1
|
Grigsby K, Palacios J, Chan AE, Spencer SM, Ozburn AR. Effects of metformin on binge-like ethanol drinking and adenosine monophosphate kinase signaling in inbred high drinking in the dark line 1 mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:2269-2280. [PMID: 39589266 DOI: 10.1111/acer.15460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Adenosine monophosphate-activated protein kinase (AMPK) signaling plays a vital role in regulating cellular metabolism and energy throughout the body. Ethanol and cocaine both reduce AMPK activity in addiction-related brain regions. Though AMPK activation has been found to reduce cocaine seeking, its role in harmful drinking and alcohol use disorder (AUD) progression remains unclear. We asked whether metformin, a first-line type 2 diabetes medication that targets AMPK, can reduce binge-like ethanol intake in inbred High Drinking in the Dark Line-1 (iHDID-1) mice, a genetic risk model for drinking to intoxication. We then determined whether metformin altered ethanol clearance in iHDID-1 mice. Next, we tested whether metformin and/or ethanol altered AMPK signaling in the nucleus accumbens (NAc), a brain region critically important for harmful drinking. METHODS We measured the effects of metformin [0 or 250 mg/kg; intraperitoneal injection (i.p.)] on binge-like ethanol intake in separate acute (Experiment 1) and chronic (Experiment 3A) drinking studies (n = 6-8 iHDID-1 mice/sex/treatment/experiment). The effect of metformin (0 or 250 mg/kg) on ethanol (2.0 g/kg, i.p.) clearance was tested in iHDID-1 mice (Experiment 2; n = 7-9/sex/treatment). Lastly, we measured NAc AMPK and phosphorylated AMPK (pAMPK) levels in response to chronic ethanol (or water) drinking (n = 6 iHDID-1 mice/sex/treatment/fluid type; Experiment 3B) and an intoxicating dose of ethanol (2.0 g/kg; i.p.; Experiment 4). RESULTS Metformin reduced binge-like ethanol drinking intake in acute and chronic studies in both male and female iHDID-1 mice (p's < 0.05). We found no significant changes in ethanol clearance in response to metformin. Moreover, no differences in AMPK or pAMPK levels in the NAc were observed with either ethanol or metformin. CONCLUSIONS These findings provide early support for the repurposing of metformin, an affordable and safe diabetes medication, to reduce harmful ethanol intake and lay a foundation for testing its efficacy to treat individuals with AUD.
Collapse
Affiliation(s)
- Kolter Grigsby
- Research and Development Service, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Jonathan Palacios
- Research and Development Service, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Amy E Chan
- Research and Development Service, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Sade M Spencer
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela R Ozburn
- Research and Development Service, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Samanta S, Bagchi D, Gold MS, Badgaiyan RD, Barh D, Blum K. A Complex Relationship Among the Circadian Rhythm, Reward Circuit and Substance Use Disorder (SUD). Psychol Res Behav Manag 2024; 17:3485-3501. [PMID: 39411118 PMCID: PMC11479634 DOI: 10.2147/prbm.s473310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The human brain not only controls the various physiological functions but is also the prime regulator of circadian rhythms, rewards, and behaviors. Environmental factors, professional stress, and social disintegration are regarded as the initial causative factors of addiction behavior. Shift work, artificial light exposure at night, and chronic and acute jet lag influence circadian rhythm dysfunction. The result is impaired neurotransmitter release, dysfunction of neural circuits, endocrine disturbance, and metabolic disorder, leading to advancement in substance use disorder. There is a bidirectional relationship between chronodisruption and addiction behavior. Circadian rhythm dysfunction, neuroadaptation in the reward circuits, and alteration in clock gene expression in the mesolimbic areas influence substance use disorder (SUD), and chronotherapy has potential benefits in the treatment strategies. This review explores the relationship among the circadian rhythm dysfunction, reward circuit, and SUD. The impact of chronotherapy on SUD has also been discussed.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, 721101, India
