1
|
Cui H, He Y, Wang Z, Liu K, Li W, Han W. Unveiling drug-induced osteotoxicity: A machine learning approach and webserver. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138044. [PMID: 40158503 DOI: 10.1016/j.jhazmat.2025.138044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Drug-induced osteotoxicity refers to the harmful effects certain pharmaceuticals have on the skeletal system, posing significant safety risks. These toxic effects are critical concerns in clinical practice, drug development, and environmental management. However, current toxicity assessment models lack specialized datasets and algorithms specifically designed to predict osteotoxicity In this study, we compiled a dataset of osteotoxic molecules and used clustering analysis to classify them into four distinct groups Furthermore, target prediction identified key genes (IL6, TNF, ESR1, and MAPK3), while GO and KEGG analyses were employed to explore the complex underlying mechanisms Additionally, we developed prediction models based on molecular fingerprints and descriptors. We further advanced our approach by incorporating models such as Transformer, SVM, XGBoost, and molecular graphs integrated with Weave GNN, ViT, and a pre-trained KPGT model. Specifically, the descriptor-based model achieved an accuracy of 0.82 and an AUC of 0.89; the molecular graph model reached an accuracy of 0.84 and an AUC of 0.86; and the KPGT model attained both an accuracy and an AUC of 0.86. These findings led to the creation of Bonetox, the first online platform specifically designed for predicting osteotoxicity. This tool aids in assessing the impact of hazardous substances on bone health during drug development, thereby improving safety protocols, mitigating skeletal side effects, and ultimately enhancing therapeutic outcomes and public safety.
Collapse
Affiliation(s)
- Huizi Cui
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Qianjin road 2699, Changchun 130012, China
| | - Yi He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Qianjin road 2699, Changchun 130012, China
| | - Zhibang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Qianjin road 2699, Changchun 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Qianjin road 2699, Changchun 130012, China
| | - Wannan Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Qianjin road 2699, Changchun 130012, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Qianjin road 2699, Changchun 130012, China.
| |
Collapse
|
2
|
Mohanty S, Sahu A, Mukherjee T, Kispotta S, Mal P, Gupta M, Ghosh JK, Prabhakar PK. Molecular mechanisms and treatment strategies for estrogen deficiency-related and glucocorticoid-induced osteoporosis: a comprehensive review. Inflammopharmacology 2025:10.1007/s10787-025-01749-3. [PMID: 40293652 DOI: 10.1007/s10787-025-01749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Osteoporosis, a debilitating condition characterized by reduced bone mass and increased fracture risk, is notably influenced by estrogen deficiency and glucocorticoid treatment. This comprehensive review elucidates the molecular mechanisms underpinning estrogen deficiency-related osteoporosis (EDOP) and glucocorticoid-induced osteoporosis (GIOP). The role of estrogen in bone metabolism is critically examined, highlighting its regulatory effects on bone turnover and formation through various signaling pathways. Conversely, this review explores how glucocorticoids disrupt bone homeostasis, focusing on their impact on osteoclast and osteoblast function and the subsequent alteration of bone remodeling processes. The pathogenesis of both conditions is intertwined, with estrogen receptor signaling pathways and the role of inflammatory cytokines being pivotal in driving bone loss. A detailed analysis of pathogenetic and risk factors associated with EDOP and GIOP is presented, including lifestyle and genetic factors contributing to disease progression. Modern therapeutic approaches emphasize pharmacologic, non-pharmacologic, and herbal treatments for managing EDOP and GIOP. In summary, current therapeutic strategies highlight the efficacy and the safety of various interventions. This review concludes with future directions for research, suggesting a need for novel treatment modalities and a deeper understanding of the underlying mechanisms of osteoporosis. By addressing the multifaceted nature of EDOP and GIOP, this work aims to provide insights into developing targeted therapeutic strategies and improving patient outcomes in osteoporosis management.
Collapse
Affiliation(s)
- Satyajit Mohanty
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| | - Anwesha Sahu
- Division of Pharmacology, Faculty of Medical Science and Research, Sai Nath University, Ranchi, 835219, Jharkhand, India
| | - Tuhin Mukherjee
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| | - Sneha Kispotta
- School of Pharmaceutical Sciences, Siksha O Anusandhan deemed to be University, Bhubaneswar, 751030, Odisha, India
| | - Payel Mal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Muskan Gupta
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Jeet Kumar Ghosh
- Department of Pharmacy, Usha Martin University, Ranchi, 835103, Jharkhand, India
| | | |
Collapse
|
3
|
Jiang Y, Ye AH, He WG, Liu L, Gao X, Liu H, Liu WT, Ye FL, He DM, Liao JY, Wang J, He BC. Reducing PDK4 level constitutes a pivotal mechanism for glucocorticoids to impede osteoblastic differentiation through the enhancement of ferroptosis in mesenchymal stem cells. Stem Cell Res Ther 2025; 16:91. [PMID: 40001240 PMCID: PMC11863902 DOI: 10.1186/s13287-025-04186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND This study mainly explores the possible role and mechanism of pyruvate dehydrogenase kinase 4 (PDK4) in the onset and development of Glucocorticoid-induced osteoporosis (GIOP), and seeks potential targets for the treatment of GIOP. METHODS Mesenchymal stem cells (MSCs) were treated with osteogenic induction medium. An in vitro osteogenic damage model was established by exposing MSCs to a high concentration (10- 6 M) of dexamethasone (DEX). Osteogenic markers were measured with real-time quantitative polymerase chain reaction, western blot, alkaline phosphatase staining, and Alizarin Red S staining. Ferroptosis markers were assessed through reactive oxygen species (ROS) fluorescent probe, transmission electron microscopy, and measurement of malondialdehyde (MDA). The potential mechanism was investigated using RT-qPCR, western blot, lysosomal probes, molecular docking, and other analytical approaches. The role of PDK4 was validated by using a GIOP rat model, micro-computed tomography and Masson's trichrome staining. RESULTS High concentrations (10- 6 M) of DEX inhibited osteogenic differentiation in C3H10T1/2 cells, and PDK4 exhibited the opposite effect. PDK4 partially reversed the osteogenic inhibitory effect of DEX both in vivo and in vitro. DEX caused mitochondrial shrinkage and disappearance of cristae in C3H10T1/2 cells, as well as an increase in total iron, ROS, MDA contents, and the level of ferroptosis key factors. These changes were partially weakened by PDK4. The ferroptosis inhibitor ferrostatin-1 partially blocked the inhibitory effect of DEX, while ferroptosis inducer RSL3 inhibited osteogenic differentiation and weakened the reversal effect of PDK4. DEX reduced the protein level of PDK4, which was partially weakened by Bafilomycin A1. The molecular docking results showed that DEX can directly bind with PDK4. CONCLUSION PDK4 can enhance the osteogenic differentiation ability of MSCs and bone mass of GIOP rats. DEX may promote the degradation of PDK4 via lysosome pathway, through which to weaken the osteogenic ability of MSCs by increasing ferroptosis. PDK4 may become a potential target for improving GIOP.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ai-Hua Ye
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wen-Ge He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Department of Bone and Soft Tissue Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Department of Orthropetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiang Gao
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Department of Orthropetics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hang Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Department of Orthropetics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wen-Ting Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fang-Lin Ye
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dong-Mei He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun-Yi Liao
- Department of Bone and Soft Tissue Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jing Wang
- Department of Blood Transfusion, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
4
|
Cekuc MS, Ergul YS, Pius AK, Meagan M, Shinohara I, Murayama M, Susuki Y, Ma C, Morita M, Chow SKH, Bunnell BA, Lin H, Gao Q, Goodman SB. Metformin Modulates Cell Oxidative Stress to Mitigate Corticosteroid-Induced Suppression of Osteogenesis in a 3D Model. J Inflamm Res 2024; 17:10383-10396. [PMID: 39654863 PMCID: PMC11625639 DOI: 10.2147/jir.s498888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Background Corticosteroids provide well-established therapeutic benefits; however, they are also accompanied by adverse effects on bone. Metformin is a widely used medication for managing type 2 diabetes mellitus. Recent studies have highlighted additional therapeutic benefits of metformin, particularly concerning bone health and oxidative stress. Objective This research investigates the effects of prednisolone on cellular metabolic functions and bone formation using a 3D in vitro model. Then, we demonstrate the potential therapeutic effects of metformin on oxidative stress and the formation of calcified matrix due to corticosteroids. Methods Human mesenchymal stem cells (MSCs) and macrophages were cultured in a 3D GelMA scaffold and stimulated with prednisolone, with and without metformin. The adverse effects of prednisolone and metformin's therapeutic effect(s) were assessed by analyzing cell viability, osteogenesis markers, bone mineralization, and inflammatory markers. Oxidative stress was measured by evaluating reactive oxygen species (ROS) levels and ATP production. Results Prednisolone exhibited cytotoxic effects, reducing the viability of MSCs and macrophages. Lower osteogenesis potential was also detected in the MSC group. Metformin positively affected cell functions, including enhanced osteoblast activity and increased bone mineralization. Furthermore, metformin effectively reduced oxidative stress, as evidenced by decreased ROS levels and increased ATP production. These findings indicate that metformin protects against oxidative damage, thus supporting osteogenesis. Conclusion Metformin exhibits promising therapeutic potential beyond its role in diabetes management. The capacity to alleviate oxidative stress highlights the potential of metformin in supporting bone formation in inflammatory environments.
Collapse
Affiliation(s)
- Mehmet Sertac Cekuc
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Yasemin Sude Ergul
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Alexa K Pius
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Makarcyzk Meagan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Issei Shinohara
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Masatoshi Murayama
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Yosuke Susuki
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Chao Ma
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Mayu Morita
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Simon Kwoon-Ho Chow
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Qi Gao
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Stuart B Goodman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| |
Collapse
|
5
|
Li W, Wang W, Zhang M, Chen Q, Li F, Li S. Association of serum sclerostin levels with marrow adiposity in postmenopausal women with glucocorticoid-induced osteoporosis. BMC Endocr Disord 2024; 24:55. [PMID: 38679740 PMCID: PMC11056049 DOI: 10.1186/s12902-024-01591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Glucocorticoids and sclerostin act as inhibitors of the Wnt signaling pathway, thereby hindering bone formation. Given the pathway's intricate association with mesenchymal stem cells, the hypothesis suggests that heightened sclerostin levels may be intricately linked to an augmentation in marrow adiposity induced by glucocorticoids. This study endeavored to delve into the nuanced relationship between circulating sclerostin and bone marrow adipose tissue in postmenopausal women grappling with glucocorticoid-induced osteoporosis (GIO). METHODS In this cross-sectional study, 103 patients with autoimmune-associated diseases underwent glucocorticoid treatment, boasting an average age of 61.3 years (standard deviation 7.1 years). The investigation encompassed a thorough assessment, incorporating medical history, anthropometric data, biochemical analysis, and dual-energy X-ray absorptiometry measurements of lumbar and femoral bone mineral density (BMD). Osteoporosis criteria were established at a T-score of -2.5 or lower. Additionally, MR spectroscopy quantified the vertebral marrow fat fraction. RESULTS BMD at the femoral neck, total hip, and lumbar spine showcased an inverse correlation with marrow fat fraction (r = -0.511 to - 0.647, P < 0.001). Serum sclerostin levels exhibited a positive correlation with BMD at various skeletal sites (r = 0.476 to 0.589, P < 0.001). A noteworthy correlation emerged between circulating sclerostin and marrow fat fraction at the lumbar spine (r = -0.731, 95% CI, -0.810 to -0.627, P < 0.001). Multivariate analysis brought to light that vertebral marrow fat fraction significantly contributed to sclerostin serum concentrations (standardized regression coefficient ß = 0.462, P < 0.001). Even after adjusting for age, body mass index, physical activity, renal function, BMD, and the duration and doses of glucocorticoid treatment, serum sclerostin levels maintained a significant correlation with marrow fat fraction. CONCLUSIONS Circulating sclerostin levels exhibited a noteworthy association with marrow adiposity in postmenopausal women grappling with GIO.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, Pudong New Area, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Shanghai, 201318, China
| | - Wei Wang
- Department of Radiology, Pudong New Area, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Shanghai, 201318, China
| | - Minlan Zhang
- Department of Laboratory Medicine, Pudong New Area, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Qi Chen
- Department of Radiology, Pudong New Area, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Shanghai, 201318, China
| | - Fengyi Li
- Department of Radiology, Pudong New Area, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Shanghai, 201318, China
| | - Shaojun Li
- Department of Radiology, Pudong New Area, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Shanghai, 201318, China.
| |
Collapse
|
6
|
Mannino F, Imbesi C, Irrera N, Pallio G, Squadrito F, Bitto A. Insights into the antiosteoporotic mechanism of the soy-derived isoflavone genistein: Modulation of the Wnt/beta-catenin signaling. Biofactors 2024; 50:347-359. [PMID: 37767998 DOI: 10.1002/biof.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Bone remodeling is a process that involves osteoblasts, osteoclasts, and osteocytes, and different intracellular signaling, such as the canonical Wnt/β-catenin pathway. Dysregulations of this pathway may also occur during secondary osteoporosis, as in the case of glucocorticoid-induced osteoporosis (GIO), which accelerates osteoblast and osteocyte apoptosis by reducing bone formation, osteoblast differentiation and function, accelerates in turn osteoblast, and osteocyte apoptosis. Genistein is a soy-derived nutrient belonging to the class of isoflavones that reduces bone loss in osteopenic menopausal women, inhibiting bone resorption; however, genistein may also favor bone formation. The aim of this study was to investigate whether estrogen receptor stimulation by genistein might promote osteoblast and osteocyte function during glucocorticoid challenge. Primary osteoblasts, collected from C57BL6/J mice, and MLO-A5 osteocyte cell line were used to reproduce an in vitro model of GIO by adding dexamethasone (1 μM) for 24 h. Cells were then treated with genistein for 24 h and quantitative Polymerase Chain Reaction (qPCR) and western blot were performed to study whether genistein activated the Wnt/β-catenin pathway. Dexamethasone challenge reduced bone formation in primary osteoblasts and bone mineralization in osteocytes; moreover, canonical Wnt/β-catenin pathway was reduced following incubation with dexamethasone in both osteoblasts and osteocytes. Genistein reverted these changes and this effect was mediated by both estrogen receptors α and β. These data suggest that genistein could induce bone remodeling through Wnt/β-catenin pathway activation.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Yang S, Sun Y, Kapilevich L, Zhang X, Huang Y. Protective effects of curcumin against osteoporosis and its molecular mechanisms: a recent review in preclinical trials. Front Pharmacol 2023; 14:1249418. [PMID: 37790808 PMCID: PMC10544586 DOI: 10.3389/fphar.2023.1249418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Osteoporosis (OP) is one of the most common metabolic skeletal disorders and is commonly seen in the elderly population and postmenopausal women. It is mainly associated with progressive loss of bone mineral density, persistent deterioration of bone microarchitecture, and increased fracture risk. To date, drug therapy is the primary method used to prevent and treat osteoporosis. However, long-term drug therapy inevitably leads to drug resistance and specific side effects. Therefore, researchers are constantly searching for new monomer compounds from natural plants. As a candidate for the treatment of osteoporosis, curcumin (CUR) is a natural phenolic compound with various pharmacological and biological activities, including antioxidant, anti-apoptotic, and anti-inflammatory. This compound has gained research attention for maintaining bone health in various osteoporosis models. We reviewed preclinical and clinical studies of curcumin in preventing and alleviating osteoporosis. These results suggest that if subjected to rigorous pharmacological and clinical trials, naturally-derived curcumin could be used as a complementary and alternative medicine for the treatment of osteoporosis by targeting osteoporosis-related mechanistic pathways. This review summarizes the mechanisms of action and potential therapeutic applications of curcumin in the prevention and mitigation of osteoporosis and provides reference for further research and development of curcumin.
