1
|
Chen XX, Tian CW, Bai LY, Zhao YK, Zhang C, Shi L, Zhang YW, Xie WJ, Zhu HY, Chen H, Rui YF. Relationships among body weight, lipids and bone mass in elderly individuals with fractures: A case-control study. World J Orthop 2023; 14:720-732. [PMID: 37744715 PMCID: PMC10514712 DOI: 10.5312/wjo.v14.i9.720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The prevalence of osteoporosis and low bone mass is steadily rising each year. Low body weight is commonly linked to diminished bone mass and serves as a robust predictor of osteoporosis. Nonetheless, the connection between body mass index (BMI), bone mineral density, and lipid profiles among the elderly remains elusive. AIM To examine the association between BMI and bone mass, explore the correlation between lipid profiles and bone mass, and delve into the interplay between lipid metabolism and bone health. METHODS The study included 520 patients aged ≥ 65 years (178 men and 342 women). Age, sex, weight, and height were recorded. Femoral neck bone mineral density and T scores were determined using a dual-energy X-ray absorptiometry scanner. Blood calcium (Ca), phosphorus (P), albumin (ALB), alkaline phosphatase (ALP), aspartate aminotransferase, alanine aminotransferase, triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) levels were measured. Patients were classified by sex (male and female), age (65-79 years and ≥ 80 years), and T score (normal bone mineral density, osteopenia and osteoporosis). RESULTS Age, sex, BMI, and ALP and TG levels were independent risk factors for osteoporosis. For the 65-79- and ≥ 80-year-old groups, females presented lower T scores than males. Ca, P, ALB, ALP, TC, HDL and LDL levels were significantly different between men and women in the 65-79-year-old group. In addition, BMI and TG levels were significantly decreased in osteoporotic patients compared with patients with normal bone mass. TC levels declined in 65- to 79-year-old male and female osteoporosis patients. In the group of women aged ≥ 80 years, osteoporotic patients showed significantly increased ALP levels. Furthermore, we found positive correlations between BMI and TG levels in the male and female patient groups. However, we found no significant differences in ALB, Ca, P, HDL and LDL levels in osteoporotic patients compared to patients with normal bone mass. CONCLUSION Osteoporotic patients showed significantly decreased BMI and TG levels compared with those with normal bone mass. BMI showed positive correlations with TG levels in male and female patients. These results indicate correlations between BMI and bone mass and between lipid profiles and bone mass.
Collapse
Affiliation(s)
- Xiang-Xu Chen
- Department of Orthopaedics, Trauma Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Chu-Wei Tian
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Li-Yong Bai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ya-Kuan Zhao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Cheng Zhang
- Department of Orthopaedics, Trauma Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Liu Shi
- Department of Orthopaedics, Trauma Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Wen-Jun Xie
- Department of Orthopaedics, Trauma Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Huan-Yi Zhu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Hui Chen
- Department of Orthopaedics, Trauma Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Trauma Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
2
|
Walker MM, Oxenham MF, Vlok M, Matsumura H, Thi Mai Huong N, Trinh HH, Minh TT, Miszkiewicz JJ. Human femur morphology and histology variation with ancestry and behaviour in an ancient sample from Vietnam. Ann Anat 2023; 247:152054. [PMID: 36696927 DOI: 10.1016/j.aanat.2023.152054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 12/22/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND There is a genetic component to the minimum effective strain (MES)-a threshold which determines when bone will adapt to function-which suggests ancestry should play a role in bone (re)modelling. Further elucidating this is difficult in living human populations because of the high global genetic admixture. We examined femora from an anthropological skeletal assemblage (Mán Bạc, Vietnam) representing distinct ancestral groups. We tested whether femur morphological and histological markers of modelling and remodelling differed between ancestries despite their similar lifestyles. METHODS Static histomorphometry data collected from subperiosteal cortical bone of the femoral midshaft, and gross morphometric measures of femur robusticity, were studied in 17 individuals from the Mán Bạc collection dated to 1906-1523 cal. BC. This assemblage represents agricultural migrants with affinity to East Asian groups, who integrated with the local hunter-gatherers with affinity to Australo-Papuan groups during the mid-Holocene. Femur robusticity and histology data were compared between groups of 'Migrant' (n = 8), 'Admixed' (n = 4), and 'Local' (n = 5). RESULTS Local individuals had more robust femoral diaphyses with greater secondary osteon densities, and relatively large secondary osteon and Haversian canal parameters than the migrants. The Migrant group showed gracile femoral shafts with the least dense bone made up of small secondary osteons and Haversian canals. The Admixed individuals fell between the Migrant and Local categories in terms of their femoral data. However, we also found that measures of how densely bone is remodelled per unit area were in a tight range across all three ancestries. CONCLUSIONS Bone modelling and remodelling markers varied with ancestral histories in our sample. This suggests that there is an ancestry related predisposition to bone optimising its metabolic expenditure likely in relation to the MES. Our results stress the need to incorporate population genetic history into hierarchical bone analyses. Understanding ancestry effects on bone morphology has implications for interpreting biomechanical loading history in past and modern human populations.
Collapse
Affiliation(s)
- Meg M Walker
- School of Archaeology and Anthropology, Australian National University, 0200 Canberra, ACT, Australia.
| | - Marc F Oxenham
- School of Archaeology and Anthropology, Australian National University, 0200 Canberra, ACT, Australia; Department of Archaeology, University of Aberdeen, AB24 3FX Aberdeen, UK
| | - Melandri Vlok
- Sydney Southeast Asia Centre, The University of Sydney, Camperdown 2050, NSW, Australia
| | | | - Nguyen Thi Mai Huong
- Anthropological and Palaeoenvironmental Department, The Institute of Archaeology of Vietnam, Hanoi, Viet Nam
| | - Hoang Hiep Trinh
- Institute of Archaeology, Vietnam Academy of Social Science, 61 Phan Chu Trinh, Hanoi, Viet Nam
| | - Tran T Minh
- Anthropological and Palaeoenvironmental Department, The Institute of Archaeology of Vietnam, Hanoi, Viet Nam
| | - Justyna J Miszkiewicz
- School of Archaeology and Anthropology, Australian National University, 0200 Canberra, ACT, Australia; School of Social Science, University of Queensland, 4072 St Lucia, QLD, Australia.
| |
Collapse
|
3
|
Hancock WD, Lei X, Clines GA, Tusing YG, Nozell SE, Ramanadham S. Ca 2+-independent phospholipase A 2β-derived PGE 2 contributes to osteogenesis. Prostaglandins Other Lipid Mediat 2022; 158:106605. [PMID: 34923151 PMCID: PMC8753754 DOI: 10.1016/j.prostaglandins.2021.106605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Bone modeling can be modulated by lipid signals such as arachidonic acid (AA) and its cyclooxygenase 2 (COX2) metabolite, prostaglandin E2 (PGE2), which are recognized mediators of optimal bone formation. Hydrolysis of AA from membrane glycerophospholipids is catalyzed by phospholipases A2 (PLA2s). We reported that mice deficient in the Ca2+- independent PLA2beta (iPLA2β), encoded by Pla2g6, exhibit a low bone phenotype, but the cause for this remains to be identified. Here, we examined the mechanistic and molecular roles of iPLA2β in bone formation using bone marrow stromal cells and calvarial osteoblasts from WT and iPLA2β-deficient mice, and the MC3T3-E1 osteoblast precursor cell line. Our data reveal that transcription of osteogenic factors (Bmp2, Alpl, and Runx2) and osteogenesis are decreased with iPLA2β-deficiency. These outcomes are corroborated and recapitulated in WT cells treated with a selective inhibitor of iPLA2 β (10 μM S-BEL), and rescued in iPLA2β-deficient cells by additions of 10 μM PGE2. Further, under osteogenic conditions we find that PGE2 production is through iPLA2β activity and that this leads to induction of Runx2 and iPLA2β transcription. These findings reveal a strong link between osteogenesis and iPLA2β-derived lipids and raise the intriguing possibility that iPLA2β-derived PGE2 participates in osteogenesis and in the regulation of Runx2 and also iPLA2β.