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Southern University, Houston, TX, 77004, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, BeloHorizonte, 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, 721172, West Bengal, India
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University Health Sciences, Pomona, CA, 91766, USA
- Institute of Psychology, Eotvos Loránd University, Budapest, 1053, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, 45435, USA
- Department of Psychiatry, University of Vermont, Burlington, VT, 05405, USA
- Division of Nutrigenomics, The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX, 78701, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
3
|
Sharma P, Nelson RJ. Disrupted Circadian Rhythms and Substance Use Disorders: A Narrative Review. Clocks Sleep 2024; 6:446-467. [PMID: 39189197 PMCID: PMC11348162 DOI: 10.3390/clockssleep6030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Substance use disorder is a major global health concern, with a high prevalence among adolescents and young adults. The most common substances of abuse include alcohol, marijuana, cocaine, nicotine, and opiates. Evidence suggests that a mismatch between contemporary lifestyle and environmental demands leads to disrupted circadian rhythms that impair optimal physiological and behavioral function, which can increase the vulnerability to develop substance use disorder and related problems. The circadian system plays an important role in regulating the sleep-wake cycle and reward processing, both of which directly affect substance abuse. Distorted substance use can have a reciprocal effect on the circadian system by influencing circadian clock gene expression. Considering the detrimental health consequences and profound societal impact of substance use disorder, it is crucial to comprehend its complex association with circadian rhythms, which can pave the way for the generation of novel chronotherapeutic treatment approaches. In this narrative review, we have explored the potential contributions of disrupted circadian rhythms and sleep on use and relapse of different substances of abuse. The involvement of circadian clock genes with drug reward pathways is discussed, along with the potential research areas that can be explored to minimize disordered substance use by improving circadian hygiene.
Collapse
Affiliation(s)
- Pallavi Sharma
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA;
| | | |
Collapse
|
4
|
Ciner OA, Cilli AS, Yazici AB, Bakay H, Gica Ş. The effect of chronotypes on follow-up outcomes of patients with substance use disorder. Sleep Biol Rhythms 2024; 22:247-258. [PMID: 38524170 PMCID: PMC10959913 DOI: 10.1007/s41105-023-00496-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/06/2023] [Indexed: 03/26/2024]
Abstract
Substance use disorder (SUD) can have circadian characteristics and individuals with evening chronotype are more prone to addiction. In this study, the effect of chronotypes on the treatment outcomes of SUD was investigated. The study included 66 patients who were diagnosed with SUD according to DSM-5. Two clinical interviews were conducted at 6-month intervals, and remission/relapse status was evaluated at the second interview. The Structured Clinical Interview Form for DSM-IV Axis I Disorders (SCID-I), Addiction Profile Index Practitioner Form, Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Pittsburg Sleep Quality Index and Morningness-Eveningness Questionnaire (MEQ) were applied to the patients. MEQ scores of relapsed patients were found to be different in terms of eveningness than those in remission (45.62 ± 8.70 versus 49.75 ± 7.60, p = 0.045). As the craving and addiction profile index total scores (addiction severity) increased, eveningness chronotype scores also increased (r = - 0.387 and r = - 0.286, respectively). The mean scores of craving and BDI were higher in relapsed patients compared to those in remission (p = 0.003 and p = 0.015, respectively). Our results suggest that patients with SUD had a lower morningness chronotype than the general population; additionally, more relapsed patients had an eveningness chronotype. Thus, chronotypes may play a role in the onset, prevention, and treatment outcome of SUD.