Collapse
Affiliation(s)
- Shenglei Yang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuying Sun
- School of Stomatology, Binzhou Medical College, Yantai, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Nаtionаl Reseаrch Tomsk Stаte University, Tomsk, Russiа
| | - Xin’an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
8
|
Arafa ESA, Elgendy NO, Elhemely MA, Abdelaleem EA, Mohamed WR. Diosmin mitigates dexamethasone-induced osteoporosis in vivo: Role of Runx2, RANKL/OPG, and oxidative stress. Biomed Pharmacother 2023; 161:114461. [PMID: 36889109 DOI: 10.1016/j.biopha.2023.114461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Secondary osteoporosis is commonly caused by long-term intake of glucocorticoids (GCs), such as dexamethasone (DEX). Diosmin, a natural substance with potent antioxidant and anti-inflammatory properties, is clinically used for treating some vascular disorders. The current work targeted exploring the protective properties of diosmin to counteract DEX-induced osteoporosis in vivo. Rats were administered DEX (7 mg/kg) once weekly for 5 weeks, and in the second week, vehicle or diosmin (50 or 100 mg/kg/day) for the next four weeks. Femur bone tissues were collected and processed for histological and biochemical examinations. The study findings showed that diosmin alleviated the histological bone impairments caused by DEX. In addition, diosmin upregulated the expression of Runt-related transcription factor 2 (Runx2) and phosphorylated protein kinase B (p-AKT) and the mRNA transcripts of Wingless (Wnt) and osteocalcin. Furthermore, diosmin counteracted the rise in the mRNA levels of receptor activator of nuclear factor-kB ligand (RANKL) and the reduction in osteoprotegerin (OPG), both were induced by DEX. Diosmin restored the oxidant/antioxidant equilibrium and exerted significant antiapoptotic activity. The aforementioned effects were more pronounced at the dose level of 100 mg/kg. Collectively, diosmin has proven to protect rats against DEX-induced osteoporosis by augmenting osteoblast and bone development while hindering osteoclast and bone resorption. Our findings could be used as a stand for recommending supplementation of diosmin for patients chronically using GCs.
Collapse
Affiliation(s)
- El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Noran O Elgendy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Clinical Pharmacy, Beni-Suef University Hospital, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mai A Elhemely
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M20 4GJ, United Kingdom
| | - Eglal A Abdelaleem
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
9
|
Tan J, Ren L, Xie K, Wang L, Jiang W, Guo Y, Hao Y. Functionalized TiCu/TiCuN coating promotes osteoporotic fracture healing by upregulating the Wnt/β-catenin pathway. Regen Biomater 2022; 10:rbac092. [PMID: 36683750 PMCID: PMC9847630 DOI: 10.1093/rb/rbac092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Osteoporosis results in decreased bone mass and insufficient osteogenic function. Existing titanium alloy implants have insufficient osteoinductivity and delayed/incomplete fracture union can occur when used to treat osteoporotic fractures. Copper ions have good osteogenic activity, but their dose-dependent cytotoxicity limits their clinical use for bone implants. In this study, titanium alloy implants functionalized with a TiCu/TiCuN coating by arc ion plating achieved a controlled release of copper ions in vitro for 28 days. The coated alloy was co-cultured with bone marrow mesenchymal stem cells and showed excellent biocompatibility and osteoinductivity in vitro. A further exploration of the underlying mechanism by quantitative real-time polymerase chain reaction and western blotting revealed that the enhancement effects are related to the upregulation of genes and proteins (such as axin2, β-catenin, GSK-3β, p-GSK-3β, LEF1 and TCF1/TCF7) involved in the Wnt/β-catenin pathway. In vivo experiments showed that the TiCu/TiCuN coating significantly promoted osteoporotic fracture healing in a rat femur fracture model, and has good in vivo biocompatibility based on various staining results. Our study confirmed that TiCu/TiCuN-coated Ti promotes osteoporotic fracture healing associated with the Wnt pathway. Because the coating effectively accelerates the healing of osteoporotic fractures and improves bone quality, it has significant clinical application prospects.
Collapse
Affiliation(s)
- Jia Tan
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ling Ren
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China
| | - Kai Xie
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lei Wang
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing 100044, China
| | - Yongqiang Hao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
10
|
Teng M, Yuan X, Wang D, Gao H, Zhang K, Wang W, Zhao B. Scutellarin Loaded on Ultradeformable Nanoliposome Scutellarin EDTMP (S-UNL-E) Promotes Osteogenesis in Osteoporotic Rats. Stem Cells Int 2022; 2022:1395299. [PMID: 36017130 PMCID: PMC9398854 DOI: 10.1155/2022/1395299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022] Open
Abstract
Scutellarin is known as a safe, effective, and low-cost traditional Chinese medicine and has a variety of biological activities. Studies reported that the scutellarin loaded on ultradeformable nanoliposome scutellarin EDTMP (S-UNL-E) could promote osteoblast differentiation and bone formation in vitro. However, its effect on promoting osteogenesis in vivo is still unclear. In this study, pharmacology network and transcriptome sequencing were used to screen the potential targets and pathways of scutellarin in treating osteoporosis. The female Sprague-Dawley (SD) rats were operated on with bilateral oophorectomy and femoral defect to establish an osteoporosis model and then treated separately with bone dust, single scutellarin, 40 mg/kg ultradeformable nanoliposome scutellarin (S-UNL), and the optimal concentration of 40 mg/kg S-UNL-E for a total of 56 d to detect the parameters of trabecular bones. And qRT-PCR and western blot were performed to determine the expression of prostaglandin-endoperoxide synthase 2 (PTGS2), alkaline phosphatase (ALP), transcription factor 4 (TCF4), and β-catenin. Results of microscopic computed tomography (Micro-CT) of trabecular bones showed that single scutellarin, S-UNL, and S-UNL-E all promoted the bone formation of osteoporotic rats, in which S-UNL-E manifested the most remarkable therapeutic effect. And it is found that 40 mg/kg of S-UNL-E increased the expression of PTGS2, ALP, TCF4, and β-catenin, which indicated that S-UNL-E stimulated the secretion of ALP in bone defect areas to promote bone healing, and increased PTGS2 expression thereby enhancing the transcription and translation of key gene β-catenin and TCF4 in the Wnt/β-catenin signaling pathway to treat osteoporotic rats.
Collapse
Affiliation(s)
- Minhua Teng
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Xiao Yuan
- School of Stomatology, Qingdao University, Qingdao 266003, China
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Dashan Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Hui Gao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Kaiyue Zhang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Wenxue Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| |
Collapse
|
11
|
Deepika FNU, Ballato E, Colleluori G, Aguirre L, Chen R, Qualls C, Villareal DT, Armamento-Villareal R. Baseline Testosterone Predicts Body Composition and Metabolic Response to Testosterone Therapy. Front Endocrinol (Lausanne) 2022; 13:915309. [PMID: 35898448 PMCID: PMC9309506 DOI: 10.3389/fendo.2022.915309] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Context Male hypogonadism adversely affects body composition, bone mineral density (BMD), and metabolic health. A previous report showed that pre-treatment testosterone (T) levels of <200 ng/dl is associated with greater improvement in spine BMD with T therapy. However, to date, there is no study that investigates whether baseline T levels also influence body composition and metabolic response to T therapy. Objective The aim of this study is to determine if there are differences in the changes in body composition, metabolic profile, and bone turnover markers, in addition to BMD, in response to T therapy in men with a baseline T level of <264 ng/dl compared to those with levels ≥264 ng/dl. Methods This is a secondary analysis of a single-arm, open-label clinical trial (NCT01378299) on pharmacogenetics of response to T therapy conducted between 2011 and 2016 involving 105 men (40-74 years old), with average morning T < 300 ng/dl, given intramuscular T cypionate 200 mg every 2 weeks for 18 months. Subjects were divided into those with baseline T levels of <264 ng/dl (N = 43) and those with ≥264 ng/dl (N = 57). T and estradiol (E2) were measured by liquid chromatography/mass spectrometry; serum bone turnover markers (C-telopeptide [CTX], osteocalcin, and sclerostin), adiponectin, and leptin were measured by enzyme-linked immunosorbent assay; glycated hemoglobin (HbA1c) was measured by high-performance liquid chromatography; and areal BMD and body composition was measured by dual-energy x-ray absorptiometry (DXA). Results Men with T < 264 ng/dl showed greater increases in total fat-free mass (FFM) at 18 months compared to those with T ≥ 264 ng/dl (4.2 ± 4.1 vs. 2.7 ± 3.8%; p = 0.047) and unadjusted appendicular FFM at 6 and 18 months (8.7 ± 11.5 vs. 4.4 ± 4.3%, 7.3 ± 11.6 vs. 2.4 ± 6.8%; p = 0.033 and p = 0.043, respectively). Men with T ≥ 264 ng/dl showed significant decreases in HbA1c at 12 months (-3.1 ± 9.2 vs. 3.2 ± 13.9%; p = 0.005), fasting glucose at 18 months (-4.2 ± 31.9 vs. 13.0 ± 57.3%; p = 0.040), LDL at 6 months (-6.4 ± 27.5 vs. 12.8 ± 44.1%; p = 0.034), and leptin at 18 months (-40.2 ± 35.1 vs. -27.6 ± 31.0%; p = 0.034) compared to those with T < 264 ng/dl. No significant differences in BMD and bone turnover markers were observed. Conclusion T therapy results in improvement in body composition irrespective of baseline T levels but T < 264 ng/dl is associated with greater improvement in FFM, whereas a T level of ≥264 ng/dl favors improvement in metabolic profile.
Collapse
Affiliation(s)
- FNU Deepika
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Elliot Ballato
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
| | - Georgia Colleluori
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
| | - Lina Aguirre
- Division of Endocrinology, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Department of Medicine, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
| | - Rui Chen
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Clifford Qualls
- Division of Endocrinology, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Department of Medicine, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
- Biomedical Research Institute of New Mexico, Albuquerque, NM, United States
| | - Dennis T. Villareal
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Reina Armamento-Villareal
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| |
Collapse
|
12
|
Laurent MR, Goemaere S, Verroken C, Bergmann P, Body JJ, Bruyère O, Cavalier E, Rozenberg S, Lapauw B, Gielen E. Prevention and Treatment of Glucocorticoid-Induced Osteoporosis in Adults: Consensus Recommendations From the Belgian Bone Club. Front Endocrinol (Lausanne) 2022; 13:908727. [PMID: 35757436 PMCID: PMC9219603 DOI: 10.3389/fendo.2022.908727] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 01/13/2023] Open
Abstract
Glucocorticoids are effective immunomodulatory drugs used for many inflammatory disorders as well as in transplant recipients. However, both iatrogenic and endogenous glucocorticoid excess are also associated with several side effects including an increased risk of osteoporosis and fractures. Glucocorticoid-induced osteoporosis (GIOP) is a common secondary cause of osteoporosis in adults. Despite availability of clear evidence and international guidelines for the prevention of GIOP, a large treatment gap remains. In this narrative review, the Belgian Bone Club (BBC) updates its 2006 consensus recommendations for the prevention and treatment of GIOP in adults. The pathophysiology of GIOP is multifactorial. The BBC strongly advises non-pharmacological measures including physical exercise, smoking cessation and avoidance of alcohol abuse in all adults at risk for osteoporosis. Glucocorticoids are associated with impaired intestinal calcium absorption; the BBC therefore strongly recommend sufficient calcium intake and avoidance of vitamin D deficiency. We recommend assessment of fracture risk, taking age, sex, menopausal status, prior fractures, glucocorticoid dose, other clinical risk factors and bone mineral density into account. Placebo-controlled randomized controlled trials have demonstrated the efficacy of alendronate, risedronate, zoledronate, denosumab and teriparatide in GIOP. We suggest monitoring by dual-energy X-ray absorptiometry (DXA) and vertebral fracture identification one year after glucocorticoid initiation. The trabecular bone score might be considered during DXA monitoring. Extended femur scans might be considered at the time of DXA imaging in glucocorticoid users on long-term (≥ 3 years) antiresorptive therapy. Bone turnover markers may be considered for monitoring treatment with anti-resorptive or osteoanabolic drugs in GIOP. Although the pathophysiology of solid organ and hematopoietic stem cell transplantation-induced osteoporosis extends beyond GIOP alone, the BBC recommends similar evaluation, prevention, treatment and follow-up principles in these patients. Efforts to close the treatment gap in GIOP and implement available effective fracture prevention strategies into clinical practice in primary, secondary and tertiary care are urgently needed.