Collapse
Affiliation(s)
- William D Hancock
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A Clines
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ying G Tusing
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Nozell
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Dolan CP, Imholt F, Yang TJ, Bokhari R, Gregory J, Yan M, Qureshi O, Zimmel K, Sherman KM, Falck A, Yu L, Leininger E, Brunauer R, Suva LJ, Gaddy D, Dawson LA, Muneoka K. Mouse Digit Tip Regeneration Is Mechanical Load Dependent. J Bone Miner Res 2022; 37:312-322. [PMID: 34783092 PMCID: PMC9400037 DOI: 10.1002/jbmr.4470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Amputation of the mouse digit tip results in blastema-mediated regeneration. In this model, new bone regenerates de novo to lengthen the amputated stump bone, resulting in a functional replacement of the terminal phalangeal element along with associated non-skeletal tissues. Physiological examples of bone repair, such as distraction osteogenesis and fracture repair, are well known to require mechanical loading. However, the role of mechanical loading during mammalian digit tip regeneration is unknown. In this study, we demonstrate that reducing mechanical loading inhibits blastema formation by attenuating bone resorption and wound closure, resulting in the complete inhibition of digit regeneration. Mechanical unloading effects on wound healing and regeneration are completely reversible when mechanical loading is restored. Mechanical unloading after blastema formation results in a reduced rate of de novo bone formation, demonstrating mechanical load dependence of the bone regenerative response. Moreover, enhancing the wound-healing response of mechanically unloaded digits with the cyanoacrylate tissue adhesive Dermabond improves wound closure and partially rescues digit tip regeneration. Taken together, these results demonstrate that mammalian digit tip regeneration is mechanical load-dependent. Given that human fingertip regeneration shares many characteristics with the mouse digit tip, these results identify mechanical load as a previously unappreciated requirement for de novo bone regeneration in humans. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Felisha Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Tae-Jung Yang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Rihana Bokhari
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Joshua Gregory
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alyssa Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Eric Leininger
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
5
|
Stenhouse C, Suva LJ, Gaddy D, Wu G, Bazer FW. Phosphate, Calcium, and Vitamin D: Key Regulators of Fetal and Placental Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:77-107. [PMID: 34807438 DOI: 10.1007/978-3-030-85686-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Normal calcium and bone homeostasis in the adult is virtually fully explained by the interactions of several key regulatory hormones, including parathyroid hormone, 1,25 dihydroxy vitamin D3, fibroblast growth factor-23, calcitonin, and sex steroids (estradiol and testosterone). In utero, bone and mineral metabolism is regulated differently from the adult. During development, it is the placenta and not the fetal kidneys, intestines, or skeleton that is the primary source of minerals for the fetus. The placenta is able to meet the almost inexhaustible needs of the fetus for minerals by actively driving the transport of calcium and phosphorus from the maternal circulation to the growing fetus. These fundamentally important minerals are maintained in the fetal circulation at higher concentrations than those in maternal blood. Maintenance of these inordinately higher fetal levels is necessary for the developing skeleton to accrue sufficient minerals by term. Importantly, in livestock species, prenatal mineralization of the skeleton is crucial for the high levels of offspring activity soon after birth. Calcium is required for mineralization, as well as a plethora of other physiological functions. Placental calcium and phosphate transport are regulated by several mechanisms that are discussed in this review. It is clear that phosphate and calcium metabolism is intimately interrelated and, therefore, placental transport of these minerals cannot be considered in isolation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Kleberg Center, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
6
|
Ieong K, Ardila-Gatas J, Yang J, Zhang X, Tsui ST, Spaniolas K, Pryor AD. Bone mineral density changes after bariatric surgery. Surg Endosc 2020; 35:4763-4770. [PMID: 32909203 DOI: 10.1007/s00464-020-07953-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Although bariatric surgery is associated with multiple health benefits, decreased bone mass is a known complication of the procedure. Roux-en-Y gastric bypass (RYGB) is associated with significant bone loss and increased fracture risk. However, data on the effect of sleeve gastrectomy (SG) on bone mineral changes are sparse. The impact of vitamin D and calcium levels on bone mineral density (BMD) after SG is also unknown. METHODS A retrospective chart review was performed to include patients who underwent RYGB or SG from 2014 to 2016 at a single institution. Patients were included if bone densitometry was performed preoperatively and within 2 years postoperatively. Serum 25-hydroxy vitamin D and calcium levels were collected preoperatively and at time of bone densitometry scan. BMD and T-score changes at the femoral neck, femoral trochanter, total hip, and lumbar spine were compared between RYGB and SG patients. RESULTS A total of 40 patients were included. 24 (60%) of patients underwent RYGB and 16 (40%) patients underwent SG. No statistically significant difference in baseline characteristics was noted between RYGB and SG patients. All measurements, except for serum 25-hydroxy vitamin D, were significantly decreased in RYGB patients, postoperatively. All measurements, except for BMD and T-score at the lumbar spine and serum 25-hydroxy vitamin D, were significantly decreased in SG patients, postoperatively. The extent of decrease in serum 25-hydroxyvitamin D was significantly associated with decreased BMD (p = 0.049) and T-score (p = 0.032) at the lumbar spine. The extent of decrease in serum calcium was significantly associated with decreased BMD (p = 0.046) at the femoral neck. CONCLUSION All patients were found to have decreased BMD after RYGB and SG. Surgery type was not a significant risk factor in BMD change. Despite vitamin D and calcium supplementation in all patients, a decrease in vitamin D and calcium levels were associated with a decrease in BMD. Close follow-up and treatment of vitamin D and calcium levels are warranted in all bariatric patients.
Collapse
Affiliation(s)
- Kelly Ieong
- Division of Bariatric, Foregut, and Advanced Gastrointestinal Surgery, Department of Surgery, Health Sciences Center, T19-053, Stony Brook Medicine, Stony Brook, NY, 11794-8191, USA.
| | - Jessica Ardila-Gatas
- Division of Bariatric, Foregut, and Advanced Gastrointestinal Surgery, Department of Surgery, Health Sciences Center, T19-053, Stony Brook Medicine, Stony Brook, NY, 11794-8191, USA
| | - Jie Yang
- Department of Family, Population and Preventive Medicine, Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Xiaoyue Zhang
- Department of Family, Population and Preventive Medicine, Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Stella To Tsui
- Division of Bariatric, Foregut, and Advanced Gastrointestinal Surgery, Department of Surgery, Health Sciences Center, T19-053, Stony Brook Medicine, Stony Brook, NY, 11794-8191, USA
| | - Konstantinos Spaniolas
- Division of Bariatric, Foregut, and Advanced Gastrointestinal Surgery, Department of Surgery, Health Sciences Center, T19-053, Stony Brook Medicine, Stony Brook, NY, 11794-8191, USA
| | - Aurora D Pryor
- Division of Bariatric, Foregut, and Advanced Gastrointestinal Surgery, Department of Surgery, Health Sciences Center, T19-053, Stony Brook Medicine, Stony Brook, NY, 11794-8191, USA
| |
Collapse
|
7
|
Karsenty G. The Central Regulation of Bone Mass: Genetic Evidence and Molecular Bases. Handb Exp Pharmacol 2020; 262:309-323. [PMID: 32960342 DOI: 10.1007/164_2020_378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The alternation of resorption of preexisting bone by the osteoclasts followed by de novo bone formation by osteoblasts is called bone modeling during childhood and bone remodeling during adulthood. A central question raised by this physiological process that is fundamental to longitudinal growth during childhood and adolescence and that is attacked at the other end of life in the context of osteoporosis is to know how it is regulated. This question was rejuvenated in the late 1990s and early 2000s years when the application of mouse genetics made it feasible to test whether there were new endocrine determinants of bone (re)modeling. Addressing this question, taking into account fundamental cell biology features of bone led to the hypothesis that there should be a coordinated control of bone growth/mass, energy metabolism, and reproduction. Testing genetically and molecularly, this hypothesis revealed that, in vivo, the adipocyte-derived hormone leptin is a powerful inhibitor of bone mass accrual following its signaling in the brain. This chapter details the molecular bases and biological relevance of this regulation of bone mass accrual by leptin.