Collapse
Affiliation(s)
- Ozlem Akcay Ciner
- Department of Psychiatry, Duzce Ataturk State Hospital, Duzce, Turkey
| | - Ali Savas Cilli
- Department of Psychiatry, Medical Faculty, Sakarya University, Sakarya, Turkey
| | - Ahmet Bulent Yazici
- Department of Psychiatry, Medical Faculty, Sakarya University, Sakarya, Turkey
| | - Hasan Bakay
- Department of Psychiatry, Meram Medical Faculty, Necmettin Erbakan University, Yunus Emre Mah. Beyşehir Cad. No: 281, Meram, 42090 Konya, Turkey
| | - Şakir Gica
- Department of Psychiatry, Meram Medical Faculty, Necmettin Erbakan University, Yunus Emre Mah. Beyşehir Cad. No: 281, Meram, 42090 Konya, Turkey
| |
Collapse
|
5
|
Naveed M, Chao OY, Hill JW, Yang YM, Huston JP, Cao R. Circadian neurogenetics and its implications in neurophysiology, behavior, and chronomedicine. Neurosci Biobehav Rev 2024; 157:105523. [PMID: 38142983 PMCID: PMC10872425 DOI: 10.1016/j.neubiorev.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The circadian rhythm affects multiple physiological processes, and disruption of the circadian system can be involved in a range of disease-related pathways. The genetic underpinnings of the circadian rhythm have been well-studied in model organisms. Significant progress has been made in understanding how clock genes affect the physiological functions of the nervous system. In addition, circadian timing is becoming a key factor in improving drug efficacy and reducing drug toxicity. The circadian biology of the target cell determines how the organ responds to the drug at a specific time of day, thus regulating pharmacodynamics. The current review brings together recent advances that have begun to unravel the molecular mechanisms of how the circadian clock affects neurophysiological and behavioral processes associated with human brain diseases. We start with a brief description of how the ubiquitous circadian rhythms are regulated at the genetic, cellular, and neural circuit levels, based on knowledge derived from extensive research on model organisms. We then summarize the latest findings from genetic studies of human brain disorders, focusing on the role of human clock gene variants in these diseases. Lastly, we discuss the impact of common dietary factors and medications on human circadian rhythms and advocate for a broader application of the concept of chronomedicine.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Helander ME, Formica MK, Bergen-Cico DK. The Daily Patterns of Emergency Medical Events. J Biol Rhythms 2024; 39:79-99. [PMID: 37786272 DOI: 10.1177/07487304231193876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
This study examines population-level daily patterns of time-stamped emergency medical service (EMS) dispatches to establish their situational predictability. Using visualization, sinusoidal regression, and statistical tests to compare empirical cumulative distributions, we analyzed 311,848,450 emergency medical call records from the US National Emergency Medical Services Information System (NEMSIS) for years 2010 through 2022. The analysis revealed a robust daily pattern in the hourly distribution of distress calls across 33 major categories of medical emergency dispatch types. Sinusoidal regression coefficients for all types were statistically significant, mostly at the p < 0.0001 level. The coefficient of determination ( R 2 ) ranged from 0.84 and 0.99 for all models, with most falling in the 0.94 to 0.99 range. The common sinusoidal pattern, peaking in mid-afternoon, demonstrates that all major categories of medical emergency dispatch types appear to be influenced by an underlying daily rhythm that is aligned with daylight hours and common sleep/wake cycles. A comparison of results with previous landmark studies revealed new and contrasting EMS patterns for several long-established peak occurrence hours-specifically for chest pain, heart problems, stroke, convulsions and seizures, and sudden cardiac arrest/death. Upon closer examination, we also found that heart attacks, diagnosed by paramedics in the field via 12-lead cardiac monitoring, followed the identified common daily pattern of a mid-afternoon peak, departing from prior generally accepted morning tendencies. Extended analysis revealed that the normative pattern prevailed across the NEMSIS data when reorganized to consider monthly, seasonal, daylight-savings versus civil time, and pre-/post-COVID-19 periods. The predictable daily EMS patterns provide impetus for more research that links daily variation with causal risk and protective factors. Our methods are straightforward and presented with detail to provide accessible and replicable implementation for researchers and practitioners.