Collapse
Affiliation(s)
- Michaël R. Laurent
- Centre for Metabolic Bone Diseases, Department of Geriatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Geriatrics, Imelda Hospital, Bonheiden, Belgium
| | - Stefan Goemaere
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
| | - Charlotte Verroken
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
- Department of Endocrinology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Pierre Bergmann
- Department of Nuclear Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Jacques Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier Bruyère
- WHO Collaborating Center for Public Health Aspects of Musculoskeletal Health and Ageing, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, CHU de Liège, Liège, Belgium
| | - Serge Rozenberg
- Department of Gynaecology and Obstetrics, Université Libre de Bruxelles, Brussels, Belgium
| | - Bruno Lapauw
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
- Department of Endocrinology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Evelien Gielen
- Centre for Metabolic Bone Diseases, Department of Geriatrics, University Hospitals Leuven, Leuven, Belgium
- Gerontology and Geriatrics section, Department of Public Health and Primary Care, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Mifsud S, Mifsud EL, Agius SM, Mula A, Gruppetta M. Immobilisation hypercalcaemia. Br J Hosp Med (Lond) 2022; 83:1-7. [DOI: 10.12968/hmed.2021.0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypercalcaemia is a common metabolic abnormality and its differential diagnosis is vast. Immobility is an uncommon cause of hypercalcaemia. Immobilisation hypercalcaemia is independent of parathyroid hormone and is associated with low levels of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D. In addition, it is characterised by elevated levels of markers of bone resorption and low levels of bone-specific alkaline phosphatase, highlighting an imbalance of bone remodelling favouring osteoclastic bone resorption. Although immobilisation hypercalcaemia is a diagnosis of exclusion, physicians need to be aware of this condition to avoid excessive and invasive investigations when all other causes of parathyroid hormone-independent hypercalcaemia have been excluded. Management of immobilisation hypercalcaemia revolves around early mobilisation and rehabilitation together with pharmacotherapeutic agents such as intravenous isotonic saline, calcitonin and bisphosphonates. Denosumab may be a potential alternative yet off-label treatment for immobility hypercalcaemia in patients with renal insufficiency.
Collapse
Affiliation(s)
- Simon Mifsud
- Department of Diabetes and Endocrinology, Mater Dei Hospital, Msida, Malta
| | - Emma L Mifsud
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| | | | - Abigail Mula
- Department of Diabetes and Endocrinology, Mater Dei Hospital, Msida, Malta
| | - Mark Gruppetta
- Department of Diabetes and Endocrinology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
14
|
Yang Z, Liu J, Fu J, Li S, Chai Z, Sun Y. Associations between WNT signaling pathway-related gene polymorphisms and risks of osteoporosis development in Chinese postmenopausal women: a case-control study. Climacteric 2022; 25:257-263. [PMID: 34254535 DOI: 10.1080/13697137.2021.1941848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/11/2021] [Accepted: 06/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The WNT signaling pathway is involved in the regulation of bone homeostasis, and the effect of WNT signaling pathway-related gene (WNT16 and LRP5) polymorphisms on osteoporosis risk among Chinese postmenopausal women is still unknown. Hence, we performed a case-control study to assess the association of WNT signaling pathway-related gene polymorphisms and osteoporosis risk. METHODS A total of 1026 women (515 osteoporosis patients and 511 controls) of postmenopausal age who were randomly sampled from Xi'an 630 Hospital (Shaanxi Province, China) were involved in this study. Seven genetic polymorphisms in WNT16 (rs3779381, rs3801387, rs917727 and rs7776725) and LRP5 (rs2291467, rs11228240 and rs12272917) were selected and genotyped using the Agena MassARRAY iPLEX system. The association of the genetic polymorphisms and osteoporosis risk was assessed by odds ratios and 95% confidence intervals. The multifactor dimensionality reduction (MDR) method was conducted to analyze single nucleotide polymorphism (SNP)-SNP interaction. RESULTS We found that LRP5 polymorphisms (rs2291467, rs11228240 and rs12272917) were significantly associated with a decreased risk of osteoporosis in homozygote, recessive and additive models (p < 0.05). Stratification analysis showed that LRP5 polymorphisms (rs2291467, rs11228240 and rs12272917) significantly decreased the osteoporosis risk in the subgroup of body mass index (BMI) ≤ 24 (p < 0.05) and that individuals carrying a heterozygote genotype of WNT16 polymorphisms (rs3779381, rs3801387, rs917727 and rs7776725) had a higher osteoporosis risk in the subgroup of BMI > 24 (p < 0.05). Two haplotypes (haplotype 1: rs3779381, rs3801387, rs917727 and rs7776725; haplotype 2: rs2291467 and rs11228240) were observed, yet only Trs2291467Trs11228240 and Crs2291467Crs11228240 had a strong association with a decreased risk of osteoporosis (p < 0.05). Additionally, MDR analysis revealed that LRP5 rs2291467 was the best model in single-locus MDR analysis. A seven-locus model including rs3779381-AG, rs7776725-TC, rs3801387-GA and rs917727-TC in WNT16 and rs11228240-CC, rs12272917-TC and rs2291467-CC in LRP5 was the best model in multiple-loci MDR analysis (p < 0.001). These two best models were the most significantly associated with osteoporosis risk. CONCLUSIONS Our findings suggested that WNT16 and LRP5 genetic polymorphisms are associated with osteoporosis risk among Chinese postmenopausal women.
Collapse
Affiliation(s)
- Z Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - J Liu
- Department of Internal Neurology, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| | - J Fu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - S Li
- Department of Minimal Invasive Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical College, Hohhot, China
| | - Z Chai
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Y Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Catalano A, Vita GL, Bellone F, Sframeli M, Distefano MG, La Rosa M, Gaudio A, Vita G, Morabito N, Messina S. Bone health in Duchenne muscular dystrophy: clinical and biochemical correlates. J Endocrinol Invest 2022; 45:517-525. [PMID: 34524678 DOI: 10.1007/s40618-021-01676-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE An increased fracture risk is commonly reported in Duchenne muscular dystrophy (DMD). Our aim was to investigate bone mineral density (BMD) and bone turnover, including sclerostin, and their association with markers of cardiac and respiratory performance in a cohort of DMD subjects. METHODS In this single center, cross sectional observational study, lumbar spine (LS) BMD Z-scores, C-terminal telopeptide of procollagen type I (CTX) and osteocalcin (BGP), as bone resorption and formation markers, respectively, and sclerostin were assessed. Left ventricular ejection fraction (LVEF) and forced vital capacity (FVC) were evaluated. Clinical prevalent fractures were also recorded. RESULTS Thirty-one patients [median age = 14 (12-21.5) years] were studied. Ambulant subjects had higher LS BMD Z-scores compared with non-ambulant ones and subjects with prevalent clinical fractures [n = 9 (29%)] showed lower LS BMD Z-scores compared with subjects without fractures. LS BMD Z-scores were positively correlated with FVC (r = 0.50; p = 0.01), but not with glucocorticoid use, and FVC was positively associated with BGP (r = 0.55; p = 0.02). In non-ambulant subjects, LS BMD Z-scores were associated with BMI (r = 0.54; p = 0.02) and sclerostin was associated with age (r = 0.44; p = 0.05). Age, BMI, FVC and sclerostin were independently associated with LS BMD Z-score in a stepwise multiple regression analysis. Older age, lower BMI, FVC and sclerostin were associated with lower LS BMD Z-scores. CONCLUSION In a cohort of DMD patients, our data confirm low LS BMD Z-scores, mainly in non-ambulant subjects and irrespective of the glucocorticoid use, and suggest that FVC and sclerostin are independently associated with LS BMD Z-scores.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adolescent
- Biomarkers/metabolism
- Bone Density
- Bone Remodeling
- Collagen Type I/metabolism
- Fractures, Bone/epidemiology
- Fractures, Bone/etiology
- Fractures, Bone/prevention & control
- Glucocorticoids/therapeutic use
- Humans
- Italy/epidemiology
- Lumbar Vertebrae/diagnostic imaging
- Lumbar Vertebrae/pathology
- Mobility Limitation
- Muscular Dystrophy, Duchenne/diagnosis
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Peptides/metabolism
- Stroke Volume
- Ventricular Dysfunction, Left/diagnosis
- Ventricular Dysfunction, Left/etiology
- Vital Capacity
Collapse
Affiliation(s)
- Antonino Catalano
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy.
| | - Gian Luca Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Aurora Onlus Foundation, University Hospital "G. Martino", Messina, Italy
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Maria Sframeli
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Aurora Onlus Foundation, University Hospital "G. Martino", Messina, Italy
| | - Maria Grazia Distefano
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Matteo La Rosa
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Agostino Gaudio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Vita
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Aurora Onlus Foundation, University Hospital "G. Martino", Messina, Italy
| | - Nunziata Morabito
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Aurora Onlus Foundation, University Hospital "G. Martino", Messina, Italy
| |
Collapse
|
16
|
Cheng C, Zhang H, Zheng J, Jin Y, Wang D, Dai Z. METTL14 benefits the mesenchymal stem cells in patients with steroid-associated osteonecrosis of the femoral head by regulating the m6A level of PTPN6. Aging (Albany NY) 2021; 13:25903-25919. [PMID: 34910686 PMCID: PMC8751613 DOI: 10.18632/aging.203778] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Imbalanced osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is considered the core pathological characteristic of steroid-associated osteonecrosis of the femoral head (SONFH). N6-Methyladenosine (m6A) is the most common type of RNA modification in eukaryotic cells and participates in various physiological and pathological processes. However, the relationship between m6A modification and SONFH has not been reported. In the present study, we aimed to explore the roles of m6A modifications and methyltransferase METTL14 in SONFH. Our results showed that the m6A levels were down-regulated in femoral head tissues and BMSCs from SONFH patients, and this effect was attributed to the reduction of METTL14. Furthermore, METTL14 overexpression in BMSCs from SONFH patients enhanced cell proliferation and osteogenic differentiation. We further identified PTPN6 as the downstream target of METTL14 by mRNA sequencing. Mechanistically, METTL14 regulated PTPN6 expression by increasing PTPN6 mRNA stability in an m6A-dependent manner. Moreover, PTPN6 knockdown abrogated the beneficial effects of METTL14 overexpression on BMSCs. Additionally, we found that METTL14 activated the Wnt signaling pathway, and this effect was caused by the interaction of PTPN6 and GSK-3β. In conclusion, we elucidated the functional roles of METTL14 and m6A methylation in SONFH BMSCs and identified a novel RNA regulatory mechanism, providing a potential therapeutic target for SONFH.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Haoping Zhang
- Department of Mini-invasive Spinal Surgery, Third Hospital of Henan Province, Zhengzhou, Henan, China
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yi Jin
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Donghui Wang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhipeng Dai
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Zaheer S, Meyer K, Easly R, Bayomy O, Leung J, Koefoed AW, Heydarpour M, Freeman R, Adler GK. Effect of adrenocorticotropic hormone infusion on circulating sclerostin levels. Endocr Connect 2021; 10:1607-1614. [PMID: 34788228 PMCID: PMC8679878 DOI: 10.1530/ec-21-0263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Glucocorticoid use is the most common cause of secondary osteoporosis. Poor skeletal health related to glucocorticoid use is thought to involve inhibition of the Wnt/β-catenin signaling pathway, a key pathway in osteoblastogenesis. Sclerostin, a peptide produced primarily by osteocytes, is an antagonist of the Wnt/β-catenin signaling pathway, raising the possibility that sclerostin is involved in glucocorticoids' adverse effects on bone. The aim of this study was to determine whether an acute infusion of cosyntropin (i.e. ACTH(1-24)), which increases endogenous cortisol, increases serum sclerostin levels as compared to a placebo infusion. This study was performed using blood samples obtained from a previously published, double-blind, placebo-controlled, randomized, cross-over study among healthy men and women who received infusions of placebo or cosyntropin after being supine and fasted overnight (ClinicalTrials.gov NCT02339506). A total of 17 participants were analyzed. There was a strong correlation (R2 = 0.65, P < 0.0001) between the two baseline sclerostin measurements measured at the start of each visit, and men had a significantly higher average baseline sclerostin compared to women. As anticipated, cosyntropin significantly increased serum cortisol levels, whereas cortisol levels fell during placebo infusion, consistent with the diurnal variation in cortisol. There was no significant effect of cosyntropin as compared to placebo infusions on serum sclerostin over 6-24 h (P = 0.10). In conclusion, this randomized, placebo-controlled study was unable to detect a significant effect of a cosyntropin infusion on serum sclerostin levels in healthy men and women.