Collapse
Affiliation(s)
- Gerard Karsenty
- Departments of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Huseman CJ, Sigler DH, Welsh TH, Suva LJ, Vogelsang MM, Dominguez BJ, Huggins S, Paulk C. Skeletal response to whole body vibration and dietary calcium and phosphorus in growing pigs. J Anim Sci 2019; 97:3369-3378. [PMID: 31265734 DOI: 10.1093/jas/skz189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
The quality and strength of the skeleton is regulated by mechanical loading and adequate mineral intake of calcium (Ca) and phosphorus (P). Whole body vibration (WBV) has been shown to elicit adaptive responses in the skeleton, such as increased bone mass and strength. This experiment was designed to determine the effects of WBV and dietary Ca and P on bone microarchitecture and turnover. A total of 26 growing pigs were utilized in a 60-d experiment. Pigs were randomly assigned within group to a 2 × 2 factorial design with dietary Ca and P concentration (low and adequate) as well as WBV. The adequate diet was formulated to meet all nutritional needs according to the NRC recommendations for growing pigs. Low Ca, P diets had 0.16% lower Ca and 0.13% lower P than the adequate diet. Pigs receiving WBV were vibrated 30 min/d, 3 d/wk at a magnitude of 1 to 2 mm and a frequency of 50 Hz. On days 0, 30, and 60, digital radiographs were taken to determine bone mineral content by radiographic bone aluminum equivalency (RBAE) and serum was collected to measure biochemical markers of bone formation (osteocalcin, OC) and bone resorption (carboxy-terminal collagen crosslinks, CTX-I). At day 60, pigs were euthanized and the left third metacarpal bone was excised for detailed analysis by microcomputed tomography (microCT) to measure trabecular microarchitecture and cortical bone geometry. Maximum RBAE values for the medial or lateral cortices were not affected (P > 0.05) by WBV. Pigs fed adequate Ca and P tended (P = 0.10) to have increased RBAE max values for the medial and lateral cortices. WBV pigs had significantly decreased serum CTX-1 concentrations (P = 0.044), whereas animals fed a low Ca and P diet had increased (P < 0.05) OC concentrations. In bone, WBV pigs showed a significantly lower trabecular number (P = 0.002) and increased trabecular separation (P = 0.003), whereas cortical bone parameters were not significantly altered by WBV or diet (P > 0.05). In summary, this study confirmed the normal physiological responses of the skeleton to a low Ca, P diet. Interestingly, although the WBV protocol utilized in this study did not elicit any significant osteogenic response, decreases in CTX-1 in response to WBV may have been an early local adaptive bone response. We interpret these data to suggest that the frequency and amplitude of WBV was likely sufficient to elicit a bone remodeling response, but the duration of the study may not have captured the full extent of an entire bone remodeling cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chad Paulk
- Texas A&M University, College Station, TX.,Kansas State University, Manhattan, KS
| |
Collapse
|
9
|
Suva LJ. A Link between the Gut and Bone: Bone Health Impacted by Changes in Gut Microbiota. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:229-230. [PMID: 30665557 DOI: 10.1016/j.ajpath.2018.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022]
Abstract
This commentary highlights the article by Hathaway-Schrader et al that studies the impact of antibiotic-disruption of the gut microbiota on long-term bone development.
Collapse
Affiliation(s)
- Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.
| |
Collapse
|
10
|
Sivan U, De Angelis J, Kusumbe AP. Role of angiocrine signals in bone development, homeostasis and disease. Open Biol 2019; 9:190144. [PMID: 31575330 PMCID: PMC6833221 DOI: 10.1098/rsob.190144] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal vasculature plays a central role in the maintenance of microenvironments for osteogenesis and haematopoiesis. In addition to supplying oxygen and nutrients, vasculature provides a number of inductive factors termed as angiocrine signals. Blood vessels drive recruitment of osteoblast precursors and bone formation during development. Angiogenesis is indispensable for bone repair and regeneration. Dysregulation of the angiocrine crosstalk is a hallmark of ageing and pathobiological conditions in the skeletal system. The skeletal vascular bed is complex, heterogeneous and characterized by distinct capillary subtypes (type H and type L), which exhibit differential expression of angiocrine factors. Furthermore, distinct blood vessel subtypes with differential angiocrine profiles differentially regulate osteogenesis and haematopoiesis, and drive disease states in the skeletal system. This review provides an overview of the role of angiocrine signals in bone during homeostasis and disease.
Collapse
Affiliation(s)
- Unnikrishnan Sivan
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Jessica De Angelis
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali P Kusumbe
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
11
|
Mitchell A, Watts AE, Ebetino FH, Suva LJ. Bisphosphonate use in the horse: what is good and what is not? BMC Vet Res 2019; 15:211. [PMID: 31234844 PMCID: PMC6591999 DOI: 10.1186/s12917-019-1966-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 06/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background Bisphosphonates (BPs) are a family of molecules characterized by two key properties: their ability to bind strongly to bone mineral and their inhibitory effects on mature osteoclasts and thus bone resorption. Chemically two groups of BPs are recognized, non-nitrogen-containing and nitrogen-containing BPs. Non-nitrogen-containing BPs incorporate into the energy pathways of the osteoclast, resulting in disrupted cellular energy metabolism leading to cytotoxic effects and osteoclast apoptosis. Nitrogen-containing BPs primarily inhibit cholesterol biosynthesis resulting in the disruption of intracellular signaling, and other cellular processes in the osteoclast. Body BPs also exert a wide range of physiologic activities beyond merely the inhibition of bone resorption. Indeed, the breadth of reported activities include inhibition of cancer cell metastases, proliferation and apoptosis in vitro. In addition, the inhibition of angiogenesis, matrix metalloproteinase activity, altered cytokine and growth factor expression, and reductions in pain have been reported. In humans, clinical BP use has transformed the treatment of both post-menopausal osteoporosis and metastatic breast and prostate cancer. However, BP use has also resulted in significant adverse events including acute-phase reactions, esophagitis, gastritis, and an association with very infrequent atypical femoral fractures (AFF) and osteonecrosis of the jaw (ONJ). Conclusion Despite the well-characterized health benefits of BP use in humans, little is known regarding the effects of BPs in the horse. In the equine setting, only non-nitrogen-containing BPs are FDA-approved primarily for the treatment of navicular syndrome. The focus here is to discuss the current understanding of the strengths and weaknesses of BPs in equine veterinary medicine and highlight the future utility of these potentially highly beneficial drugs.
Collapse
Affiliation(s)
- Alexis Mitchell
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Ashlee E Watts
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Frank H Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA.
| |
Collapse
|
12
|
Chen X, Yan J, He F, Zhong D, Yang H, Pei M, Luo ZP. Mechanical stretch induces antioxidant responses and osteogenic differentiation in human mesenchymal stem cells through activation of the AMPK-SIRT1 signaling pathway. Free Radic Biol Med 2018; 126:187-201. [PMID: 30096433 PMCID: PMC6165675 DOI: 10.1016/j.freeradbiomed.2018.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are promising cell sources for regenerative medicine. Growing evidence has indicated that mechanical stimuli are crucial for their lineage-specific differentiation. However, the effect of mechanical loading on redox balance and the intracellular antioxidant system in MSCs was unknown. In this study, human bone marrow-derived MSCs (BM-MSCs) were subjected to cyclic stretch at the magnitude of 2.5%, 5%, and 10%. Cell proliferation, intracellular reactive oxygen species (ROS), expression of antioxidant enzymes, and osteogenic differentiation were evaluated. RNA was extracted and subjected to DNA microarray analysis. Sirtinol and compound C were used to investigate the underlying mechanisms involved silent information regulator type 1 (SIRT1) and AMP-activated protein kinase (AMPK). Our results showed that mechanical stretch at appropriate magnitudes increased cell proliferation, up-regulated extracellular matrix organization, and down-regulated matrix disassembly. After 3 days of stretch, intracellular ROS in BM-MSCs were decreased but the levels of antioxidant enzymes, especially superoxide dismutase 1 (SOD1), were up-regulated. Osteogenesis was improved by 5% stretch rather than 10% stretch, as evidenced by increased matrix mineralization and osteogenic marker gene expression. The expression of SIRT1 and phosphorylation of AMPK were enhanced by mechanical stretch; however, inhibition of SIRT1 or AMPK abrogated the stretch-induced antioxidant effect on BM-MSCs and inhibited the stretch-mediated osteogenic differentiation. Our findings reveal that mechanical stretch induced antioxidant responses, attenuated intracellular ROS, and improved osteogenesis of BM-MSCs. The stretch-induced antioxidant effect was through activation of the AMPK-SIRT1 signaling pathway. Our findings demonstrated that appropriate mechanical stimulation can improve MSC antioxidant functions and benefit bone regeneration.
Collapse
Affiliation(s)
- Xi Chen
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Jinku Yan
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Fan He
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Dongyan Zhong
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - Zong-Ping Luo
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
13
|
Lee DW, Cho MS, Choe EY, Park SW, Song YM, Lee SC, Sung J. Epicardial Fat Thickness and Bone Mineral Content: The Healthy Twin Study in Korea. J Epidemiol 2018; 28:253-259. [PMID: 29332861 PMCID: PMC5911676 DOI: 10.2188/jea.je20170027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The conventional concept of positive association between general obesity and bone health was challenged in recent studies reporting the different effects of specific fat deposition on bone health. In the present study, we investigated the association between epicardial fat and bone health. Methods We measured echocardiographic epicardial fat thickness (EFT) and bone mineral content (BMC) in a twin-family cohort of Koreans (n = 1,198; 525 men, 460 pre- and 213 post-menopausal women). A total 121 pairs of monozygotic twin (MZ) and 404 pairs of dizygotic twin and sibling pairs (DZ/Sib) were included. Results EFT was positively associated with BMC in total, as well as in three subgroups (β = 0.107, 0.076, and 0.058 for men, pre-, and post-menopausal women, respectively). The positive association between EFT and BMC remained for DZ/Sib difference analysis, but was absent for MZ comparisons. The positive association between BMI and BMC was consistent for DZ/Sib and MZ difference analysis. After adjusting for the effect of general obesity via BMI, the association between BMC and EFT was statistically non-significant (β = 0.020, 0.000, and −0.009 for men, pre-, and post-menopausal women, respectively). Conclusion Our findings do not support epicardial fat’s beneficial effects on bone health, whereas general adiposity has an osteotropic effect. The association between EFT and BMC is through common genetic component factors.