Collapse
Affiliation(s)
- Mary E Helander
- Maxwell School of Citizenship and Public Affairs, Department of Social Science, Syracuse University, Syracuse, New York
- Falk College, Department of Public Health, Syracuse University, Syracuse, New York
| | - Margaret K Formica
- Department of Public Health and Preventive Medicine, Department of Urology, Upstate Medical University, Syracuse, New York
| | - Dessa K Bergen-Cico
- Falk College, Department of Public Health, Syracuse University, Syracuse, New York
| |
Collapse
|
7
|
Bumgarner JR, McCray EW, Nelson RJ. The disruptive relationship among circadian rhythms, pain, and opioids. Front Neurosci 2023; 17:1109480. [PMID: 36875657 PMCID: PMC9975345 DOI: 10.3389/fnins.2023.1109480] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Pain behavior and the systems that mediate opioid analgesia and opioid reward processing display circadian rhythms. Moreover, the pain system and opioid processing systems, including the mesolimbic reward circuitry, reciprocally interact with the circadian system. Recent work has demonstrated the disruptive relationship among these three systems. Disruption of circadian rhythms can exacerbate pain behavior and modulate opioid processing, and pain and opioids can influence circadian rhythms. This review highlights evidence demonstrating the relationship among the circadian, pain, and opioid systems. Evidence of how disruption of one of these systems can lead to reciprocal disruptions of the other is then reviewed. Finally, we discuss the interconnected nature of these systems to emphasize the importance of their interactions in therapeutic contexts.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Evan W McCray
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
8
|
Tang Q, Assali DR, Güler AD, Steele AD. Dopamine systems and biological rhythms: Let's get a move on. Front Integr Neurosci 2022; 16:957193. [PMID: 35965599 PMCID: PMC9364481 DOI: 10.3389/fnint.2022.957193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
How dopamine signaling regulates biological rhythms is an area of emerging interest. Here we review experiments focused on delineating dopamine signaling in the suprachiasmatic nucleus, nucleus accumbens, and dorsal striatum to mediate a range of biological rhythms including photoentrainment, activity cycles, rest phase eating of palatable food, diet-induced obesity, and food anticipatory activity. Enthusiasm for causal roles for dopamine in the regulation of circadian rhythms, particularly those associated with food and other rewarding events, is warranted. However, determining that there is rhythmic gene expression in dopamine neurons and target structures does not mean that they are bona fide circadian pacemakers. Given that dopamine has such a profound role in promoting voluntary movements, interpretation of circadian phenotypes associated with locomotor activity must be differentiated at the molecular and behavioral levels. Here we review our current understanding of dopamine signaling in relation to biological rhythms and suggest future experiments that are aimed at teasing apart the roles of dopamine subpopulations and dopamine receptor expressing neurons in causally mediating biological rhythms, particularly in relation to feeding, reward, and activity.
Collapse
Affiliation(s)
- Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Dina R. Assali
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Andrew D. Steele
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| |
Collapse
|
9
|
Becker-Krail DD, Walker WH, Nelson RJ. The Ventral Tegmental Area and Nucleus Accumbens as Circadian Oscillators: Implications for Drug Abuse and Substance Use Disorders. Front Physiol 2022; 13:886704. [PMID: 35574492 PMCID: PMC9094703 DOI: 10.3389/fphys.2022.886704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Circadian rhythms convergently evolved to allow for optimal synchronization of individuals’ physiological and behavioral processes with the Earth’s 24-h periodic cycling of environmental light and temperature. Whereas the suprachiasmatic nucleus (SCN) is considered the primary pacemaker of the mammalian circadian system, many extra-SCN oscillatory brain regions have been identified to not only exhibit sustainable rhythms in circadian molecular clock function, but also rhythms in overall region activity/function and mediated behaviors. In this review, we present the most recent evidence for the ventral tegmental area (VTA) and nucleus accumbens (NAc) to serve as extra-SCN oscillators and highlight studies that illustrate the functional significance of the VTA’s and NAc’s inherent circadian properties as they relate to reward-processing, drug abuse, and vulnerability to develop substance use disorders (SUDs).