Collapse
Affiliation(s)
- Sarah Zaheer
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, North Carolina, USA
| | - Kayla Meyer
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Rebecca Easly
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Omar Bayomy
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Janet Leung
- Section of Endocrinology, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Andrew W Koefoed
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Mahyar Heydarpour
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Roy Freeman
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Correspondence should be addressed to G K Adler:
| |
Collapse
|
18
|
Sun H, Zhang W, Yang N, Xue Y, Wang T, Wang H, Zheng K, Wang Y, Zhu F, Yang H, Xu W, Xu Y, Geng D. Activation of cannabinoid receptor 2 alleviates glucocorticoid-induced osteonecrosis of femoral head with osteogenesis and maintenance of blood supply. Cell Death Dis 2021; 12:1035. [PMID: 34718335 PMCID: PMC8556843 DOI: 10.1038/s41419-021-04313-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022]
Abstract
In glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH), downregulated osteogenic ability and damaged blood supply are two key pathogenic mechanisms. Studies suggested that cannabinoid receptor 2 (CB2) is expressed in bone tissue and it plays a positive role in osteogenesis. However, whether CB2 could enhance bone formation and blood supply in GC-induced ONFH remains unknown. In this study, we focused on the effect of CB2 in GC-induced ONFH and possible mechanisms in vitro and in vivo. By using GC-induced ONFH rat model, rat-bone mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) to address the interaction of CB2 in vitro and in vivo, we evaluate the osteogenic and angiogenic effect variation and possible mechanisms. Micro-CT, histological staining, angiography, calcein labeling, Alizarin red staining (ARS), alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) staining, TUNEL staining, migration assay, scratch assay, and tube formation were applied in this study. Our results showed that selective activation of CB2 alleviates GC-induced ONFH. The activation of CB2 strengthened the osteogenic activity of BMSCs under the influence of GCs by promotion of GSK-3β/β-catenin signaling pathway. Furthermore, CB2 promoted HUVECs migration and tube-forming capacities. Our findings indicated that CB2 may serve as a rational new treatment strategy against GC-induced ONFH by osteogenesis activation and maintenance of blood supply.
Collapse
Affiliation(s)
- Houyi Sun
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Weicheng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ning Yang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230000, China
| | - Yi Xue
- Department of Orthopedics, Changshu Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Changshu, 215500, China
| | - Tianhao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hongzhi Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yijun Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Feng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
19
|
Corrado A, Rotondo C, Mele A, Cici D, Maruotti N, Sanpaolo E, Colia R, Cantatore FP. Influence of glucocorticoid treatment on trabecular bone score and bone remodeling regulators in early rheumatoid arthritis. Arthritis Res Ther 2021; 23:180. [PMID: 34229744 PMCID: PMC8261978 DOI: 10.1186/s13075-021-02562-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background Glucocorticoids (GC) modulate several regulators involved in the pathogenesis of bone changes in rheumatoid arthritis (RA). Trabecular bone score (TBS) allows the indirect assessment of bone quality. The aim of this study was to investigate the effects of GC on TBS and serum levels of bone turnover regulators in patients with recent-onset RA. Materials and methods Forty-seven subjects with recent-onset RA (< 6 months) were classified in two groups, low (lGC) and high (hGC) glucocorticoids, according to glucocorticoid dose regimens. Bone mineral density (BMD), TBS, and circulating Dickkopf-1 (Dkk1), sclerostin, osteoprotegerin (OPG), and RANK-L were evaluated at baseline and 6 and 12 months. Results BMD significantly declined after 12 months with no significant difference between the lGC and hGC group, whereas TBS decreased in the hGC group only. Circulating OPG decreased during the follow-up period, the reduction being significantly greater in hGC group; conversely, sclerostin and RANK-L serum increased, in a significantly greater extent in the hGC group. TBS inversely correlated with sclerostin, RANK-L, and Dkk1 circulating levels whereas directly correlated with OPG circulating levels. GC cumulative dose showed an inverse relationship with BMD in both the hGC and lGC groups; TBS values showed an inverse relationship with GC cumulative dose in the hGC group only. GC cumulative dose was associated to higher sclerostin and lower OPG serum levels. TBS did not correlate with disease activity whereas BMD was inversely related to disease activity. Conclusions In early RA, GC exposure contributes to the reduction of BMD and affects bone quality depending on dose regimens. TBS could be a useful tool to evaluate the negative effect of GC on bone microarchitecture. Trial registration This study was ancillary to a parallel-group observational prospective study which was approved by the medical local ethics committee (protocol number DDG 334/19-06-2019).
Collapse
Affiliation(s)
- Addolorata Corrado
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71100, Foggia, Italy.
| | - Cinzia Rotondo
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71100, Foggia, Italy
| | - Angiola Mele
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71100, Foggia, Italy
| | - Daniela Cici
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71100, Foggia, Italy
| | - Nicola Maruotti
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71100, Foggia, Italy
| | - Eliana Sanpaolo
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71100, Foggia, Italy
| | - Ripalta Colia
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71100, Foggia, Italy
| | - Francesco Paolo Cantatore
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, 71100, Foggia, Italy
| |
Collapse
|
20
|
Blaschke M, Koepp R, Streit F, Beismann J, Manthey G, Seitz MT, Kragl A, Siggelkow H. The rise in expression and activity of 11β-HSD1 in human mesenchymal progenitor cells induces adipogenesis through increased local cortisol synthesis. J Steroid Biochem Mol Biol 2021; 210:105850. [PMID: 33639236 DOI: 10.1016/j.jsbmb.2021.105850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) plays an important role in pre-receptor glucocorticoid metabolism. This enzyme is expressed in bone, increases with age, and catalyzes the conversion of the inactive glucocorticoid cortisone into the active glucocorticoid cortisol and vice versa. Here we hypothesized that the physiological activity of 11β-HSD1 to produce cortisol in human mesenchymal progenitor cells (hMSC) is principally sufficient to shift the differentiation potential in the direction of adipogenic. We thus investigated differentiating hMSCs and the mesenchymal stem cell line SCP-1 cultured under osteogenic conditions and stimulated with supra-physiological cortisone levels. The release of active cortisol into the medium was monitored and the influence on cell differentiation analyzed. We revealed an increase in 11β-HSD1 expression followed by increased reductive activity of the enzyme, thereby inducing a more adipogenic phenotype of the cell models via cortisol with negative effects on osteogenesis. Through inhibition experiments with the specific inhibitor 10 j, we proved the enzyme specificity for cortisol synthesis and adipogenic differentiation. Increased expression of 11β-HSD1 followed by higher cortisol levels might thus explain bone marrow adiposity followed by reduced bone quality and stability in old age or in situations of supra-physiological glucocorticoid exposure.
Collapse
Affiliation(s)
- Martina Blaschke
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, 37075, Germany; MVZ Endokrinologikum Göttingen, Von-Siebold-Straße 3, Göttingen, 37075, Germany.
| | - Regine Koepp
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Frank Streit
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Johannes Beismann
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Georg Manthey
- Evangelical Hospital Göttingen-Weende, Neu-Mariahilf Site, Göttingen, Germany
| | - Mark-Tilmann Seitz
- Clinic for Trauma Surgery, Orthopedics and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Angelique Kragl
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Felix-Hausdorff-Str. 3, Greifswald, 17487, Germany
| | - Heide Siggelkow
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, 37075, Germany; MVZ Endokrinologikum Göttingen, Von-Siebold-Straße 3, Göttingen, 37075, Germany
| |
Collapse
|
21
|
Povoroznyuk VV, Dedukh NV, Bystrytska MA, Shapovalov VS. Bone remodeling stages under physiological conditions and glucocorticoid in excess: Focus on cellular and molecular mechanisms. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review provides a rationale for the cellular and molecular mechanisms of bone remodeling stages under physiological conditions and glucocorticoids (GCs) in excess. Remodeling is a synchronous process involving bone resorption and formation, proceeding through stages of: (1) resting bone, (2) activation, (3) bone resorption, (4) reversal, (5) formation, (6) termination. Bone remodeling is strictly controlled by local and systemic regulatory signaling molecules. This review presents current data on the interaction of osteoclasts, osteoblasts and osteocytes in bone remodeling and defines the role of osteoprogenitor cells located above the resorption area in the form of canopies and populating resorption cavities. The signaling pathways of proliferation, differentiation, viability, and cell death during remodeling are presented. The study of signaling pathways is critical to understanding bone remodeling under normal and pathological conditions. The main signaling pathways that control bone resorption and formation are RANK / RANKL / OPG; M-CSF – c-FMS; canonical and non-canonical signaling pathways Wnt; Notch; MARK; TGFβ / SMAD; ephrinB1/ephrinB2 – EphB4, TNFα – TNFβ, and Bim – Bax/Bak. Cytokines, growth factors, prostaglandins, parathyroid hormone, vitamin D, calcitonin, and estrogens also act as regulators of bone remodeling. The role of non-encoding microRNAs and long RNAs in the process of bone cell differentiation has been established. MicroRNAs affect many target genes, have both a repressive effect on bone formation and activate osteoblast differentiation in different ways. Excess of glucocorticoids negatively affects all stages of bone remodeling, disrupts molecular signaling, induces apoptosis of osteocytes and osteoblasts in different ways, and increases the life cycle of osteoclasts. Glucocorticoids disrupt the reversal stage, which is critical for the subsequent stages of remodeling. Negative effects of GCs on signaling molecules of the canonical Wingless (WNT)/β-catenin pathway and other signaling pathways impair osteoblastogenesis. Under the influence of excess glucocorticoids biosynthesis of biologically active growth factors is reduced, which leads to a decrease in the expression by osteoblasts of molecules that form the osteoid. Glucocorticoids stimulate the expression of mineralization inhibitor proteins, osteoid mineralization is delayed, which is accompanied by increased local matrix demineralization. Although many signaling pathways involved in bone resorption and formation have been discovered and described, the temporal and spatial mechanisms of their sequential turn-on and turn-off in cell proliferation and differentiation require additional research.
Collapse
|
22
|
Xu SY, Shi P, Zhou RM. Post-menopausal oestrogen deficiency induces osteoblast apoptosis via regulating HOTAIR/miRNA-138 signalling and suppressing TIMP1 expression. J Cell Mol Med 2021; 25:4572-4582. [PMID: 33733597 PMCID: PMC8107111 DOI: 10.1111/jcmm.16216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/28/2022] Open
Abstract
In this study, we aimed to explore the molecular mechanisms underlying the development of osteoporosis in post‐menopausal females. Real‐time PCR was conducted to measure the expression of potential lncRNAs involved in the osteoporosis of post‐menopausal females. In addition, Western blot and IHC assays were used to study the possible correlation among HOTAIR, miR‐138 and TIMP1, while a computational analysis was carried out to predict the ‘seed sequence’ responsible for the binding between miR‐138 and HOTAIR/TIMP1. Furthermore, luciferase reporter assays were conducted to validate the negative regulatory relationship between miR‐138 and TIMP1/HOTAIR. To evaluate the effect of oestrogen on the function of HOATIR and its downstream effectors, luciferase activity was measured in cells cotransfected with different vectors or treated with different doses of oestrogen. The results of the luciferase assay were further validated by real‐time PCR, Western blot, MTT assay and flow cytometry. Among the candidate lncRNAs, HOTAIR was the only lncRNA down‐regulated in post‐menopausal females. HOTAIR bound to miR‐138 and negatively regulated its expression. Meanwhile, miR‐138 could also bind to TIMP1 mRNA and reduce its expression. Furthermore, a dose‐dependent up‐regulation of HOTAIR was observed in cells treated with oestrogen, and the elevated HOTAIR increased the level of TIMP1 by targeting miR‐138. In addition, oestrogen promoted cell viability and suppressed cell apoptosis, and effects of oestrogen were blocked by the silencing of HOTAIR. Therefore, it can be concluded that oestrogen deficiency could induce the apoptosis of osteoblasts and lead to osteoporosis in post‐menopausal females via modulation of the HOTAIR/miR‐138/TIMP1 signalling axis.
Collapse
Affiliation(s)
- Shao-Yong Xu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Shi
- Department of Spine Orthopedics, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Rui-Ming Zhou
- Department of Orthopedics, The Second People Hospital of NanSha, Guangzhou, China
| |
Collapse
|
23
|
Glucocorticoid therapy suppresses Wnt signaling by reducing the ratio of serum Wnt3a to Wnt inhibitors, sFRP-1 and Wif-1. Clin Rheumatol 2021; 40:2947-2954. [PMID: 33420868 DOI: 10.1007/s10067-020-05554-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Our previous study suggested that suppression of Wnt/β-catenin signaling by increasing serum Wnt co-receptor inhibitors, sclerostin and Dickkopf-1, impairs bone formation in the first week after starting glucocorticoid therapy. The objective of this study was to investigate the involvement of the Wnt/β-catenin signaling pathway and its clinical significance in the subsequent suppression of bone formation. METHODS A total of 53 patients with systemic autoimmune diseases who received initial glucocorticoid therapy with prednisolone (30-60 mg daily) were prospectively enrolled. We measured serum levels of Wnt3a and Wnt inhibitors, secreted Frizzled-related protein 1 (sFRP-1) and Wnt inhibitory factor 1 (Wif-1), before starting glucocorticoid therapy and every week for 4 weeks after its initiation. RESULTS Serum levels of sFRP-1 and Wif-1 slightly decreased compared with before glucocorticoid therapy from the second week. The serum Wnt3a level decreased from the first week. The ratios of Wnt3a to sFRP-1 and that of Wnt3a to Wif-1 both decreased from the first week onward. CONCLUSION The reduction of the ratio of Wnt3a to Wnt inhibitors, sFRP-1 and Wif-1, suppresses Wnt signaling, which may result in impaired bone formation. Taken together with our previous studies, glucocorticoids may suppress Wnt signaling by inhibiting co-receptors of the Wnt/β-catenin signaling pathway in the early phase of glucocorticoid therapy and inhibiting its ligand in the subsequent weeks, which together impair bone formation. Key Points • The decrease in Wnt pathway-related molecules by glucocorticoids impairs bone formation. • Glucocorticoids inhibit co-receptors of Wnt signaling in the early phase of therapy. • Glucocorticoids inhibit ligands of Wnt signaling in the subsequent phase of therapy.