Collapse
Affiliation(s)
- Dong-Won Lee
- Department of Internal Medicine, Division of Gastroenterology, Korea University Ansan Hospital
| | - Min Soo Cho
- Heart Institute, Asan Medical Center, University of Ulsan College of Medicine
| | - Eun Yeong Choe
- Department of Internal Medicine, Division of Endocrinology, Yonsei University College of Medicine
| | - Seung Woo Park
- Department of Cardiology and Cardiovascular Imaging Center, Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Yun-Mi Song
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Sang-Chol Lee
- Department of Cardiology and Cardiovascular Imaging Center, Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Joohon Sung
- Department of Epidemiology, School of Public Health, Seoul National University.,Institute of Health and Environment, Seoul National University.,Bio-MAX Institute, Seoul National University
| |
Collapse
|
14
|
Hopkins SJ, Toms AD, Brown M, Appleboam A, Knapp KM. Disuse osteopenia following leg fracture in postmenopausal women: Implications for HIP fracture risk and fracture liaison services. Radiography (Lond) 2018; 24:151-158. [PMID: 29605113 DOI: 10.1016/j.radi.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Disuse osteopenia is a known consequence of reduced weight-bearing and has been demonstrated at the hip following leg injury but has not been specifically studied in postmenopausal women. METHOD Bilateral DXA (GE Lunar Prodigy) bone mineral density (BMD) measurements were taken at the neck of femur (NOF), total hip region (TH) and lumbar spine in postmenopausal female groups comprising controls (N = 43), new leg fractures (#<3wks) (N = 9), and participants who had sustained a leg fracture more than one year previously (#>1yr) (N = 24). #>1yr were assessed at a single visit and the remaining groups at intervals over twelve months. Weight-bearing, function, 3-day pedometer readings, and pain levels were also recorded. RESULTS The #<3wks demonstrated significant (p < 0.05) losses in ipsilateral TH BMD at 6 weeks from baseline 0.927 ± 0.137 g/cm2, to 0.916 ± 0.151 g/cm2 improving to 0.946 ± 0.135 g/cm2 (n.s) at 12 months following gradual return to normal function and weight-bearing activity. The #>1yr scored significantly below controls in almost all key physical and functional outcomes demonstrating a long-term deficit in hip bone density on the ipsilateral side. CONCLUSION The clinical significance of post-fracture reduction in hip BMD is a potential increased risk of hip fracture for a variable period that may be mitigated after return to normal function and weight-bearing. Improvement at 12 months in #<3wks is not consistent with #>1yr results indicating that long-term impairment in function and bone health may persist for some leg fracture patients. Unilateral bone loss could have implications for Fracture Liaison Services when assessing the requirement for medication post fracture.
Collapse
Affiliation(s)
| | - A D Toms
- Royal Devon and Exeter Hospital, UK
| | - M Brown
- Royal Devon and Exeter Hospital, UK
| | | | - K M Knapp
- University of Exeter Medical School, UK
| |
Collapse
|
15
|
Abstract
Breast cancer bone metastasis develops as the result of a series of complex interactions between tumor cells, bone marrow cells, and resident bone cells. The net effect of these interactions are the disruption of normal bone homeostasis, often with significantly increased osteoclast and osteoblast activity, which has provided a rational target for controlling tumor progression, with little or no emphasis on tumor eradication. Indeed, the clinical course of metastatic breast cancer is relatively long, with patients likely to experience sequential skeletal-related events (SREs), often over lengthy periods of time, even up to decades. These SREs include bone pain, fractures, and spinal cord compression, all of which may profoundly impair a patient's quality-of-life. Our understanding of the contributions of the host bone and bone marrow cells to the control of tumor progression has grown over the years, yet the focus of virtually all available treatments remains on the control of resident bone cells, primarily osteoclasts. In this perspective, our focus is to move away from the current emphasis on the control of bone cells and focus our attention on the hallmarks of bone metastatic tumor cells and how these differ from primary tumor cells and normal host cells. In our opinion, there remains a largely unmet medical need to develop and utilize therapies that impede metastatic tumor cells while sparing normal host bone and bone marrow cells. This perspective examines the impact of metastatic tumor cells on the bone microenvironment and proposes potential new directions for uncovering the important mechanisms driving metastatic progression in bone based on the hallmarks of bone metastasis.
Collapse
Affiliation(s)
- Rachelle W Johnson
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
16
|
Rendina-Ruedy E, Smith BJ. Methodological considerations when studying the skeletal response to glucose intolerance using the diet-induced obesity model. BONEKEY REPORTS 2016; 5:845. [PMID: 27818742 PMCID: PMC5081001 DOI: 10.1038/bonekey.2016.71] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/24/2016] [Indexed: 01/22/2023]
Abstract
The prevalence of obesity and type 2 diabetes mellitus (T2DM) continues to rise, and as a result, research aimed at understanding the molecular basis for the co-morbidities has become an area of much scientific interest. Among the more recently recognized chronic complications of T2DM is the increased risk of fracture, especially hip fracture, that has been reported independent of bone mineral density (BMD). A widely used animal model to study how the development and progression of impaired glucose tolerance affect the skeleton has been the diet-induce obesity (DIO) model. As the name implies, this model employs the use of a version of high-fat diets to induce obesity and the subsequent metabolic perturbations that occur with T2DM. Although the model offers a number of advantages, the literature reveals some inconsistent results. Upon further review, discrepancies in the choice of the experimental high-fat diets and the control diets have become a point of major concern. The variability between diets and study design has made it difficult to compare data and results across studies. Therefore, this review aims to provide guidelines that should be employed when designing studies using DIO models of T2DM.
Collapse
Affiliation(s)
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
17
|
Abstract
In the context of breast cancer, the importance of the skeleton in the regulation of primary tumour development and as a site for subsequent metastasis is well characterized. Our understanding of the contributions made by the host bone and bone marrow cells increasingly demonstrates the extent of the interaction between tumour cells and normal host cells. As a result, the need to develop and utilize therapies that can impede the growth and/or function of tumour cells while sparing normal host bone and bone marrow cells is immense and expanding. The need for these new treatments is, however, superimposed on the orthopaedic management of patients' quality of life, where pain control and continued locomotion are paramount. Indeed, the majority of the anticancer therapies used to date often result in direct or indirect damage to bone. Thus, although the bone microenvironment regulates tumour cell growth in bone, cells within the bone marrow niche also mediate many of the orthopaedic consequences of tumour progression as well as resistance to the antitumour effects of existing therapies. In this Review, we highlight the effects of existing cancer treatments on bone and the bone marrow microenvironment as well as the mechanisms mediating these effects and the current utility of modern orthopaedic interventions.
Collapse
Affiliation(s)
- Issam Makhoul
- Department of Medicine, Division of Haematology/Oncology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Corey O Montgomery
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Dana Gaddy
- Department of Physiology and Biophysics, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Larry J Suva
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| |
Collapse
|
18
|
Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis. Bone Res 2015; 3:15003. [PMID: 26273536 PMCID: PMC4413016 DOI: 10.1038/boneres.2015.3] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 02/05/2023] Open
Abstract
Age related defect of the osteogenic differentiation of mesenchymal stem cells (MSCs) plays a key role in osteoporosis. Mechanical loading is one of the most important physical stimuli for osteoblast differentiation. Here, we compared the osteogenic potential of MSCs from young and adult rats under three rounds of 2 h of cyclic stretch of 2.5% elongation at 1 Hz on 3 consecutive days. Cyclic stretch induced a significant osteogenic differentiation of MSCs from young rats, while a compromised osteogenesis in MSCs from the adult rats. Accordingly, there were much more reactive oxygen species (ROS) production in adult MSCs under cyclic stretch compared to young MSCs. Moreover, ROS scavenger N-acetylcysteine rescued the osteogenic differentiation of adult MSCs under cyclic stretch. Gene expression analysis revealed that superoxide dismutase 1 (SOD1) was significantly downregulated in those MSCs from adult rats. In summary, our data suggest that reduced SOD1 may result in excessive ROS production in adult MSCs under cyclic stretch, and thus manipulation of the MSCs from the adult donors with antioxidant would improve their osteogenic ability.