Collapse
Affiliation(s)
- Darius D Becker-Krail
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
10
|
Stowe TA, Pitts EG, Leach AC, Iacino MC, Niere F, Graul B, Raab-Graham KF, Yorgason JT, Ferris MJ. Diurnal rhythms in cholinergic modulation of rapid dopamine signals and associative learning in the striatum. Cell Rep 2022; 39:110633. [PMID: 35385720 PMCID: PMC9148619 DOI: 10.1016/j.celrep.2022.110633] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Dysregulation of biological rhythms plays a role in a wide range of psychiatric disorders. We report mechanistic insights into the rhythms of rapid dopamine signals and cholinergic interneurons (CINs) working in concert in the rodent striatum. These rhythms mediate diurnal variation in conditioned responses to reward-associated cues. We report that the dopamine signal-to-noise ratio varies according to the time of day and that phasic signals are magnified during the middle of the dark cycle in rats. We show that CINs provide the mechanism for diurnal variation in rapid dopamine signals by serving as a gain of function to the dopamine signal-to-noise ratio that adjusts across time of day. We also show that conditioned responses to reward-associated cues exhibit diurnal rhythms, with cue-directed behaviors observed exclusively midway through the dark cycle. We conclude that the rapid dopamine signaling rhythm is mediated by a diurnal rhythm in CIN activity, which influences learning and motivated behaviors across the time of day.
Collapse
Affiliation(s)
- Taylor A Stowe
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Elizabeth G Pitts
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Amy C Leach
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Melody C Iacino
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Farr Niere
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Benjamin Graul
- Department of Cellular Biology and Physiology, Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Jordan T Yorgason
- Department of Cellular Biology and Physiology, Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Mark J Ferris
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
11
|
Adan A, Navarro JF. Protocol for Characterization of Addiction and Dual Disorders: Effectiveness of Coadjuvant Chronotherapy in Patients with Partial Response. J Clin Med 2022; 11:1846. [PMID: 35407454 PMCID: PMC8999756 DOI: 10.3390/jcm11071846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
This protocol aims to characterize patients with dual disorders (DD; comorbid major depression and schizophrenia) compared with patients with only a diagnosis of substance use disorder (SUD) and those with only a diagnosis of severe mental illness (SMI; major depression and schizophrenia), evaluating clinical and personality characteristics, circadian rhythmic functioning, genetic polymorphism and neuropsychological performance in order to obtain a clinical endophenotype of differential vulnerability for these diagnostic entities. Patients will be divided into three groups: DD (45 men with comorbid schizophrenia, 45 men and 30 women with major depression), SUD (n = 90, with a minimum of 30 women) and SMI males (45 with schizophrenia, 45 with major depression). All patients will be under treatment, with at least three months of SUD abstinence and/or with SMI in remission or with stabilized symptoms. Outpatients of both sexes with insufficient restoration of circadian rhythmicity with SUD (n = 30) and dual depression (n = 30) will be asked to participate in a second two-month study, being alternately assigned to the condition of the chronobiological adjuvant approach to the treatment of regular hour habits and exposure to light or to the usual treatment (control). The effect of the intervention and patient compliance will be monitored with a Kronowise KW6® ambulatory device during the first two weeks of treatment and again at weeks 4 and 8 weeks. After completing the evaluation, follow-up of the clinical evolution will be carried out at 3, 6 and 12 months. This project will allow us to analyze the functional impact of DD comorbidity and to develop the first study of chronobiological therapy in the treatment of SUD and dual depression, with results transferable to the clinical setting with cost-effective recommendations for a personalized approach.