Collapse
|
24
|
Gómez-Vaquero C, Martín I, Zacarías A, Alía P, Loza E, Carmona L, Narváez J. Relation of the Serum Levels of DKK-1 and Osteoprotegerin with Bone Mass in Tightly Controlled Rheumatoid Arthritis. Curr Rheumatol Rev 2020; 17:101-108. [PMID: 33349216 DOI: 10.2174/1573397116666201221112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/16/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To analyze the association between serum levels of osteoprotegerin (OPG) and Dickkopf-related protein 1 (DKK-1) and the annual percent change (Δ%) in bone mineral density (BMD) in patients with tightly controlled rheumatoid arthritis (RA). METHODS Observational mixed-study. RA patients followed-up with a tight-control strategy were included. Bone densitometries were performed at baseline (T0) and follow-up (T1) and serum levels of OPG and DKK-1 were measured by ELISA also in T0 and T1; additional clinical variables included disease activity measures, and treatment for RA and osteoporosis. Descriptive bivariate and multivariate analyses, stratified by gender, were performed. RESULTS We included 97 RA patients (70% female, with a mean age of 53 years, and 76% with low activity by DAS28); 95% were treated with DMARDs and 37% with anti-osteoporotic drugs. Mean time between T0 and T1 was 2.7 years. Most patients had their BMD improved. The mean Δ%BMD was +0.42% for lumbar spine, +0.15% for femoral neck and +0.91% for total femur. In men, baseline OPG was significantly associated with higher BMD loss (β coefficient -0.64) at the femoral neck. In women, DKK-1 was associated with higher BMD loss at the femoral neck (β coefficient -0.09), and total femur (β coefficient -0.11); however, DKK-1 was associated with lower BMD loss at the lumbar spine (β coefficient 0.06). CONCLUSION In tightly controlled RA patients, we have found no evidence of bone loss. The role of DKK1 and OPG seems small and might be related to sex and location.
Collapse
Affiliation(s)
- Carmen Gómez-Vaquero
- Rheumatology and Clinical Laboratory Services, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Irene Martín
- Rheumatology and Clinical Laboratory Services, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Andrea Zacarías
- Rheumatology and Clinical Laboratory Services, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Pedro Alía
- Rheumatology and Clinical Laboratory Services, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet, Barcelona, Spain
| | | | | | - Javier Narváez
- Rheumatology and Clinical Laboratory Services, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet, Barcelona, Spain
| |
Collapse
|
25
|
Long Z, Wu J, Xiang W, Zeng Z, Yu G, Li J. Exploring the Mechanism of Icariin in Osteoporosis Based on a Network Pharmacology Strategy. Med Sci Monit 2020; 26:e924699. [PMID: 33230092 PMCID: PMC7697664 DOI: 10.12659/msm.924699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/11/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND With the aging of the world's population, the incidence of osteoporosis (OP) has become a public health problem of worldwide concern. Research shows that icariin may have a therapeutic effect on OP. MATERIAL AND METHODS PharmMapper was utilized to predict the potential targets of icariin. GeneCards and Online Mendelian Inheritance in Man (OMIM) were used for the collection of OP genes. The STRING database was utilized to obtain the protein-protein interaction (PPI) data. We used Cytoscape 3.7.2 to construct and analyze the networks. The genes and targets in the networks were input into the Database for Annotation, Visualization and Integrated Discovery (DAVID) to undergo Gene Ontology (GO) and pathway enrichment analysis. Finally, animal experiments were performed to verify the prediction results of this study. RESULTS A total of 297 icariin potential targets and 262 OP genes were obtained, and an icariin-OP PPI network was constructed and analyzed. The results of the GO enrichment analysis showed that icariin can regulate the steroid hormone-mediated signaling pathway, skeletal system development, extracellular space, cytosol, and steroid hormone receptor activity. The results of the pathway enrichment analysis showed that icariin can regulate osteoclast differentiation, FoxO, estrogen, and PPAR signaling pathways. The results of the experiments showed that icariin can increase estradiol, ß-catenin, and Receptor Activator of Nuclear Factor-к B Ligand (RANKL)/osteoprotegerin (OPG) ratio in postmenopausal OP rats (P<0.05). CONCLUSIONS This research found that the icariin can regulate OP-related biological processes, cell components, molecular functions, and signaling pathways.
Collapse
Affiliation(s)
- Zhiyong Long
- Shantou University Medical College, Shantou University, Shantou, Guangdong, P.R. China
- Department of Rehabilitation Medicine, Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong, P.R. China
| | - Jiamin Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Wang Xiang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Zhican Zeng
- Tianjin Medical University, Tianjin, P.R. China
| | - Ganpeng Yu
- Department of Orthopaedics, People’s Hospital of Ningxiang City, Ningxiang, Hunan, P.R. China
| | - Jun Li
- Department of Orthopaedics, People’s Hospital of Ningxiang City, Ningxiang, Hunan, P.R. China
| |
Collapse
|
26
|
Lespessailles E, Chapurlat R. High fracture risk patients with glucocorticoid-induced osteoporosis should get an anabolic treatment first. Osteoporos Int 2020; 31:1829-1834. [PMID: 32780152 DOI: 10.1007/s00198-020-05568-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022]
Abstract
Long-term glucocorticoid (GC) therapy induces glucocorticoid-induced osteoporosis (GIOP) and its associated fractures. Most specialty organizations recommend bisphosphonates as first-line therapies based only on bone mineral density efficacy data. Effective treatment of GIOP based on head-to-head trials with fracture endpoint has not yet been established. The pathophysiologic mechanisms of GIOP that lead to the detrimental effects on bone are not yet fully elucidated. Although GCs in an early and transitory period promote osteoclastic activity, in the current paper, we outline why GIOP is in fact a disease of the bone formation and then provide the rationale for the use of bone-forming agents as first-line therapy for patients with high fracture risk in GIOP.
Collapse
Affiliation(s)
- E Lespessailles
- EA 4708 - I3MTO Laboratory, University of Orleans, 45067, Orleans, France.
- Department of Rheumatology, Translational Medicine Research Platform, Regional Hospital of Orleans, 14 avenue de l'hopital, 45067, Orleans Cedex 2, France.
| | - R Chapurlat
- INSERM UMR 1033, University of Lyon, Hôpital E Herriot, Lyon, France
| |
Collapse
|
27
|
Jacobsson M, van Raalte DH, Heijboer AC, den Heijer M, de Jongh RT. Short-Term Glucocorticoid Treatment Reduces Circulating Sclerostin Concentrations in Healthy Young Men: A Randomized, Placebo-Controlled, Double-Blind Study. JBMR Plus 2020; 4:e10341. [PMID: 32803106 PMCID: PMC7422706 DOI: 10.1002/jbm4.10341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/09/2019] [Accepted: 12/25/2019] [Indexed: 11/08/2022] Open
Abstract
Glucocorticoid use is the most common cause of osteoporosis in young individuals. In the current study, we investigated the effects of glucocorticoid treatment on circulating sclerostin concentrations and serum bone turnover markers in healthy young men. We performed additional measurements in two combined randomized, placebo‐controlled, double‐blind, dose–response intervention studies: 64 healthy men (age: 22 ± 2 years; BMI: 22.1 ± 1.7 kg/m2) were allocated to receive placebo (n = 16), prednisolone 7.5 mg once daily (n = 24), or prednisolone 30 mg once daily (n = 24) for 2 weeks using block randomization. Primary outcome variables were serum sclerostin and serum bone turnover markers (CTx and P1NP), before and after the intervention. Baseline characteristics and variables did not differ between intervention groups. Compared with placebo, prednisolone high‐dose decreased serum sclerostin concentrations (−8.5 [−28.0 to 7.3] versus 1.5 [−6.5 to 20.0] pg/mL, p = 0.048), decreased P1NP concentrations (−28.0 [−39.3 to −18.3] versus –1.5 [−15.3 to 11.3] μg/L, p < 0.001) and increased CTx concentrations (108.0 [55.0 to 177.0] versus 64.0 [−24.3 to 120.0] ng/L, p = 0.038). Compared with placebo, prednisolone low‐dose did not alter sclerostin concentrations (p = 0.5) or CTx concentrations (p = 0.7), but tended to decrease P1NP concentrations (−9.0 [−24.0 to −1.3] versus –1.5 [−15.3 to 11.3] μg/L, p = 0.095). At baseline concentrations of sclerostin were positively correlated with concentrations of CTx (Spearman's rank correlation coefficient ρ = +0.409, p = 0.001), but not with P1NP. No significant correlations were observed between changes in outcome variables during the interventions. Short‐term high‐dose, but not low‐dose, prednisolone treatment reduces serum sclerostin concentrations in healthy young men. Whether this reflects a counter regulatory mechanism to compensate glucocorticoid‐induced negative effects through other mechanisms remains to be elucidated. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Merel Jacobsson
- Department of Internal Medicine, Division of Endocrinology, Amsterdam UMC Amsterdam The Netherlands
| | - Daniël H van Raalte
- Department of Internal Medicine, Division of Endocrinology, Amsterdam UMC Amsterdam The Netherlands
| | - Annemieke C Heijboer
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Martin den Heijer
- Department of Internal Medicine, Division of Endocrinology, Amsterdam UMC Amsterdam The Netherlands
| | - Renate T de Jongh
- Department of Internal Medicine, Division of Endocrinology, Amsterdam UMC Amsterdam The Netherlands
| |
Collapse
|
28
|
Chiodini I, Falchetti A, Merlotti D, Eller Vainicher C, Gennari L. Updates in epidemiology, pathophysiology and management strategies of glucocorticoid-induced osteoporosis. Expert Rev Endocrinol Metab 2020; 15:283-298. [PMID: 32584619 DOI: 10.1080/17446651.2020.1772051] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Endogenous or exogenous (corticosteroid-induced) glucocorticoids (GCs) excess represents, together with diabetes, the most common cause of secondary osteoporosis. AREAS COVERED We present a comprehensive overview about the pathophysiology, clinical management and treatment of GCs induced osteoporosis (GIOP). According to PRISMA guidelines, a literature search identifying articles about bone and GCs was done. EXPERT OPINION Despite the progress over the years and the increase in therapeutic options, there still are controversial issues about the management of GIOP. These mainly include the failure of BMD or FRAX to completely account for the rapid increase in fracture risk of most GC-treated patients, the understanding about the independent contribution on bone fragility of the underlying disease requiring GCs therapy, and the necessity of clearer information about the anti-fracture efficacy and long term-safety of most therapeutic options. Moreover, there are no specific indications for the management of bone fragility in endogenous hypercortisolism. Notwithstanding the above limitations there is a general consensus to recommend an assessment of fracture risk in all individuals >40 years committed to receive (or continuing) high dose (>7.5 mg of prednisone equivalent) GCs for ≥3 months and in all patients with fragility fracture history.
Collapse
Affiliation(s)
- Iacopo Chiodini
- Istituto Auxologico Italiano, IRCCS, Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Milan , Italy
| | - Alberto Falchetti
- Istituto Auxologico Italiano, IRCCS, Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Milan , Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena , Italy
| | - Cristina Eller Vainicher
- Endocrinology and Diabetology Units, Department of Medical Sciences and Community, Fondazione Ca'Granda Ospedale Maggiore Policlinico IRCCS , Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena , Italy
| |
Collapse
|
29
|
Xu K, Ma J, Liu Z, Wang X, Yan S, Liu Z, Sun F, Wang K. Effect of Sleeve Gastrectomy on Bone Metabolism and Serum 5-Hydroxytryptamine in Obese Rats. Med Sci Monit 2020; 26:e924097. [PMID: 32324718 PMCID: PMC7193245 DOI: 10.12659/msm.924097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Studies have shown that bariatric surgery, such as sleeve gastrectomy (SG), has an adverse effect on bone, including decreased bone mineral density (BMD) and bone metabolism. Peripheral 5-hydroxytryptamine (5-HT) has an adverse regulatory effect on bone formation. Here, we assessed changes in bone metabolism and whether 5-HT is involved in the effect of SG on bone metabolism. MATERIAL AND METHODS A rat model of obesity was established using Wistar rats. After successful modeling, rats were randomly assigned to 2 groups - the SG group and the Sham group - with 10 rats in each group. We then performed sleeve gastrectomy or sham operation. Bone metabolic markers and BMD of rats were measured at 2 and 16 weeks after the operation and the level of 5-HT in serum was determined. Rats were killed at 16 weeks after the operation, and bones of the hind limbs were harvested to measure 5-HT by immunofluorescence. RESULTS BMD was decreased and bone metabolism demonstrated a trend of bone destruction in the rats after SG. A significantly increasing trend in the level of serum 5-HT was found, and bone immunofluorescence showed increased expression of 5-HT. CONCLUSIONS BMD was decrease and bone metabolism demonstrated a trend of bone destruction after SG. SG can affect the level of 5-HT in serum or bone tissue and the 5-HT may be involved in the process through which SG affects bone metabolism.
Collapse
Affiliation(s)
- Kai Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Junxing Ma
- Gastrointestinal Surgery, Feicheng Hospital Affiliated to Shandong First Medical University, Feicheng People's Hospital, Feicheng, Shandong, China (mainland)
| | - Zhi Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xiaoyang Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Shaohua Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Zitian Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Fuyun Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
30
|
Fassio A, Adami G, Giollo A, Viapiana O, Malavolta N, Saviola G, Bortolotti R, Idolazzi L, Bertoldo F, Rossini M, Gatti D. Acute Effects of Glucocorticoid Treatment, TNFα or IL-6R Blockade on Bone Turnover Markers and Wnt Inhibitors in Early Rheumatoid Arthritis: A Pilot Study. Calcif Tissue Int 2020; 106:371-377. [PMID: 31897527 DOI: 10.1007/s00223-019-00649-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Abstract
Tumor Necrosis Factor (TNF)-α and Interleukin (IL)-6 play a fundamental role in bone loss in rheumatoid arthritis (RA), partly due to the inhibition of the Wnt canonical pathway. The aim of our study was to investigate the short-term effects of three different treatments on Wnt inhibitors (Dkk-1 and sclerostin) and on bone turnover markers (BTMs): N-propeptide of type I collagen (PINP) and C-terminal telopeptide of type I collagen (β-CTX-I). We performed a retrospective analysis of prospectively collected data. We enrolled women affected by early RA (< 12 months) with active disease (DAS28 ≥ 2.6) despite a 6-month treatment with methotrexate (10-15 mg/week), who then started certolizumab pegol, tocilizumab, or methyl-prednisolone (8 mg/daily). Patients were divided into three groups according to the treatment. Blood samples were collected at baseline, week 1, and week 4. We selected 14 patients treated with certolizumab pegol, 14 patients with tocilizumab, and 20 patients with methyl-prednisolone. No difference between any of the tested parameters was found at baseline. β-CTX-I, Dkk-1, and sclerostin decreased after 1 week of treatment with certolizumab pegol (- 27% ± 21.5, - 50% ± 13.2, and - 30% ± 30.4, respectively, p < 0.05). Methyl-prednisolone induced similar changes, albeit less marked, on β-CTX-I and Wnt inhibitors, with a decrease in PINP (- 16.1% ± 16.5, p < 0.05). Tocilizumab did not significantly affect BTMs or Wnt inhibitors. No significant changes were found for PTH and 25OHD. In the first four weeks of treatment, TNFα inhibition showed strong effects on BTMs and Wnt inhibitors, differently from IL-6 blockade. Glucocorticoids induced similar changes; nonetheless, they showed undesired effects on bone formation.