Collapse
|
19
|
Hinoi E. [Regulation of osteoclastogenesis by osteocytes through growth differentiation factor-15]. YAKUGAKU ZASSHI 2014; 134:1259-63. [PMID: 25452236 DOI: 10.1248/yakushi.14-00209-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteocytes are the most abundant cells in bone. However, little attention has been paid to their role in bone remodeling. In this study, osteoclast differentiation was significantly enhanced by conditioned media derived from cultures of osteocytic MLO-Y4 cells that were cultured under hypoxic conditions. Using microarray analysis, we identified growth differentiation factor-15 (GDF15) as a pivotal factor secreted from osteocytes under hypoxia. Indeed, treatment with recombinant GDF15 markedly increased osteoclast differentiation in vitro. Further to investigate the importance of GDF15 in vivo, we used a hypoxic murine model that involved ligation of the right femoral artery. The volume of cancellous bone in the proximal tibia of the ligated limb was significantly reduced, together with a significant increase in osteoclast-related parameters. Addition of anti-GDF15 antibody prevented bone loss and osteoclastic activation in the tibiae of mice that had undergone femoral artery ligation. These results suggest that GDF15, which is secreted from osteocytes under hypoxia during bone remodeling, may be a positive regulator of osteoclastic differentiation. The in vivo usefulness of the anti-GDF15 antibody might provide insights for the development of novel therapeutics for bone disorders related to hypoxia or ischemic insults.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology
| |
Collapse
|
20
|
Changes in the spatial distribution of sclerostin in the osteocytic lacuno-canalicular system in alveolar bone due to orthodontic forces, as detected on multimodal confocal fluorescence imaging analyses. Arch Oral Biol 2014; 60:45-54. [PMID: 25255472 DOI: 10.1016/j.archoralbio.2014.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 08/06/2014] [Accepted: 08/23/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Mechanical loading on the bone is sensed by osteocytes. Sclerostin is a molecule secreted by osteocytes that is downregulated by mechanical loading; therefore, its expression level is a potent sensor that indicates the spatial transduction of biomechanical properties in bone. This study applied macroconfocal microscopy to observe the spatial response of alveolar bone to orthodontic forces after immunofluorescence using anti-sclerostin antibodies. DESIGN Orthodontic tooth movement with the Ni-Ti closed-coil spring was applied between the upper bilateral incisors and the left first molar of mice. Four days after this application, the animals were subjected to multimodal confocal fluorescence imaging analyses. RESULTS Obvious downregulation of sclerotin in the osteocytic lacuna-canalicular system (LCS) was observed specifically in tensile sites of alveolar bone. Confocal-based three-dimensional fluorescence morphometry further quantitatively demonstrated that the distribution and expression of sclerostin in the tensile sites was significantly reduced compared to that observed in the corresponding control sites. Interestingly, the levels of sclerotin signals in the compression sites were significantly higher than those observed in the control sites, although the distribution of sclerotin was not significantly different. CONCLUSIONS Our observations suggest that spatial changes in the level and distribution of sclerostin in the alveolar LCS trigger successive bone remodelling due to orthodontic tooth movement. The multimodal confocal imaging analyses applied in this work will enhance comprehensive understanding regarding the spatial regulation of molecules of interest from the tissue to the cellular level.
Collapse
|
21
|
Abstract
The normal human chromosome complement consists of 46 chromosomes comprising 22 morphologically different pairs of autosomes and one pair of sex chromosomes. Variations in either chromosome number and/or structure frequently result in significant mental impairment and/or a variety of other clinical problems, among them, altered bone mass and strength. Chromosomal syndromes associated with specific chromosomal abnormalities are classified as either numerical or structural and may involve more than one chromosome. Aneuploidy refers to the presence of an extra copy of a specific chromosome, or trisomy, as seen in Down's syndrome (trisomy 21), or the absence of a single chromosome, or monosomy, as seen in Turner syndrome (a single X chromosome in females: 45, X). Aneuploidies have diverse phenotypic consequences, ranging from severe mental retardation and developmental abnormalities to increased susceptibility to various neoplasms and premature death. In fact, trisomy 21 is the prototypical aneuploidy in humans, is the most common genetic abnormality associated with longevity, and is one of the most widespread genetic causes of intellectual disability. In this review, the impact of trisomy 21 on the bone mass, architecture, skeletal health, and quality of life of people with Down syndrome will be discussed.
Collapse
Affiliation(s)
- Archana Kamalakar
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR
| | - John R. Harris
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Kent D. McKelvey
- Department of Genetics. University of Arkansas for Medical Sciences, Little Rock, AR
| | - Larry J. Suva
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR
- Corresponding Author
| |
Collapse
|
22
|
Effect of bariatric surgery on bone mineral density: comparison of gastric bypass and sleeve gastrectomy. Obes Surg 2014; 23:2086-91. [PMID: 23818239 DOI: 10.1007/s11695-013-1016-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of our study was to compare bone mineral density (BMD) a year after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) in age- and body mass index-matched women. In 33 morbidly obese women undergoing RYGB and 33 undergoing SG, plasma determinations of calcium, parathyroid hormone (PTH), 25-hydroxyvitamin D (25(OH) D3), and insulin-like growth factor-I (IGF-I) were made prior to and at 12 months after surgery. Dual-energy X-ray absorptiometry was performed in all patients 1 year after surgery. BMD at the femoral neck and the lumbar spine 1 year after surgery was similar in women undergoing RYGB and SG (1.01 ± 0.116 vs. 1.01 ± 0.122 g/cm(2), p = 0.993; 1.05 ± 0.116 vs. 1.08 ± 0.123 g/cm(2), p = 0.384). The percentage of patients with osteopenia and osteoporosis was not different between groups. In the linear regression analysis, age (β = -0.628, p = 0.034) and lean mass 12 months after surgery (β = 0.424, p = 0.021) were found to be the main determinants of femoral neck BMD. Age (β = -0.765, p = 0.025), menopause (β = -0.898, p = 0.033), and lean mass (β = 0.615, p = 0.023) were determinants of BMD at the lumbar spine. No influence was found between low bone mass and type of surgery, plasma PTH, 25(OH) D3, or IGF-I. The effect of RYGB and SG on BMD was comparable a year after surgery. Menopausal women were at a higher risk of having low bone mass, but the presence of osteoporosis was uncommon.
Collapse
|
23
|
Lopez-Ayon GM, Liu HY, Xing S, Maria OM, LeDue JM, Bourque H, Grutter P, Komarova SV. Local membrane deformation and micro-injury lead to qualitatively different responses in osteoblasts. F1000Res 2014; 3:162. [PMID: 25254108 PMCID: PMC4168753 DOI: 10.12688/f1000research.4448.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/24/2022] Open
Abstract
Micro-damage of bone tissue is known to regulate bone turnover. However, it is unknown if individual bone cells can differentiate between membrane deformation and micro-injury. We generated osteoblasts from mouse bone marrow or bone morphogenetic protein 2-transfected C2C12 cells. Single cells were mechanically stimulated by indentation with the atomic force microscopy probe with variable force load either resulting in membrane deformation only, or leading to membrane penetration and micro-injury. Changes in the cytosolic free calcium concentration ([Ca (2+)] i) in fluo4-AM loaded cells were analyzed. When deformation only was induced, it resulted in an immediate elevation of [Ca (2+)] i which was localized to the probe periphery. Multiple consecutive local Ca (2+) responses were induced by sequential application of low level forces, with characteristic recovery time of ~2 s. The duration of [Ca (2+)] i elevations was directly proportional to the tip-cell contact time. In contrast, cell micro-injury resulted in transient global elevations of [Ca (2+)] i, the magnitude of which was independent of the tip-cell contact time. Sequential micro-injury of the same cell did not induce Ca (2+) response within 30 s of the first stimulation. Both local and global Ca (2+)elevations were blocked in Ca (2+)-free media or in the presence of stretch-activated channel blocker Gd (3+). In addition, amount of Ca (2+) released during global responses was significantly reduced in the presence of PLC inhibitor Et-18-OCH 3. Thus, we found qualitative differences in calcium responses to mechanical forces inducing only membrane deformation or deformation leading to micro-injury.