Collapse
Affiliation(s)
- Ana Adan
- Department of Clinical Psychology and Psychobiology, School of Psychology, University of Barcelona, Passeig de la Vall d’Hebrón 171, 08035 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08035 Barcelona, Spain
| | - José Francisco Navarro
- Department of Psychobiology, School of Psychology, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain;
| | | |
Collapse
|
12
|
Hühne A, Echtler L, Kling C, Stephan M, Schmidt MV, Rossner MJ, Landgraf D. Circadian gene × environment perturbations influence alcohol drinking in Cryptochrome-deficient mice. Addict Biol 2022; 27:e13105. [PMID: 34672045 DOI: 10.1111/adb.13105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Alcohol use disorder (AUD) is a widespread addiction disorder with severe consequences for health. AUD patients often suffer from sleep disturbances and irregular daily patterns. Conversely, disruptions of circadian rhythms are considered a risk factor for AUD and alcohol relapses. In this study, we investigated the extent to which circadian genetic and environmental disruptions and their interaction alter alcohol drinking behaviour in mice. As a model of genetic circadian disruption, we used Cryptochrome1/2-deficient (Cry1/2-/- ) mice with strongly suppressed circadian rhythms and found that they exhibit significantly reduced preference for alcohol but increased incentive motivation to obtain it. Similarly, we found that low circadian SCN amplitude correlates with reduced alcohol preference in WT mice. Moreover, we show that the low alcohol preference of Cry1/2-/- mice concurs with high corticosterone and low levels of the orexin precursor prepro-orexin and that WT and Cry1/2-/- mice respond differently to alcohol withdrawal. As a model of environmentally induced disruption of circadian rhythms, we exposed mice to a "shift work" light/dark regimen, which also leads to a reduction in their alcohol preference. Interestingly, this effect is even more pronounced when genetic and environmental circadian perturbations interact in Cry1/2-/- mice under "shift work" conditions. In conclusion, our study demonstrates that in mice, disturbances in circadian rhythms have pronounced effects on alcohol consumption as well as on physiological factors and other behaviours associated with AUD and that the interaction between circadian genetic and environmental disturbances further alters alcohol consumption behaviour.
Collapse
Affiliation(s)
- Anisja Hühne
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
- Munich Medical Research School Ludwig Maximilian University Munich Germany
| | - Lisa Echtler
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
- Munich Medical Research School Ludwig Maximilian University Munich Germany
| | - Charlotte Kling
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS‐ TP) Munich Germany
| | - Marius Stephan
- International Max Planck Research School for Translational Psychiatry (IMPRS‐ TP) Munich Germany
- Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy Ludwig Maximilian University Munich Germany
| | - Mathias V. Schmidt
- Research Group Neurobiology of Stress Resilience Max Planck Institute of Psychiatry Munich Germany
| | - Moritz J. Rossner
- Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy Ludwig Maximilian University Munich Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
| |
Collapse
|
13
|
Lewis RG, Florio E, Punzo D, Borrelli E. The Brain's Reward System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:57-69. [PMID: 34773226 DOI: 10.1007/978-3-030-81147-1_4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rhythmic gene expression is found throughout the central nervous system. This harmonized regulation can be dependent on- and independent of- the master regulator of biological clocks, the suprachiasmatic nucleus (SCN). Substantial oscillatory activity in the brain's reward system is regulated by dopamine. While light serves as a primary time-giver (zeitgeber) of physiological clocks and synchronizes biological rhythms in 24-h cycles, nonphotic stimuli have a profound influence over circadian biology. Indeed, reward-related activities (e.g., feeding, exercise, sex, substance use, and social interactions), which lead to an elevated level of dopamine, alters rhythms in the SCN and the brain's reward system. In this chapter, we will discuss the influence of the dopaminergic reward pathways on circadian system and the implication of this interplay on human health.
Collapse
Affiliation(s)
- Robert G Lewis
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA
| | - Ermanno Florio
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA
| | - Daniela Punzo
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA
| | - Emiliana Borrelli
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA. .,University of California - Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
Circadian Characteristics in Patients under Treatment for Substance Use Disorders and Severe Mental Illness (Schizophrenia, Major Depression and Bipolar Disorder). J Clin Med 2021; 10:jcm10194388. [PMID: 34640406 PMCID: PMC8509477 DOI: 10.3390/jcm10194388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Dual disorders (substance use and mental illness comorbidity) are a condition that has been strongly associated with severe symptomatology and clinical complications. The study of circadian characteristics in patients with Severe Mental Illness or Substance Use Disorder (SUD) has shown that such variables are related with mood symptoms and worse recovery. In absence of studies about circadian characteristics in patients with dual disorders we examined a sample of 114 male participants with SUD and comorbid Schizophrenia (SZ+; n = 38), Bipolar Disorder (BD+; n = 36) and Major Depressive Disorder (MDD+; n = 40). The possible differences in the sample of patients according to their psychiatric diagnosis, circadian functioning with recordings of distal skin temperature during 48 h (Thermochron iButton®), circadian typology and sleep-wake schedules were explored. MDD+ patients were more morning-type, while SZ+ and BD+ had an intermediate-type; the morning-type was more frequent among participants under inpatient SUD treatment. SZ+ patients had the highest amount of sleeping hours, lowest arousal and highest drowsiness followed by BD+ and MDD+, respectively. These observed differences suggest that treatment for patients with dual disorders could include chronobiological strategies to help them synchronize patterns with the day-light cycle, since morning-type is associated with better outcomes and recovery.