Collapse
Affiliation(s)
- Angelo Fassio
- Rheumatology Unit, University of Verona, Verona, Italy.
| | | | | | | | - Nazzarena Malavolta
- Rheumatology Unit, AOU of Bologna, Policlinico S. Orsola Malpighi, Department Cardio-Toraco-Vascolare Alma Mater Studiorum, Bologna, Italy
| | - Gianantonio Saviola
- Rheumatology and Rehabilitation Unit, Salvatore Maugeri Foundation IRCCS, Castel Goffredo, Mantua, Italy
| | | | - Luca Idolazzi
- Rheumatology Unit, University of Verona, Verona, Italy
| | - Francesco Bertoldo
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | | | - Davide Gatti
- Rheumatology Unit, University of Verona, Verona, Italy
| |
Collapse
|
31
|
Cai J, Shao X, Yang Q, Yang Y, Yan Z, Luo E, Feng X, Jing D. Pulsed electromagnetic fields modify the adverse effects of glucocorticoids on bone architecture, bone strength and porous implant osseointegration by rescuing bone-anabolic actions. Bone 2020; 133:115266. [PMID: 32044333 DOI: 10.1016/j.bone.2020.115266] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/08/2023]
Abstract
Long-term glucocorticoid therapy is known to induce increased bone fragility and impaired skeletal regeneration potential. Growing evidence suggests that pulsed electromagnetic fields (PEMF) can accelerate fracture healing and increase bone mass both experimentally and clinically. However, how glucocorticoid-treated bone and bone cells respond to PEMF stimulation remains poorly understood. Here we tested the effects of PEMF on bone quantity/quality, bone metabolism, and porous implant osseointegration in rabbits treated with dexamethasone (0.5 mg/kg/day, 6 weeks). The micro-CT, histologic and nanoindentation results showed that PEMF ameliorated the glucocorticoid-mediated deterioration of cancellous and cortical bone architecture and intrinsic material properties. Utilizing the new porous titanium implant (Ti2448) with low toxicity and low elastic modulus, we found that PEMF stimulated bone ingrowth into the pores of implants and enhanced peri-implant bone material quality during osseous defect repair in glucocorticoid-treated rabbits. Dynamic histomorphometric results revealed that PEMF reversed the adverse effects of glucocorticoids on bone formation, which was confirmed by increased circulating osteocalcin and P1NP. PEMF also significantly attenuated osteocyte apoptosis, promoted osteoblast-related osteocalcin, Runx2 and Osx expression, and inhibited osteocyte-specific DKK1 and Sost expression (negative regulators of osteoblasts) in glucocorticoid-treated skeletons, revealing improved functional activities of osteoblasts and osteocytes. Nevertheless, PEMF exerted no effect on circulating bone-resorbing cytokines (serum TRAcP5b and CTX-1) or skeletal gene expression of osteoclast-specific markers (TRAP and cathepsin K). PEMF also significantly upregulated skeletal gene expression of canonical Wnt ligands (Wnt1, Wnt3a and Wnt10b), whereas PEMF did not alter non-canonical Wnt5a expression. This study demonstrates that PEMF treatment improves bone mass, strength and porous implant osseointegration in glucocorticoid-treated rabbits by promoting potent bone-anabolic action, which is associated with canonical Wnt-mediated improvement in osteoblast and osteocyte functions. This study provides a new treatment alternative for glucocorticoid-related bone disorders in a convenient and non-invasive manner.
Collapse
Affiliation(s)
- Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China; Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Qiuju Yang
- Department of Anesthesia, The First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Yongqing Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xue Feng
- Department of Cell Biology, School of Medicine, Northwest University, Xi'an, China.
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
32
|
Liu TJ, Guo JL. Overexpression of microRNA-141 inhibits osteoporosis in the jawbones of ovariectomized rats by regulating the Wnt/β-catenin pathway. Arch Oral Biol 2020; 113:104713. [PMID: 32229339 DOI: 10.1016/j.archoralbio.2020.104713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE This work was aimed to investigate the effect of microRNA-141 (miR-141) overexpression in the jawbones of ovariectomized-induced osteoporosis rats and investigate the role of miR-141 in the Wnt/β-catenin pathway. METHODS Twenty-four female rats were randomly divided into the sham group, ovariectomized osteoporosis group (OP), miR-141 agonist group (miR-141), and miR-141 scramble group (Scramble). Bone mineral density (BMD) and pathological changes of the jaw were detected. Serum receptor activator of nuclear factor-B ligand (RANKL), osteoprotegerin, tartrate-resistant acid phosphatase (TRAP), and bone gla protein (BGP) levels were tested by ELISA. The expression of Runt-related transcription factor 2 (Runx2), and Osterix measured by immunohistochemistry and the expression of Wnt, β-catenin, and Dickkopf1 (DKK1) proteins was measured by Western blot. Furhter, the Wnt agonist DKK2-C2, Wnt inhibitor Endostar were used to verify the effect of miR-141 overexpression on the Wnt/β-catenin pathway. RESULT Compared with the OP group, the content of osteoprotegerin increased while the levels of RANKL, BGP, TRAP decreased in the miR-141 and DKK2-C2 groups (p < 0.05). The levels of Runx2 and Osterix increased significantly in the miR-141 and DKK2-C2 groups when compared to the OP group (p < 0.05). Interestingly, the protein expression of Wnt and β-catenin increased while DKK1 was remarkably down-regulated in the miR-141 and DKK2-C2 groups when compared to the OP group (p < 0.05). In contrast to the miR-141 group, the above results were reversed after treatment with the Endostar (p < 0.05). CONCLUSION Overexpression of miR-141 could inhibit the osteoporosis of jawbones in ovariectomized rats by activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Tong-Jun Liu
- Department of Stomatology, the Central Hospital afilliated to Shandong First Medical University, Jinan, 250013, China.
| | - Jian-Lian Guo
- Department of Ophthalmology, the Jinan Eighth Hospital, Jinan, 250013, China
| |
Collapse
|
33
|
Wang Y, Pan Z, Chen F. Inhibition of PPARγ by bisphenol A diglycidyl ether ameliorates dexamethasone-induced osteoporosis in a mouse model. J Int Med Res 2019; 47:6268-6277. [PMID: 31709877 PMCID: PMC7045685 DOI: 10.1177/0300060519870723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives Bisphenol A diglycidyl ether (BADGE) is an antagonist for PPARγ that reduces bone marrow adiposity and increases bone formation in some animal models of osteoporosis and osteonecrosis. However, the effect of BADGE treatment on glucocorticoid-induced osteoporosis is unknown. This study investigated the preventive effects of BADGE on steroid-induced osteoporosis in mice. Methods Thirty-six female C57BL/6J mice were randomly divided into normal (phosphate-buffered saline), model (50 mg/kg dexamethasone sodium phosphate [Dex]), and BADGE (30 mg/kg of BADGE, combined with Dex) groups. All groups received intraperitoneal injections of their treatments, daily for 4 weeks. Protein and mRNA expression levels of gene markers were measured. Micro-computed tomography was used to measure physical parameters of femurs. Bone histomorphology was analyzed by hematoxylin and eosin staining. ELISA was used to measure serum osteocalcin and C-terminal telopeptide of type I collagen (CTX-1). Results Glucocorticoid treatment enlarged the marrow fat, concomitant with bone deterioration; BADGE treatment reversed steroid-induced marrow adiposity. Compared with the model group, BADGE treatment improved bone quality and increased bone volume, while increasing osteogenic markers and reducing adipogenic markers at both mRNA and protein levels; moreover, it reduced serum CTX-1 and increased serum osteocalcin. Conclusion BADGE treatment ameliorates glucocorticoid-induced osteoporosis by inhibiting PPARγ.
Collapse
Affiliation(s)
- Yaoqing Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Zhenyu Pan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Fan Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
34
|
Adhikary S, Choudhary D, Tripathi AK, Karvande A, Ahmad N, Kothari P, Trivedi R. FGF-2 targets sclerostin in bone and myostatin in skeletal muscle to mitigate the deleterious effects of glucocorticoid on musculoskeletal degradation. Life Sci 2019; 229:261-276. [PMID: 31082400 DOI: 10.1016/j.lfs.2019.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
AIM Myokines are associated with regulation of bone and muscle mass. However, limited information is available regarding the impact of myokines on glucocorticoid (GC) mediated adverse effects on the musculoskeletal system. This study investigates the role of myokine fibroblast growth factor-2 (FGF-2) in regulating GC-induced deleterious effects on bone and skeletal muscle. METHODS Primary osteoblast cells and C2C12 myoblast cell line were treated with FGF-2 and then exposed to dexamethasone (GC). FGF-2 mediated attenuation of the inhibitory effect of GC on osteoblast and myoblast differentiation and muscle atrophy was assessed through quantitative PCR and western blot analysis. Further, FGF-2 was administered subcutaneously to dexamethasone treated mice to collect bone and skeletal muscle tissue for in vivo analysis of bone microarchitecture, mechanical strength, histomorphometry and for histological alterations in treated tissue samples. KEY FINDINGS FGF-2 abrogated the dexamethasone induced inhibitory effect on osteoblast differentiation by modulating BMP-2 pathway and inhibiting Wnt antagonist sclerostin. Further, dexamethasone induced atrophy in C2C12 cells was mitigated by FGF-2 as evident from down regulation of atrogenes expression. FGF-2 prevented GC-induced impairment of mineral density, biomechanical strength, trabecular bone volume, cortical thickness and bone formation rate in mice. Additionally, skeletal muscle tissue from GC treated mice displayed weak myostatin immunostaining and reduced expression of atrogenes following FGF-2 treatment. SIGNIFICANCE FGF-2 mitigated GC induced effects through inhibition of sclerostin and myostatin expression in bone and muscle respectively. Taken together, this study exhibited the role of exogenous FGF-2 in sustaining osteoblastogenesis and inhibiting muscle atrophy in presence of glucocorticoid.
Collapse
Affiliation(s)
- Sulekha Adhikary
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dharmendra Choudhary
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anirudha Karvande
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Naseer Ahmad
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Priyanka Kothari
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
35
|
Alam I, Oakes DK, Reilly AM, Billingsley C, Sbeta S, Gerard-O'Riley RL, Acton D, Sato A, Bellido T, Econs MJ. Overexpression of WNT16 Does Not Prevent Cortical Bone Loss Due to Glucocorticoid Treatment in Mice. JBMR Plus 2018; 3:e10084. [PMID: 31044183 PMCID: PMC6478588 DOI: 10.1002/jbm4.10084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoids (GC) are commonly used for the treatment of a wide variety of autoimmune, pulmonary, gastrointestinal, and malignancy conditions. One of the devastating side effects of GC use is osteoporotic fractures, particularly in the spine and hip. Bisphosphonates (BP) are the most commonly prescribed pharmacological agents for the prevention and treatment of GC-induced osteoporosis (GIO). However, GIO is marked by reduced bone formation and BP serves mainly to decrease bone resorption. The WNT signaling pathway plays a major role in bone and mineral homeostasis. Previously, we demonstrated that overexpression of WNT16 in mice led to higher bone mineral density and improved bone microarchitecture and strength. We hypothesized that WNT16 overexpression would prevent bone loss due to glucocorticoid treatment in mice. To test our hypothesis, we treated adult wild-type and WNT16-transgenic mice with vehicle and GC (prednisolone; 2.1 mg/kg body weight) via slow-release pellets for 28 days. We measured bone mass and microarchitecture by dual-energy X-ray absorptiometry (DXA) and micro-CT, and performed gene expression and serum biochemical analysis. We found that GC treatment compared with the vehicle significantly decreased femoral areal bone mineral density (aBMD), bone mineral content (BMC), and cortical bone area and thickness in both wild-type and transgenic female mice. In contrast, the trabecular bone parameters at distal femur were not significantly changed by GC treatment in male and female mice for both genotypes. Further, we observed significantly lower level of serum P1NP and a tendency of higher level of serum TRAP in wild-type and transgenic mice due to GC treatment in both sexes. Gene expression analysis showed lower mRNA levels of Wnt16, Opg, and Opg/Rankl ratio in GC-treated female mice for both genotypes compared with the sex-matched vehicle-treated mice. These data suggest that although WNT16 overexpression resulted in higher baseline bone mineral density and bone volume per trabecular volume (BV/TV) in the transgenic mice, this was insufficient to prevent bone loss in mice due to glucocorticoid treatment.