Collapse
Affiliation(s)
- G Monserratt Lopez-Ayon
- Center for the Physics of Materials and the Department of Physics, McGill University, 3600 University, Montreal, Quebec, H3A 2T8, Canada
| | - Heng-Yen Liu
- Faculty of Dentistry, McGill University, 3640 University, Montreal, Quebec, H3A 0C7, Canada ; Shriners Hospital for Children - Canada, 1529 Cedar Ave, Montreal, Quebec, H3G IA6, Canada
| | - Shu Xing
- Center for the Physics of Materials and the Department of Physics, McGill University, 3600 University, Montreal, Quebec, H3A 2T8, Canada ; Faculty of Dentistry, McGill University, 3640 University, Montreal, Quebec, H3A 0C7, Canada
| | - Osama M Maria
- Faculty of Dentistry, McGill University, 3640 University, Montreal, Quebec, H3A 0C7, Canada
| | - Jeffrey M LeDue
- Center for the Physics of Materials and the Department of Physics, McGill University, 3600 University, Montreal, Quebec, H3A 2T8, Canada
| | - Helene Bourque
- Center for the Physics of Materials and the Department of Physics, McGill University, 3600 University, Montreal, Quebec, H3A 2T8, Canada
| | - Peter Grutter
- Center for the Physics of Materials and the Department of Physics, McGill University, 3600 University, Montreal, Quebec, H3A 2T8, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, 3640 University, Montreal, Quebec, H3A 0C7, Canada ; Shriners Hospital for Children - Canada, 1529 Cedar Ave, Montreal, Quebec, H3G IA6, Canada
| |
Collapse
|
24
|
Delgado-Calle J, Riancho JA, Klein-Nulend J. Nitric oxide is involved in the down-regulation of SOST expression induced by mechanical loading. Calcif Tissue Int 2014; 94:414-22. [PMID: 24322886 DOI: 10.1007/s00223-013-9821-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/23/2013] [Indexed: 01/08/2023]
Abstract
UNLABELLED Mechanical stimulation reduces sclerostin expression in rodents. However, few data are available about the effect of physical stimuli in human systems. Recently we observed that the demethylating agent AzadC induces SOST expression in bone cells. This allowed us in this study to explore the effect of mechanical loading on SOST expression by subjecting AzadC-treated human bone cells to pulsating fluid flow (PFF). PFF significantly decreased the AzadC-induced expression of SOST. This effect persisted for at least 24 h, and in fact SOST expression was lower at 24 h after PFF treatment than at 1 h after PFF treatment (PFF/static ratio 0.47 ± 0.04 vs. 0.63 ± 0.03 respectively, p = 0.03). The PFF-induced decrease in SOST expression was not due to a change in the methylation profile of the SOST promoter. However, PFF stimulated nitric oxide (NO) synthesis, which appeared essential for the PFF effect on SOST expression. In fact, the NO synthase inhibitor 1400 W prevented the effect of PFF on SOST expression. Moreover, the NO-donor SNAP decreased SOST mRNA in bone organ cultures. The conditioned medium (CM) of cells subjected to PFF induced a 38 ± 4 % decrease in SOST expression (p = 0.03) in static cultures and diminished the transcriptional activity of reporter vectors with the cloned SOST promoter (Static-CM: 1.47 ± 0.10 vs. PFF-CM 0.78 ± 0.09, p = 0.02). This is consistent with a PFF-induced secretion of factors that modulate SOST. Our results suggest that NO and other soluble factors are involved in the inhibition of SOST expression by PFF.
Collapse
Affiliation(s)
- Jesús Delgado-Calle
- Department of Internal Medicine, Hospital U. M. Valdecilla-IFIMAV, University of Cantabria, RETICEF, Av., Marqués de Valdecilla, s/n, 39008, Santander, Spain
| | | | | |
Collapse
|
25
|
McKelvey KD, Fowler TW, Akel NS, Kelsay JA, Gaddy D, Wenger GR, Suva LJ. Low bone turnover and low bone density in a cohort of adults with Down syndrome. Osteoporos Int 2013; 24:1333-8. [PMID: 22903293 PMCID: PMC3606288 DOI: 10.1007/s00198-012-2109-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Increased incidence of osteoporosis in Down syndrome has been reported, but etiology is not established. We report low bone turnover markers and bone mineral density (BMD) in a cohort of people with Down syndrome without consistent clinical risk factors. Our results should guide future studies and treatments for this common problem. INTRODUCTION To better understand the etiology for osteoporosis in Down syndrome (DS), we measured bone density by dual-energy X-ray absorptiometry (DXA) and circulating biochemical markers of bone formation and resorption in a cohort of 30 community-dwelling DS adults. METHODS Seventeen males and 13 females followed in the University of Arkansas Down Syndrome Clinic were evaluated by DXA to estimate BMD and underwent phlebotomy to measure serum procollagen type-1 intact N-terminal propeptide (P1NP) to evaluate bone formation, and serum C-terminal peptide of type-I collagen (CTx) to evaluate bone resorption. RESULTS Seven of 13 DS females and 12 of 17 DS males had low bone mass at one of measured sites (z≤-2.0). When data were grouped by age, males had apparent osteopenia earlier than females. The mean P1NP in the normal group was 19.2±5.2 ng/ml vs. 2.2±0.9 ng/ml in the DS group (P=0.002). Serum CTx levels in the normal group were 0.4±0.1 ng/ml vs. 0.3±0.1 ng/ml (P=0.369). CONCLUSIONS Low BMD in adults with DS is correlated with a significant decrease in bone formation markers, compared to controls without DS, and is independent of gender. These data suggest that diminished osteoblastic bone formation and inadequate accrual of bone mass, with no significant differences in bone resorption, are responsible for the low bone mass in DS. These observations question the use of antiresorptive therapy in this population and focus attention on increasing bone mass by other interventions.
Collapse
Affiliation(s)
- K D McKelvey
- Department of Family Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sugiyama T, Meakin LB, Galea GL, Lanyon LE, Price JS. The cyclooxygenase-2 selective inhibitor NS-398 does not influence trabecular or cortical bone gain resulting from repeated mechanical loading in female mice. Osteoporos Int 2013; 24:383-8. [PMID: 22349912 PMCID: PMC3536947 DOI: 10.1007/s00198-012-1922-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/17/2012] [Indexed: 11/30/2022]
Abstract
UNLABELLED A single injection of the cyclooxygenase-2 (COX-2) selective inhibitor NS-398 reduces bone's osteogenic response to a single period of mechanical loading in female rats, while women taking COX-2 selective inhibitors do not have lower bone mass. We show that daily NS-398 injection does not influence bone gain from repeated loading in female mice. INTRODUCTION Prostaglandins are mediators of bone cells' early response to mechanical stimulation. COX-2 expression is up-regulated by exposure of these cells to mechanical strain or fluid flow, and the osteogenic response to a single loading period is reduced by COX-2 inhibition. This study determined, in female mice in vivo, the effect of longer term COX-2 inhibition on adaptive (re)modelling of cortical and trabecular bone in response to repeated loading. METHODS Nineteen-week-old female C57BL/6 mice were injected with vehicle or NS-398 (5 mg/kg/day) 5 days a week for 2 weeks. On three alternate days each week, the right tibiae/fibulae were axially loaded [40 cycles (7 min)/day] three hours after injection. Left limbs acted as internal controls. Changes in three-dimensional bone architecture were analysed by high-resolution micro-computed tomography. RESULTS In control limbs NS-398 was associated with reduced trabecular number but had no influence on cortical bone. In loaded limbs trabecular thickness and cortical periosteally enclosed volume increased. NS-398 showed no effect on this response. CONCLUSION Pharmacological inhibition of COX-2 by NS-398 does not affect trabecular or cortical bone's response to repeated mechanical loading in female mice and thus would not be expected to impair the functional adaptation of bone to physical activity in women.
Collapse
Affiliation(s)
- T Sugiyama
- Department of Veterinary Basic Sciences, The Royal Veterinary College, University of London, London, UK.