Collapse
|
15
|
Nelson RJ, Bumgarner JR, Walker WH, DeVries AC. Time-of-day as a critical biological variable. Neurosci Biobehav Rev 2021; 127:740-746. [PMID: 34052279 PMCID: PMC8504485 DOI: 10.1016/j.neubiorev.2021.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Time-of-day is a crucial, yet often overlooked, biological variable in biomedical research. We examined the top 25 most cited papers in several domains of behavioral neuroscience to determine whether time-of-day information was reported. The majority of studies report behavioral testing conducted during the day, which does not coincide with the optimal time to perform the testing from an functional perspective of the animals being tested. The majority of animal models used in biomedical research are nocturnal rodents; thus, testing during the light phase (i.e. animals' rest period) may alter the results and introduce variability across studies. Time-of-day is rarely considered in analyses or reported in publications; the majority of publications fail to include temporal details when describing their experimental methods, and those few that report testing during the dark rarely report whether measures are in place to protect from exposure to extraneous light. We propose that failing to account for time-of-day may compromise replication of findings across behavioral studies and reduce their value when extrapolating results to diurnal humans.
Collapse
Affiliation(s)
- Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV, 26506, USA; West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, 26506, USA.
| | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV, 26506, USA
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV, 26506, USA; West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV, 26506, USA; Department of Medicine, Division of Hematology and Oncology, Morgantown, WV, 26506, USA; WVU Cancer Institute, Morgantown, WV, 26506, USA; West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
16
|
Siemann JK, Grueter BA, McMahon DG. Rhythms, Reward, and Blues: Consequences of Circadian Photoperiod on Affective and Reward Circuit Function. Neuroscience 2020; 457:220-234. [PMID: 33385488 DOI: 10.1016/j.neuroscience.2020.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/01/2023]
Abstract
Circadian disruptions, along with altered affective and reward states, are commonly associated with psychiatric disorders. In addition to genetics, the enduring influence of environmental factors in programming neural networks is of increased interest in assessing the underpinnings of mental health. The duration of daylight or photoperiod is known to impact both the serotonin and dopamine systems, which are implicated in mood and reward-based disorders. This review first examines the effects of circadian disruption and photoperiod in the serotonin system in both human and preclinical studies. We next highlight how brain regions crucial for the serotoninergic system (i.e., dorsal raphe nucleus; DRN), and dopaminergic (i.e., nucleus accumbens; NAc and ventral tegmental area; VTA) system are intertwined in overlapping circuitry, and play influential roles in the pathology of mood and reward-based disorders. We then focus on human and animal studies that demonstrate the impact of circadian factors on the dopaminergic system. Lastly, we discuss how environmental factors such as circadian photoperiod can impact the neural circuits that are responsible for regulating affective and reward states, offering novel insights into the biological mechanisms underlying the pathophysiology, systems, and therapeutic treatments necessary for mood and reward-based disorders.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Department of Anesthesiology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
17
|
Zhang H, Dahlén T, Khan A, Edgren G, Rzhetsky A. Measurable health effects associated with the daylight saving time shift. PLoS Comput Biol 2020; 16:e1007927. [PMID: 32511231 PMCID: PMC7302868 DOI: 10.1371/journal.pcbi.1007927] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/18/2020] [Accepted: 05/06/2020] [Indexed: 12/26/2022] Open
Abstract