Collapse
Affiliation(s)
- Imranul Alam
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
| | - Dana K Oakes
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Austin M Reilly
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Caylin Billingsley
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Shahed Sbeta
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| | | | - Dena Acton
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Amy Sato
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis IN USA
| | - Teresita Bellido
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis IN USA
| | - Michael J Econs
- Department of Medicine Indiana University School of Medicine Indianapolis IN USA.,Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA.,Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
36
|
Gao Y, Zhu H, Yang F, Wang Q, Feng Y, Zhang C. Glucocorticoid-activated IRE1α/XBP-1s signaling: an autophagy-associated protective pathway against endotheliocyte damage. Am J Physiol Cell Physiol 2018; 315:C300-C309. [PMID: 29768047 DOI: 10.1152/ajpcell.00009.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glucocorticoid-induced endothelial injury has been reported in several diseases. Although there are several theories, the exact mechanism underlying the role of glucocorticoids in this process remains unclear. Autophagy has been reported to occur as a response to different stimuli and can affect cell survival and function. In this study, we found that glucocorticoids induced apoptosis and endoplasmic reticulum (ER) stress in endotheliocytes. Furthermore, we discovered that glucocorticoids induced autophagy in these cells and the inositol requiring protein 1 (IRE1α)/X-box binding protein 1s (XBP-1s) axis, one of the downstream signaling pathways of ER stress, was associated with the glucocorticoid-induced autophagy. The autophagy partly protected endotheliocytes from glucocorticoid-induced apoptosis and inhibition of proliferation. In conclusion, glucocorticoid-induced endoplasmic reticulum stress activated the IRE1α/XBP-1s signaling and induced autophagy, which, in turn, played a protective role in endotheliocyte survival and proliferation, avoiding further cellular damage caused by glucocorticoids.
Collapse
Affiliation(s)
- Yanchun Gao
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Hongyi Zhu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Fan Yang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Qiyang Wang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Yong Feng
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| |
Collapse
|
37
|
Dolkart O, Chechik O, Bivas A, Brosh T, Drexler M, Weinerman Z, Maman E. Subacromial corticosteroid injections transiently decrease suture anchor pullout strength: biomechanical studies in rats. J Shoulder Elbow Surg 2017; 26:1789-1793. [PMID: 28689827 DOI: 10.1016/j.jse.2017.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Arthroscopic rotator cuff (RC) repair incorporates suture anchors to secure torn RC tendons to the greater tuberosity (GT) bone. RC repair strength depends on the anchor-bone interface and on the quality of the GT. We evaluated the effect of single and multiple corticosteroid injections on the pullout strength of suture anchors. METHODS Fifty rats were divided into those receiving saline solution injection (control group), a single methylprednisolone acetate (MTA) injection (MTA1 group), or 3 once-weekly MTA injections (MTA3 group). Rats were killed humanely at 1 or 4 weeks after the last injection. A mini-suture anchor was inserted into the humeral head through the GT. Specimens were tested biomechanically. RESULTS At 1 week after the last injection, the mean maximal pullout strength was significantly reduced in the MTA1 group (63.5%) and MTA3 group (56%) compared with the control group (P < .05 for both). Mean stiffness decreased significantly in both treatment groups compared with controls (P < .05). At 4 weeks after the last injection, there was a significant increase in the mean maximal pullout strength after single and triple MTA injections compared with values recorded at the 1-week time point (P < .05). At 4 weeks, the mean maximal pullout strength after a single MTA injection was 92.8% of the pullout strength measured in the control group. CONCLUSIONS We showed a significant detrimental effect of corticosteroid exposure on the pullout strength of a suture anchor at 1 week. However, this effect was transient and resolved within a relatively short period. These findings indicate that a waiting period is required between subacromial corticosteroid injection and RC repair surgery that involves the use of suture anchors.
Collapse
Affiliation(s)
- Oleg Dolkart
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ofir Chechik
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Bivas
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Brosh
- Biomechanics Laboratory, School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Drexler
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zachary Weinerman
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Maman
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Pizzino G, Irrera N, Galfo F, Oteri G, Atteritano M, Pallio G, Mannino F, D'Amore A, Pellegrino E, Aliquò F, Anastasi GP, Cutroneo G, Squadrito F, Altavilla D, Bitto A. Adenosine Receptor Stimulation Improves Glucocorticoid-Induced Osteoporosis in a Rat Model. Front Pharmacol 2017; 8:558. [PMID: 28928654 PMCID: PMC5591884 DOI: 10.3389/fphar.2017.00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/08/2017] [Indexed: 11/21/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIO) is a secondary cause of bone loss. Bisphosphonates approved for GIO, might induce jaw osteonecrosis; thus additional therapeutics are required. Adenosine receptor agonists are positive regulators of bone remodeling, thus the efficacy of adenosine receptor stimulation for treating GIO was tested. In a preventive study GIO was induced in Sprague-Dawley rats by methylprednisolone (MP) for 60 days. Animals were randomly assigned to receive polydeoxyribonucleotide (PDRN), an adenosine A2 receptor agonist, or PDRN and DMPX (3,7-dimethyl-1-propargylxanthine, an A2 antagonist), or vehicle (0.9% NaCl). Another set of animals was used for a treatment study, following the 60 days of MP-induction rats were randomized to receive (for additional 60 days) PDRN, or PDRN and DMPX (an adenosine A2 receptor antagonist), or zoledronate (as control for gold standard treatment), or vehicle. Control animals were administered with vehicle for either 60 or 120 days. Femurs were analyzed after treatments for histology, imaging, and breaking strength analysis. MP treatment induced severe bone loss, the concomitant use of PDRN prevented the developing of osteoporosis. In rats treated for 120 days, PDRN restored bone architecture and bone strength; increased b-ALP, osteocalcin, osteoprotegerin and stimulated the Wnt canonical and non-canonical pathway. Zoledronate reduced bone resorption and ameliorated the histological features, without significant effects on bone formation. Our results suggest that adenosine receptor stimulation might be useful for preventing and treating GIO.
Collapse
Affiliation(s)
- Gabriele Pizzino
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Federica Galfo
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Giacomo Oteri
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Marco Atteritano
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Angelica D'Amore
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Enrica Pellegrino
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Federica Aliquò
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Giuseppe P Anastasi
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Giuseppina Cutroneo
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Domenica Altavilla
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| |
Collapse
|
39
|
Zhu L, Chen J, Zhang J, Guo C, Fan W, Wang YM, Yan Z. Parathyroid Hormone (PTH) Induces Autophagy to Protect Osteocyte Cell Survival from Dexamethasone Damage. Med Sci Monit 2017; 23:4034-4040. [PMID: 28824162 PMCID: PMC5574377 DOI: 10.12659/msm.903432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/11/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glucocorticoids (GC) have direct adverse effects on osteocytes, the most abundant bone cell type, and play an important role in osteonecrosis of the femoral head (ONFH). Teriparatide has been reported to be an effective treatment for ONFH. However, the underlying mechanism is unclear. MATERIAL AND METHODS An osteocyte cell line, MLO-Y4, was used under various doses of dexamethasone (Dex) with or without rhPTH (1-34). Cell viability, autophagy, and apoptosis markers and osteocyte characteristic mRNAs were investigated to better understand this phenomenon. RESULTS Induction of apoptosis by Dex was increased in a time- and dose-dependent manner in MLO-Y4 cells. Autophagy markers (LC3-II and Beclin-1) were increased at the low dose of Dex (10^-7 or 10^-6 M) and decreased at the high dose (10^-5 M). In MOL-Y4 cells, rhPTH (1-34) was shown to be protective against Dex-induced apoptosis. The upregulation of LC3-II and Beclin-1 and decreased level of Caspase-3 was observed in the rhPTH (1-34)-treated group compared with the Dex-only-treated group. Furthermore, the changes induced by Dex in osteocytes, such as increased SOST, RANKL, and DMP-1 mRNA level and decreased Destrin mRNA level, were reversed by rhPTH (1-34). A similar result was found in osteocyte-specific proteins sclerostin expression encoded by SOST mRNA, which acted as a bone formation inhibitor. CONCLUSIONS The self-activation of autophagy may be a protective mechanism against apoptosis induced by Dex. The protection effect of rhPTH (1-34) for GC-induced ONFH thus results, at least in part, from enhanced autophagy.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Orthopedic Surgery, Zhongshan Hospital of Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jifei Chen
- Department of Orthopedic Surgery, Zhongshan Hospital of Fudan University, Shanghai, P.R. China
| | - Jing Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital of Fudan University, Shanghai, P.R. China
| | - Changan Guo
- Department of Orthopedic Surgery, Zhongshan Hospital of Fudan University, Shanghai, P.R. China
| | - Wenshuai Fan
- Department of Orthopedic Surgery, Zhongshan Hospital of Fudan University, Shanghai, P.R. China
| | - Yi-ming Wang
- Department of Orthopedic Surgery, Zhongshan Hospital of Fudan University, Shanghai, P.R. China
| | - Zuoqin Yan
- Department of Orthopedic Surgery, Zhongshan Hospital of Fudan University, Shanghai, P.R. China
| |
Collapse
|
40
|
Kawazoe M, Kaneko K, Shikano K, Kusunoki N, Nanki T, Kawai S. Glucocorticoid therapy causes contradictory changes of serum Wnt signaling-related molecules in systemic autoimmune diseases. Clin Rheumatol 2017; 37:2169-2178. [PMID: 28551822 DOI: 10.1007/s10067-017-3689-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
The objective of this study was to investigate the clinical significance of the Wnt/β-catenin signaling pathway in glucocorticoid-induced osteoporosis. A total of 91 patients with systemic autoimmune diseases who received initial glucocorticoid therapy with prednisolone (30-60 mg daily) were prospectively enrolled. We measured serum levels of N-terminal peptide of type I procollagen (P1NP), bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase isoform 5b (TRACP-5b), N-telopeptide cross-linked type I collagen (NTX), sclerostin, Dickkopf-1 (Dkk-1), and Wnt3a before starting glucocorticoid therapy and every week for 4 weeks after its initiation. The effects of dexamethasone on expression of mRNA and protein of sclerostin and Dkk-1 by cultured normal human osteoblasts (NHOst) were evaluated by RT-PCR and ELISA, respectively. Serum levels of sclerostin and Dkk-1 increased significantly by 1 week of glucocorticoid therapy and then decreased from the second week onward. Serum Wnt3a tended to decrease and serum P1NP showed a significant decrease. However, TRACP-5b was significantly elevated from the first week of treatment onwards. In vitro study, dexamethasone increased Dkk-1 mRNA expression in cultured NHOst, but sclerostin mRNA was not detected. Dexamethasone also increased Dkk-1 protein production by osteoblasts, whereas sclerostin protein was not detected. Bone formation might be impaired at least in the first week of the initiation of glucocorticoid therapy by increase of the serum Wnt signaling inhibitors; however, their reductions in the subsequent weeks were contradictory to the maintained suppression of the bone formation markers after glucocorticoid therapy for patients with systemic autoimmune diseases.
Collapse
Affiliation(s)
- Mai Kawazoe
- Department of Internal Medicine, Graduate School of Medicine, Toho University, Tokyo, Japan.,Division of Rheumatology, Department of Internal Medicine, School of Medicine, Toho University, Tokyo, Japan
| | - Kaichi Kaneko
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Toho University, Tokyo, Japan
| | - Kotaro Shikano
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Toho University, Tokyo, Japan
| | - Natsuko Kusunoki
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Toho University, Tokyo, Japan
| | - Toshihiro Nanki
- Department of Internal Medicine, Graduate School of Medicine, Toho University, Tokyo, Japan.,Division of Rheumatology, Department of Internal Medicine, School of Medicine, Toho University, Tokyo, Japan
| | - Shinichi Kawai
- Department of Inflammation and Pain Control Research, School of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
41
|
Sarinho ESC, Melo VMPP. GLUCOCORTICOID-INDUCED BONE DISEASE: MECHANISMS AND IMPORTANCE IN PEDIATRIC PRACTICE. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2017; 35:207-215. [PMID: 28977339 PMCID: PMC5496716 DOI: 10.1590/1984-0462;2017/;35;2;00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/27/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To describe mechanisms by which glucocorticoids cause osteoporosis, with fracture risk, combining this learning with a possible professional behavior change. DATA SOURCES A systematic search on SciELO, PubMed, Scopus, and Medline databases was carried out for consensus, review articles, including systematic reviews and meta-analysis, which were published in English, between 2000 and 2016. Keywords used on the search were the following: glucocorticoids, fractures, osteoporosis, bone health, vitamin D, children, and adolescents. DATA SYNTHESIS The review was divided into four topics: 1) introduction, with a brief focus on pediatric fractures; 2) osteoporosis in children and adolescents, highlighting it as a silent cause of fractures; 3) glucocorticoids and secondary bone disease, describing deleterious mechanisms of this steroids group on bone structure; 4) molecular effects of glucocorticoids excess on bone, with details about the harmful mechanisms on bone molecular level. CONCLUSIONS Glucocorticoids excess determines early bone disease, favoring the occurrence of fractures. Thus, a child or an adolescent who uses glucocorticoids, especially systemically and chronically, but also repeats cycles at high cumulative doses of the medication, needs care and guidance related to bone health at the onset of treatment. On the other hand, the presence of fractures, even if related to trauma, can be a sign of underlying and unknown bone fragility, which may be secondary to the use of glucocorticoids and/or vitamin D deficiency.