| | | | | | | | | |
Collapse
|
27
|
Hinoi E, Ochi H, Takarada T, Nakatani E, Iezaki T, Nakajima H, Fujita H, Takahata Y, Hidano S, Kobayashi T, Takeda S, Yoneda Y. Positive regulation of osteoclastic differentiation by growth differentiation factor 15 upregulated in osteocytic cells under hypoxia. J Bone Miner Res 2012; 27:938-49. [PMID: 22190281 DOI: 10.1002/jbmr.1538] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Osteocytes are thought to play a role as a mechanical sensor through their communication network in bone. Although osteocytes are the most abundant cells in bone, little attention has been paid to their physiological and pathological functions in skeletogenesis. Here, we have attempted to delineate the pivotal functional role of osteocytes in regulation of bone remodeling under pathological conditions. We first found markedly increased osteoclastic differentiation by conditioned media (CM) from osteocytic MLO-Y4 cells previously exposed to hypoxia in vitro. Using microarray and real-time PCR analyses, we identified growth differentiation factor 15 (GDF15) as a key candidate factor secreted from osteocytes under hypoxia. Recombinant GDF15 significantly promoted osteoclastic differentiation in a concentration-dependent manner, with concomitant facilitation of phosphorylation of both p65 and inhibitory-κB in the presence of receptor activator of nuclear factor-κB ligand. To examine the possible functional significance of GDF15 in vivo, mice were subjected to ligation of the right femoral artery as a hypoxic model. A significant increase in GDF15 expression was specifically observed in tibias of the ligated limb but not in tibias of the normally perfused limb. Under these experimental conditions, in cancellous bone of proximal tibias in the ligated limb, a significant reduction was observed in bone volume, whereas a significant increase was seen in the extent of osteoclast surface/bone surface when determined by bone histomorphometric analysis. Finally, the anti-GDF15 antibody prevented bone loss through inhibiting osteoclastic activation in tibias from mice with femoral artery ligation in vivo, in addition to suppressing osteoclastic activity enhanced by CM from osteocytes exposed to hypoxia in vitro. These findings suggest that GDF15 could play a pivotal role in the pathogenesis of bone loss relevant to hypoxia through promotion of osteoclastogenesis after secretion from adjacent osteocytes during disuse and/or ischemia in bone.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Leisure time physical activity and risk of non-vertebral fracture in men and women aged 55 years and older: the Tromsø Study. Eur J Epidemiol 2012; 27:463-71. [DOI: 10.1007/s10654-012-9665-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 02/15/2012] [Indexed: 01/25/2023]
|
29
|
Abstract
The skeleton is one of the most common sites for metastatic cancer, and tumors arising from the breast or prostate possess an increased propensity to spread to this site. The growth of disseminated tumor cells in the skeleton requires tumor cells to inhabit the bone marrow, from which they stimulate local bone cell activity. Crosstalk between tumor cells and resident bone and bone marrow cells disrupts normal bone homeostasis, which leads to tumor growth in bone. The metastatic tumor cells have the ability to elicit responses that stimulate bone resorption, bone formation or both. The net result of these activities is profound skeletal destruction that can have dire consequences for patients. The molecular mechanisms that underlie these painful and often incurable consequences of tumor metastasis to bone are beginning to be recognized, and they represent promising new molecular targets for therapy.
Collapse
Affiliation(s)
- Larry J Suva
- Department of Orthopedic Surgery, Center for Orthopedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
30
|
Raney LH, Carr CM, Bush JS. A painful ankle for ten weeks. J Emerg Med 2011; 40:210-211. [PMID: 19345545 DOI: 10.1016/j.jemermed.2008.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/23/2008] [Accepted: 07/09/2008] [Indexed: 05/27/2023]
Affiliation(s)
- Laurence H Raney
- Department of Emergency Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | |
Collapse
|
31
|
Pan J, Zhang T, Mi L, Zhang B, Wang B, Yang L, Deng L, Wang L. Stepwise increasing and decreasing fluid shear stresses differentially regulate the functions of osteoblasts. Cell Mol Bioeng 2010; 3:376-386. [PMID: 21603107 DOI: 10.1007/s12195-010-0132-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It is well accepted that osteoblasts respond to fluid shear stress (FSS) depending on the loading magnitude, rate, and temporal profiles. Although in vivo observations demonstrated that bone mineral density changes as the training intensity gradually increases/decreases, whether osteoblasts perceive such slow temporal changes in the strength of stimulation remains unclear. In this study, we hypothesized that osteoblasts can detect and respond differentially to the temporal gradients of FSS. In specific, we hypothesized that when the temporal FSS gradient is high enough, i) the increasing FSS inhibits the osteoblastic potential in supporting osteoclastogenesis and enhances the osteoblastic anabolic responses; ii) on the other hand, the deceasing FSS would have opposite effects on osteoclastogenesis and anabolic responses. To test the hypotheses, stepwise varying FSS was applied on primary osteoblasts and osteogenic and resorption markers were analyzed. The cells were subjected to FSS increasing from 5, 10, to 15 or decreasing from 15, 10, to 5 dyn/cm(2) at a step of 5 dyn/cm(2) for either 6 or 12 hours. In a subset experiment, the cells were stimulated with stepwise increasing or decreasing FSS at a higher step (10 dyn/cm(2)) for 12 hours. Our results showed that, with the step of 5 dyn/cm(2), the stepwise increasing FSS inhibited the osteoclastogenesis with a 3- to 4-fold decrease in RANKL/OPG gene expression versus static controls, while the stepwise decreasing FSS increased RANKL/OPG ratio by 2- to 2.5-fold versus static controls. Both increasing and decreasing FSS enhanced alkaline phosphatase expression and calcium deposition by 1.0- to 1.8 fold versus static controls. For a higher FSS temporal gradient (three steps of 10 dyn/cm(2) over 12 hour stimulation), the increasing FSS enhanced the expression of alkaline phosphatase expression and calcium deposition by 1.3 fold, while the decreasing FSS slightly inhibited them by -10% compared with static controls. Taken together, our results suggested that osteoblasts can detect the slow temporal gradients of FSS and respond differentially in a dose-dependent manner, which may account for the observed bone mineral density changes in response to the gradual increasing/decreasing exercise in vivo. The stepwise FSS can be a useful model to study bone cell responses to long-term mechanical usage or disuse. These studies will complement the short-term studies and provide additional clinically relevant insights on bone adaptation.
Collapse
Affiliation(s)
- Jun Pan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and "National 985 Project" Institute of Biorheology and Gene Regulation, Bioengineering College, Chongqing University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Obesity, diabetes, and osteoporosis are major public health concerns. Current estimates indicate that the US population consists of 25% obese, 30% diabetic and prediabetic, and, among the elderly, 50% of all osteoporotic individuals. Mechanistically, these pathologies share several features including common regulators of bone homeostasis and energy metabolism. Peroxisome proliferator-activated receptors (PPARs) represent a family of proteins that control energy turnover in adipose, liver, and muscle tissue. These proteins also control bone turnover and regulate bone cell differentiation. Recent evidence suggests that bone is an organ integral to energy metabolism not only with respect to energy storage, but also as an organ regulating systemic energy homeostasis. In this article, we review current knowledge on the role of PPARs in bone metabolism and bone cell differentiation. We also discuss the role of bone fat in modulation of bone marrow microenvironment and its possible contribution to the systemic regulation of energy metabolism.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Departments of Orthopaedic Surgery and Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
33
|
Atkins GJ, Welldon KJ, Wijenayaka AR, Bonewald LF, Findlay DM. Vitamin K promotes mineralization, osteoblast-to-osteocyte transition, and an anticatabolic phenotype by {gamma}-carboxylation-dependent and -independent mechanisms. Am J Physiol Cell Physiol 2009; 297:C1358-67. [PMID: 19675304 DOI: 10.1152/ajpcell.00216.2009] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The vitamin K family members phylloquinone (vitamin K1) and the menaquinones (vitamin K2) are under study for their roles in bone metabolism and as potential therapeutic agents for skeletal diseases. We have investigated the effects of two naturally occurring homologs, phytonadione (vitamin K1) and menatetrenone (vitamin K2), and those of the synthetic vitamin K, menadione (vitamin K3), on human primary osteoblasts. All homologs promoted in vitro mineralization by these cells. Vitamin K1-induced mineralization was highly sensitive to warfarin, whereas that induced by vitamins K2 and K3 was less sensitive, implying that gamma-carboxylation and other mechanisms, possibly genomic actions through activation of the steroid xenobiotic receptor, are involved in the effect. The positive effect on mineralization was associated with decreased matrix synthesis, evidenced by a decrease from control in expression of type I collagen mRNA, implying a maturational effect. Incubation in the presence of vitamin K2 or K3 in a three-dimensional type I collagen gel culture system resulted in increased numbers of cells with elongated cytoplasmic processes resembling osteocytes. This effect was not warfarin sensitive. Addition of calcein to vitamin K-treated cells revealed vitamin K-dependent deposition of mineral associated with cell processes. These effects are consistent with vitamin K promoting the osteoblast-to-osteocyte transition in humans. To test whether vitamin K may also act on mature osteocytes, we tested the effects of vitamin K on MLO-Y4 cells. Vitamin K reduced receptor activator of NF-kappaB ligand expression relative to osteoprotegerin by MLO-Y4 cells, an effect also seen in human cultures. Together, our findings suggest that vitamin K promotes the osteoblast-to-osteocyte transition, at the same time decreasing the osteoclastogenic potential of these cells. These may be mechanisms by which vitamin K optimizes bone formation and integrity in vivo and may help explain the net positive effect of vitamin K on bone formation.
