetic anti-CD4 antibodies indicated an accumulation of inflammatory cells near dilated ventricles. TMT-treated rats also revealed the dilation of lateral ventricles. Expected deterioration in the hippocampus was not observed by clinical MRI, but immunocytochemistry could reveal significant redistribution of macro- and microglia in this structure. In both models, Gd-DTPA contrast revealed a compromised blood brain barrier that may serve as the passage for inflammatory immune cells in the vicinity of dilated lateral ventricles. Moreover, in both models the midbrain region of the dorsal hippocampus was the target of BBB compromise, thus revealing a potentially vulnerable point that can be the primary target of neurodegeneration in the central nervous system.
Collapse
Affiliation(s)
- Pavle R Andjus
- Department of Physiology and Biochemistry, School of Biology, University of Belgrade, Studentski trg 12, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guo Y, Liu Y, Xu L, Wu S, Yang C, Wu D, Wu H, Li C. Astrocytic pathology in the immune-mediated motor neuron injury. ACTA ACUST UNITED AC 2007; 8:230-4. [PMID: 17653921 DOI: 10.1080/17482960701278612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Reactive astrogliosis has been found in the cerebral cortex and spinal cord in amyotrophic lateral sclerosis, whereas astrocytic pathology in immune-mediated motor neuron injury has not been reported. On the basis of the establishment of an immune-mediated motor neuron injury model, histological, immunohistochemical and ultrastructural studies on astrocytes were carried out. Reactive astrogliosis in spinal cord anterior horn was observed, and the increase of GFAP-positive astrocytes may occur prior to the clinical manifestations. Reactive astrocytes could show pathological changes similar to those of motor neurons, such as swollen mitochondria and dilated endoplasmic reticulum. Of special interest are crystallized inclusions that were frequently observed in the reactive astrocytes in the bovine ventral horn homogenate-immunized anterior horn. The precise nature and origin of these inclusions deserve to be elucidated.
Collapse
Affiliation(s)
- Yansu Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hermosura MC, Garruto RM. TRPM7 and TRPM2-Candidate susceptibility genes for Western Pacific ALS and PD? BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:822-35. [PMID: 17395433 PMCID: PMC1994999 DOI: 10.1016/j.bbadis.2007.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 02/17/2007] [Accepted: 02/20/2007] [Indexed: 12/13/2022]
Abstract
Recent findings implicating TRPM7 and TRPM2 in oxidative stress-induced neuronal death thrust these channels into the spotlight as possible therapeutic targets for neurodegenerative diseases. In this review, we describe how the functional properties of TRPM7 and TRPM2 are interconnected with calcium (Ca(2+)) and magnesium (Mg(2+)) homeostasis, oxidative stress, mitochondrial dysfunction, and immune mechanisms, all principal suspects in neurodegeneration. We focus our discussion on Western Pacific Amyotrophic Lateral Sclerosis (ALS) and Parkinsonism Dementia (PD) because extensive studies conducted over the years strongly suggest that these diseases are ideal candidates for a gene-environment model of etiology. The unique mineral environment identified in connection with Western Pacific ALS and PD, low Mg(2+) and Ca(2+), yet high in transition metals, creates a condition that could affect the proper function of these two channels.
Collapse
Affiliation(s)
- Meredith C Hermosura
- Bekesy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | | |
Collapse
|
10
|
Affiliation(s)
- John Ravits
- Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
| | | | | |
Collapse
|
11
|
Schwartz M. Protective autoimmunity and prospects for therapeutic vaccination against self-perpetuating neurodegeneration. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:133-54. [PMID: 15032058 DOI: 10.1007/978-3-662-05426-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- M Schwartz
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
12
|
Rao SD, Weiss JH. Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci 2004; 27:17-23. [PMID: 14698606 DOI: 10.1016/j.tins.2003.11.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shyam D Rao
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697-4292, USA
| | | |
Collapse
|
13
|
Angelov DN, Waibel S, Guntinas-Lichius O, Lenzen M, Neiss WF, Tomov TL, Yoles E, Kipnis J, Schori H, Reuter A, Ludolph A, Schwartz M. Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2003; 100:4790-5. [PMID: 12668759 PMCID: PMC153634 DOI: 10.1073/pnas.0530191100] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Therapeutic vaccination with Copaxone (glatiramer acetate, Cop-1) protects motor neurons against acute and chronic degenerative conditions. In acute degeneration after facial nerve axotomy, the number of surviving motor neurons was almost two times higher in Cop-1-vaccinated mice than in nonvaccinated mice, or in mice injected with PBS emulsified in complete Freund's adjuvant (P < 0.05). In mice that express the mutant human gene Cu/Zn superoxide dismutase G93A (SOD1), and therefore simulate the chronic human motor neuron disease amyotrophic lateral sclerosis, Cop-1 vaccination prolonged life span compared to untreated matched controls, from 211 +/- 7 days (n = 15) to 263 +/- 8 days (n = 14; P < 0.0001). Our studies show that vaccination significantly improved motor activity. In line with the experimentally based concept of protective autoimmunity, these findings suggest that Cop-1 vaccination boosts the local immune response needed to combat destructive self-compounds associated with motor neuron death. Its differential action in CNS autoimmune diseases and neurodegenerative disorders, depending on the regimen used, allows its use as a therapy for either condition. Daily administration of Cop-1 is an approved treatment for multiple sclerosis. The protocol for non-autoimmune neurodegenerative diseases such as amyotrophic lateral sclerosis, remains to be established by future studies.
Collapse
Affiliation(s)
- D N Angelov
- Department of Oto-Rhino-Laryngology, University of Cologne, D50924 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|