Collapse
|
42
|
Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB, Gravallese EM. Synovium-Derived MicroRNAs Regulate Bone Pathways in Rheumatoid Arthritis. J Bone Miner Res 2017; 32:461-472. [PMID: 27676131 PMCID: PMC5340607 DOI: 10.1002/jbmr.3005] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/19/2016] [Accepted: 09/24/2016] [Indexed: 12/11/2022]
Abstract
Articular bone erosion in rheumatoid arthritis (RA) is mediated by the interaction between inflammation and pathways regulating bone metabolism. Inflammation promotes osteoclastogenesis and also inhibits osteoblast function, further contributing to the persistence of erosions. MicroRNAs (miRNAs) are important regulators of skeletal remodeling and play a role in RA pathogenesis. We therefore determined the expression of miRNAs in inflamed synovial tissue and the role they play in pathways regulating osteoblast and osteoclast function. Using the serum transfer mouse model of RA in C57BL/6 mice, we performed Fluidigm high-throughput qPCR-based screening of miRNAs from nonarthritic and arthritic mice. Global gene expression profiling was also performed on Affymetrix microarrays from these same synovial samples. miRNA and mRNA expression profiles were subjected to comparative bioinformatics. A total of 536 upregulated genes and 417 downregulated genes were identified that are predicted targets of miRNAs with reciprocal expression changes. Gene ontology analysis of these genes revealed significant enrichment in skeletal pathways. Of the 22 miRNAs whose expression was most significantly changed (p < 0.01) between nonarthritic and arthritic mice, we identified their targets that both inhibit and promote bone formation. These miRNAs are predicted to target Wnt and BMP signaling pathway components. We validated miRNA array findings and demonstrated that secretion of miR-221-3p in exosomes was upregulated by synovial fibroblasts treated with the proinflammatory cytokine TNF. Overexpression of miR-221-3p suppressed calvarial osteoblast differentiation and mineralization in vitro. These results suggest that miRNAs derived from inflamed synovial tissues may regulate signaling pathways at erosion sites that affect bone loss and potentially also compensatory bone formation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yukiko Maeda
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nicholas H Farina
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Melissa M Matzelle
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paul J Fanning
- Department of Orthopedic Surgery and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, USA.,Department of Orthopedic Surgery and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ellen M Gravallese
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
43
|
Kalaitzoglou E, Popescu I, Bunn RC, Fowlkes JL, Thrailkill KM. Effects of Type 1 Diabetes on Osteoblasts, Osteocytes, and Osteoclasts. Curr Osteoporos Rep 2016; 14:310-319. [PMID: 27704393 PMCID: PMC5106298 DOI: 10.1007/s11914-016-0329-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW To describe the effects of type 1 diabetes on bone cells. RECENT FINDINGS Type 1 diabetes (T1D) is associated with low bone mineral density, increased risk of fractures, and poor fracture healing. Its effects on the skeleton were primarily attributed to impaired bone formation, but recent data suggests that bone remodeling and resorption are also compromised. The hyperglycemic and inflammatory environment associated with T1D impacts osteoblasts, osteocytes, and osteoclasts. The mechanisms involved are complex; insulinopenia, pro-inflammatory cytokine production, and alterations in gene expression are a few of the contributing factors leading to poor osteoblast activity and survival and, therefore, poor bone formation. In addition, the observed sclerostin level increase accompanied by decreased osteocyte number and enhanced osteoclast activity in T1D results in uncoupling of bone remodeling. T1D negatively impacts osteoblasts and osteocytes, whereas its effects on osteoclasts are not well characterized, although the limited studies available indicate increased osteoclast activity, favoring bone resorption.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- UK Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, 830 S. Limestone St., Lexington, KY, 40536, USA.
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| | - Iuliana Popescu
- UK Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, 830 S. Limestone St., Lexington, KY, 40536, USA
| | - R Clay Bunn
- UK Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, 830 S. Limestone St., Lexington, KY, 40536, USA
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - John L Fowlkes
- UK Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, 830 S. Limestone St., Lexington, KY, 40536, USA
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kathryn M Thrailkill
- UK Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, 830 S. Limestone St., Lexington, KY, 40536, USA
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| |
Collapse
|
44
|
Zhang Z, Ren H, Shen G, Qiu T, Liang D, Yang Z, Yao Z, Tang J, Jiang X, Wei Q. Animal models for glucocorticoid-induced postmenopausal osteoporosis: An updated review. Biomed Pharmacother 2016; 84:438-446. [PMID: 27685786 DOI: 10.1016/j.biopha.2016.09.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 08/21/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoid-induced postmenopausal osteoporosis is a severe osteoporosis, with high risk of major osteoporotic fractures. This severe osteoporosis urges more extensive and deeper basic study, in which suitable animal models are indispensable. However, no relevant review is available introducing this model systematically. Based on the recent studies on GI-PMOP, this brief review introduces the GI-PMOP animal model in terms of its establishment, evaluation of bone mass and discuss its molecular mechanism. Rat, rabbit and sheep with their respective merits were chosen. Both direct and indirect evaluation of bone mass help to understand the bone metabolism under different intervention. The crucial signaling pathways, miRNAs, osteogenic- or adipogenic- related factors and estrogen level may be the predominant contributors to the development of glucocorticoid-induced postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhida Zhang
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Hui Ren
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Gengyang Shen
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ting Qiu
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qiushi Wei
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
45
|
Sousa LH, Linhares EVM, Alexandre JT, Lisboa MR, Furlaneto F, Freitas R, Ribeiro I, Val D, Marques M, Chaves HV, Martins C, Brito GAC, Goes P. Effects of Atorvastatin on Periodontitis of Rats Subjected to Glucocorticoid-Induced Osteoporosis. J Periodontol 2016; 87:1206-16. [PMID: 27240474 DOI: 10.1902/jop.2016.160075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Atorvastatin (ATV) has shown pleiotropic effects on bone tissue, and osteoporosis can aggravate periodontitis. Thus, the effects of ATV on experimental periodontitis (EP) in rats subjected to glucocorticoid-induced osteoporosis (GIOP) was assessed. METHODS Male Wistar rats were divided into the following groups: 1) naive; 2) EP; 3) GIOP + EP; and 4) ATV. Groups GIOP + EP and ATV received 7 mg/kg dexamethasone intramuscularly once per week for 5 weeks, and the others received saline (SAL). Groups EP, GIOP + EP, and ATV were submitted to EP by ligature around the maxillary left second molars for 11 days. Group ATV received 27 mg/kg ATV orally, and the others received SAL 30 minutes before EP. Periodontium was analyzed by macroscopy, microtomography, and histopathology; by immunohistochemical examination of receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), wingless (WNT) 10b, dickkopf-related protein 1 (DKK-1), and β-catenin; and by enzyme-linked immunosorbent assay analysis of myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL10, reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Leukogram, liver and kidney enzymes, and bone-specific alkaline phosphatase (BALP) serum levels were evaluated. RESULTS ATV decreased bone loss, reduced MPO, TNF-α, IL-1β, IL-6, and IL-8, and increased IL-10, GSH, SOD, and CAT levels. ATV reduced RANKL and DKK-1 and increased OPG, WNT10b, and β-catenin expressions and BALP activity. CONCLUSION ATV reduced inflammation, oxidative stress, and bone loss in rats with EP and GIOP, with participation of the WNT signaling pathway.
Collapse
Affiliation(s)
- Luzia Hermínia Sousa
- Postgraduate Program of Health Science, Medical School, Federal University of Ceará, Sobral, Ceará, Brazil
| | - Eveline V M Linhares
- Postgraduate Program of Health Science, Medical School, Federal University of Ceará, Sobral, Ceará, Brazil
| | | | - Mario Roberto Lisboa
- Postgraduate Program of Morphological Science, Department of Morphology, Medical School, Federal University of Ceará
| | - Flávia Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirao Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raul Freitas
- Postgraduate Program of Morphological Science, Department of Morphology, Medical School, Federal University of Ceará
| | | | - Danielle Val
- Renorbio Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Mirna Marques
- Postgraduate Program of Health Science, Medical School, Federal University of Ceará, Sobral, Ceará, Brazil.,School of Medicine, Federal University of Ceará
| | - Hellíada Vasconcelos Chaves
- Postgraduate Program of Health Science, Medical School, Federal University of Ceará, Sobral, Ceará, Brazil.,School of Dentistry, Federal University of Ceará
| | - Conceição Martins
- Postgraduate Program of Morphological Science, Department of Morphology, Medical School, Federal University of Ceará
| | - Gerly A C Brito
- School of Dentistry, Federal University of Ceará.,Department of Morphology, Medical School, Federal University of Ceará
| | - Paula Goes
- Postgraduate Program of Health Science, Medical School, Federal University of Ceará, Sobral, Ceará, Brazil.,Postgraduate Program of Morphological Science, Department of Morphology, Medical School, Federal University of Ceará.,Department of Pathology and Legal Medicine, Medical School, Federal University of Ceará
| |
Collapse
|
46
|
Zhang J, Zeng H, Fu S, Shi P, Wang M, Guo LI. Changes in the Dickkopf-1 and tartrate-resistant acid phosphatase 5b serum levels in preschool children with nephrotic syndrome. Biomed Rep 2016; 4:605-608. [PMID: 27123255 DOI: 10.3892/br.2016.631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/03/2016] [Indexed: 01/04/2023] Open
Abstract
The aim of the present study was to investigate the changes in the serum Dickkopf-1 (DKK-1) and tartrate-resistant acid phosphatase 5b (TRACP-5b) levels in preschoolers with nephrotic syndrome (NS). A total of 50 preschoolers (3-5 years old) with NS and 20 healthy preschoolers (control group) were enrolled in the prospective single-center study. The patients with NS received glucocorticoid treatment and the control group received no treatment. The levels of serum calcium, phosphorus, TRACP-5b, DKK-1 and 25-hydroxyvitamin D3 were measured at baseline and at 3 and 6 months in all the subjects. The levels of DKK-1 and TRACP-5b were significantly higher in the NS group prior to treatment when compared to the control group (P<0.05), but did not differ significantly between the two groups following treatment (P>0.05). Therefore, DKK-1 and TRACP-5b can be used as biomarkers of bone formation and bone resorption, respectively, in the early evaluation of bone metabolism.
Collapse
Affiliation(s)
- Jianjiang Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huiqin Zeng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuqin Fu
- Department of Pediatrics, Children's Hospital of Zhengzhou City, Zhengzhou, Henan 450053, P.R. China
| | - Peipei Shi
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Miao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - L I Guo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
47
|
Lin X, Huang H, You Y, Tang C, Gu X, Huang M, Tan J, Wang J. Activation of TLR5 induces podocyte apoptosis. Cell Biochem Funct 2016; 34:63-8. [PMID: 26914743 DOI: 10.1002/cbf.3165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Xu Lin
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Haiting Huang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Yanwu You
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Chunrong Tang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Xiangjun Gu
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Meiying Huang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Junhua Tan
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Jie Wang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| |
Collapse
|
48
|
Chen Z, Xue J, Shen T, Ba G, Yu D, Fu Q. Curcumin alleviates glucocorticoid-induced osteoporosis by protecting osteoblasts from apoptosisin vivoandin vitro. Clin Exp Pharmacol Physiol 2016; 43:268-76. [PMID: 26515751 DOI: 10.1111/1440-1681.12513] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/14/2015] [Accepted: 10/25/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiguang Chen
- Department of Spine and Joint Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Jinqi Xue
- The Seventh Department of General Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Tao Shen
- Department of Spine and Joint Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Gen Ba
- Department of Spine and Joint Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Dongdong Yu
- Department of Spine and Joint Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Qin Fu
- Department of Spine and Joint Surgery; Shengjing Hospital of China Medical University; Shenyang China
| |
Collapse
|
49
|
Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4927035. [PMID: 26941827 PMCID: PMC4749801 DOI: 10.1155/2016/4927035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/31/2015] [Indexed: 11/19/2022]
Abstract
Pulsed electromagnetic field (PEMF) has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP), but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD) level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation.
Collapse
|
50
|
Maman E, Yehuda C, Pritsch T, Morag G, Brosh T, Sharfman Z, Dolkart O. Detrimental Effect of Repeated and Single Subacromial Corticosteroid Injections on the Intact and Injured Rotator Cuff: A Biomechanical and Imaging Study in Rats. Am J Sports Med 2016. [PMID: 26216105 DOI: 10.1177/0363546515591266] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The effect of corticosteroids on tendons is poorly understood, and current data are insufficient and conflicting. PURPOSE To evaluate the effects of corticosteroid injections on intact and injured rotator cuffs (RCs) through biomechanical and radiographic analyses in a rat model. STUDY DESIGN Controlled laboratory study. METHODS A total of 70 rats were assigned to 7 groups. Uninjured rats (no tear) received either a single saline injection, a single methylprednisolone acetate (MTA) injection, or triple MTA injections. Injured rats (unilateral supraspinatus injury) received either a single saline injection, triple saline injections, a single MTA injection, or triple MTA injections (injections were subacromial; repeat injections were administered weekly). Rats were sacrificed 1 week after final injection. Shoulders were harvested and grossly inspected, and the supraspinatus tendon was evaluated biomechanically. Bone density at the tendon insertion site on the greater tuberosity was assessed by micro-computed tomography. RESULTS Intact RCs exposed to triple MTA injections had significantly decreased maximal load and stiffness compared with the control group (14.43 vs 21.25 N and 8.21 vs 16.6 N/mm, respectively; P < .05). Injured RCs exposed to steroid treatment had significantly lower maximal load (single saline: 10.91 N, single steroid: 8.43 N [P < .05]; triple control: 15.77 N, triple steroid: 11.65 N [P < .05]) compared with the control at 3 weeks. Greater tuberosity volume density and connectivity density were significantly lower in undamaged rats after triple MTA injection (P < .05). CONCLUSION The study results clearly showed that repeated doses of corticosteroids significantly weaken rat RC and negatively affect bone quality in addition to possibly causing deterioration of the osteotendinous junction. However, data retrieved from animals must be scrupulously analyzed before extrapolation to humans. As such, the potential benefits and harms of subacromial corticosteroid treatment must be considered before administration. CLINICAL RELEVANCE The potential benefit and detrimental effects of corticosteroid injection should be thoroughly considered before it is administered subacromially in patients with RC injuries.
Collapse
Affiliation(s)
- Eran Maman
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Chaim Yehuda
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Tamir Pritsch
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Guy Morag
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Tamar Brosh
- Biomechanics Laboratory, School of Dental Medicine Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Zachary Sharfman
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Oleg Dolkart
- Shoulder Unit, Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| |
Collapse
|