Collapse
|
34
|
Atkins GJ, Welldon KJ, Halbout P, Findlay DM. Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int 2009; 20:653-64. [PMID: 18763010 DOI: 10.1007/s00198-008-0728-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
Abstract
SUMMARY The effect of strontium ranelate (SR) on human osteoblast differentiation was tested. SR induced osteoblastic proliferation, in vitro mineralization, and increased the expression of osteocyte markers. SR also elicited an osteoprotegerin (OPG) secretory response. We conclude that SR promotes the osteoblast maturation and osteocyte differentiation while promoting an additional antiresorptive effect. INTRODUCTION SR is a new treatment for osteoporosis that reduces the risk of hip and vertebral fractures in postmenopausal women. This study sought to investigate the extent, to which SR modulates human osteoblast differentiation. METHODS Adult human primary osteoblasts (NHBC) were exposed to SR under mineralizing conditions in long-term cultures. Osteoblast differentiation status was investigated by cell-surface phenotypic analysis. Expression of genes associated with osteoblast/osteocyte differentiation was examined using real-time RT-PCR. Secreted OPG was assayed by enzyme-linked immunosorbent assay. RESULTS SR significantly increased osteoblast replication. SR time- and dose-dependently induced an osteocyte-like phenotype, as determined by cell surface alkaline phosphatase and STRO-1 expression. SR at 5 mM or greater dramatically increased in vitro mineralization. In parallel, mRNA levels of dentin matrix protein (DMP)-1 and sclerostin were higher under SR treatment, strongly suggestive of the presence of osteocytes. SR also increased the OPG/RANKL ratio throughout the culture period, consistent with an effect to inhibit osteoblast-induced osteoclastogenesis. CONCLUSIONS This study suggests that SR can promote osteoblast maturation and an osteocyte-like phenotype. Coupled with its effect on the OPG/RANKL system, these findings are consistent with in vivo effects in patients receiving SR for the treatment of osteoporosis.
Collapse
Affiliation(s)
- G J Atkins
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide and Hanson Institute, Adelaide, Australia.
| | | | | | | |
Collapse
|
35
|
Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.etp.2007.11.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Olmos JM, Vázquez LA, Amado JA, Hernández JL, González Macías J. Mineral metabolism in obese patients following vertical banded gastroplasty. Obes Surg 2008; 18:197-203. [PMID: 18188655 DOI: 10.1007/s11695-007-9307-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 10/09/2007] [Indexed: 12/01/2022]
Abstract
BACKGROUND Bone disease has been described in patients after surgical treatment for obesity, but few studies have dealt with the impact of vertical banded gastroplasty on mineral metabolism. We have examined bone mineral metabolism in morbidly obese patients before and after 3 months after vertical banded gastroplasty without vitamin D supplementation. METHODS Sixteen morbidly obese patients (14 women, 2 men) with a mean (+/-SD) age of 38 +/- 9 years and a body mass index (BMI) of 47.1 +/- 8.1 kg/m2 were studied. No vitamin D supplementation was given. Body weight, fat mass, calcium, 25OHD, iPTH, bone remodeling markers, and leptin levels were measured at baseline and after weight loss. RESULTS Mean weight loss was 28 +/- 11 kg; BMI and body fat mass decreased by 20 and 35%, respectively. Bone resorption markers and albumin-corrected serum calcium increased after operation, whereas iPTH fell. Serum 25OHD levels rose. Leptin levels decreased. Serum iPTH was positively correlated with weight, BMI, and fat mass before operation (p < 0.05), and its decline after weight reduction was negatively associated with the increase in bone resorption markers (p < 0.01). Leptin concentration was correlated with BMI and body fat mass (p < 0.05) both before and after surgery. CONCLUSIONS Weight reduction obtained in morbidly obese subjects 3 months after vertical banded gastroplasty increases bone turnover markers and decreases PTH secretion. Serum 25OHD levels rose. Therefore, no reasons for a metabolic bone disease related to hypovitaminosis D were readily apparent. However, an increase in bone turnover, which is generally regarded as a potential risk factor for osteoporosis, was observed. Further work is needed to clarify the importance of this turnover increase in the long run.
Collapse
Affiliation(s)
- José M Olmos
- Departamento de Medicina Interna, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain.
| | | | | | | | | |
Collapse
|
37
|
Zwart SR, Hargens AR, Lee SMC, Macias BR, Watenpaugh DE, Tse K, Smith SM. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins. Bone 2007; 40:529-37. [PMID: 17070743 PMCID: PMC1876821 DOI: 10.1016/j.bone.2006.09.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 09/07/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined this potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest and on bed rest days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated-measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P<0.001); parathyroid hormone (P=0.06), bone-specific alkaline phosphatase (P=0.06), and 1,25-dihydroxyvitamin D (P=0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 in the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers.
Collapse
Affiliation(s)
- Sara R. Zwart
- Universities Space Research Association, Houston, Texas, USA 77058
| | - Alan R. Hargens
- Department of Orthopaedic Surgery, University of California, San Diego, UCSD Medical Center, San Diego, California, USA 92103
| | | | - Brandon R. Macias
- Department of Orthopaedic Surgery, University of California, San Diego, UCSD Medical Center, San Diego, California, USA 92103
| | - Donald E. Watenpaugh
- Department of Integrative Physiology, University of North Texas Health Sciences Center, Fort Worth, Texas, USA 76104
| | - Kevin Tse
- Department of Orthopaedic Surgery, University of California, San Diego, UCSD Medical Center, San Diego, California, USA 92103
| | - Scott M. Smith
- Human Adaptation and Countermeasures Office, National Aeronautics and Space Administration Lyndon B. Johnson Space Center, Houston, Texas, USA 77058
| |
Collapse
|
38
|
Perrien DS, Akel NS, Dupont-Versteegden EE, Skinner RA, Siegel ER, Suva LJ, Gaddy D. Aging alters the skeletal response to disuse in the rat. Am J Physiol Regul Integr Comp Physiol 2006; 292:R988-96. [PMID: 17068163 DOI: 10.1152/ajpregu.00302.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disuse has been shown to cause a rapid and dramatic loss of skeletal mass and strength in the load-bearing bones of young and mature animals and humans. However, little is known about the skeletal effects of disuse in aged mammals. The present study was designed to determine whether the skeletal effects of disuse are maintained with extreme age. Fischer 344/Brown Norway male rats (6 and 32 mo old) were hindlimb suspended (HS) or housed individually for 2 wk. Trabecular volume and microarchitecture in the proximal tibia were significantly decreased by HS only in young rats. HS significantly reduced cortical bone mineral density and increased cortical porosity only in old rats by inducing new pore formation. Cortical pore diameter was also increased in old rats, regardless of loading condition. Ex vivo osteogenic and adipogenic cultures established from each group demonstrated that age and HS decreased osteoblastogenesis. Age, but not HS, decreased sensitivity to endogenous bone morphogenetic protein stimulation, as measured by treatment with exogenous Noggin. Adipocyte development increased with age, whereas HS suppressed sensitivity to peroxisome proliferator-activated receptor-gamma-induced differentiation. Serum insulin-like growth factor I levels were reduced with HS in young rats and with age in control and HS rats. These results suggest that the site of bone loss due to disuse is altered with age and that the loss of osteogenic potential with disuse in the old rats may be due to the combined effects of decreased insulin-like growth factor I levels and sensitivity, as well as diminished bone morphogenetic protein production.
Collapse
Affiliation(s)
- Daniel S Perrien
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham St., Slot 505, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Lecka-Czernik B, Suva LJ. Resolving the Two "Bony" Faces of PPAR-gamma. PPAR Res 2006; 2006:27489. [PMID: 17259664 PMCID: PMC1679961 DOI: 10.1155/ppar/2006/27489] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 12/18/2022] Open
Abstract
Bone loss with aging results from attenuated and unbalanced bone turnover that has been associated with a decreased number of bone forming osteoblasts, an increased number of bone resorbing osteoclasts, and an increased number of adipocytes (fat cells) in the bone marrow. Osteoblasts and adipocytes are derived from marrow mesenchymal stroma/stem cells (MSC). The milieu of intracellular and extracellular signals that controls MSC lineage allocation is diverse. The adipocyte-specific transcription factor peroxisome proliferator-activated receptor-gamma (PPAR-gamma) acts as a critical positive regulator of marrow adipocyte formation and as a negative regulator of osteoblast development. In vivo, increased PPAR-gamma activity leads to bone loss, similar to the bone loss observed with aging, whereas decreased PPAR-gamma activity results in increased bone mass. Emerging evidence suggests that the pro-adipocytic and the anti-osteoblastic properties of PPAR-gamma are ligand-selective, suggesting the existence of multiple mechanisms by which PPAR-gamma controls bone mass and fat mass in bone.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, 629 Jack Stephens Drive,
Little Rock, AR 72205, USA
| | - Larry J. Suva
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences,
Little Rock, AR 72205, USA
| |
Collapse
|