The transition to daylight saving time (DST) is beneficial for energy conservation but at the same time it has been reported to increase the risk of cerebrovascular and cardiovascular problems. Here, we evaluate the effect of the DST shift on a whole spectrum of diseases-an analysis we hope will be helpful in weighing the risks and benefits of DST shifts. Our study relied on a population-based, cross-sectional analysis of the IBM Watson Health MarketScan insurance claim dataset, which incorporates over 150 million unique patients in the US, and the Swedish national inpatient register, which incorporates more than nine million unique Swedes. For hundreds of sex- and age-specific diseases, we assessed effects of the DST shifts forward and backward by one hour in spring and autumn by comparing the observed and expected diagnosis rates after DST shift exposure. We found four prominent, elevated risk clusters, including cardiovascular diseases (such as heart attacks), injuries, mental and behavioral disorders, and immune-related diseases such as noninfective enteritis and colitis to be significantly associated with DST shifts in the United States and Sweden. While the majority of disease risk elevations are modest (a few percent), a considerable number of diseases exhibit an approximately ten percent relative risk increase. We estimate that each spring DST shift is associated with negative health effects-with 150,000 incidences in the US, and 880,000 globally. We also identify for the first time a collection of diseases with relative risks that appear to decrease immediately after the spring DST shift, enriched with infections and immune system-related maladies. These diseases' decreasing relative risks might be driven by the documented boosting effect of a short-term stress (such as that experienced around the spring DST shift) on the immune system.
Collapse
Affiliation(s)
- Hanxin Zhang
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Torsten Dahlén
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Atif Khan
- Department of Medicine, and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Gustaf Edgren
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Södersjukhuset Hospital, Stockholm, Sweden
| | - Andrey Rzhetsky
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics and Committee on Quantitative Methods in Social, Behavioral, and Health Sciences, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
18
|
Braidy N, Villalva MD, van Eeden S. Sobriety and Satiety: Is NAD+ the Answer? Antioxidants (Basel) 2020; 9:antiox9050425. [PMID: 32423100 PMCID: PMC7278809 DOI: 10.3390/antiox9050425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that has garnered considerable interest in the last century due to its critical role in cellular processes associated with energy production, cellular protection against stress and longevity. Research in NAD+ has been reinvigorated by recent findings that components of NAD+ metabolism and NAD-dependent enzymes can influence major signalling processes associated with the neurobiology of addiction. These studies implicate raising intracellular NAD+ levels as a potential target for managing and treating addictive behaviour and reducing cravings and withdrawal symptoms in patients with food addiction and/or substance abuse. Since clinical studies showing the use of NAD+ for the treatment of addiction are limited, this review provides literature evidence that NAD+ can influence the neurobiology of addiction and may have benefits as an anti-addiction intervention.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia;
- Correspondence:
| | - Maria D. Villalva
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Sam van Eeden
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
19
|
Tsypes A, Gibb BE. Time of day differences in neural reward responsiveness in children. Psychophysiology 2020; 57:e13550. [PMID: 32100312 PMCID: PMC10882954 DOI: 10.1111/psyp.13550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
The Reward Positivity (∆RewP) event-related potential (ERP), generally quantified as the difference between neural responsiveness to monetary gains (RewP-Gain) and losses (RewP-Loss) is commonly used as an index of neural reward responsiveness. Despite the popularity of this ERP component in studies of reward processing, knowledge about the role of state-related influences on the ∆RewP is limited. The present study examined whether ∆RewP amplitudes may differ based on when during the day they are assessed and whether age or sex would moderate this link. Participants were 188 children between the ages of 7 and 11 (47.3% female) without a lifetime history of a major depressive disorder or any anxiety disorder recruited from the community. Children completed the Doors task during which continuous electroencephalography was recorded to isolate the ∆RewP. To better isolate this ERP component from other temporally or spatially overlapping ERPs, we used temporospatial principal component analysis. We found that time of day (ToD) differences in the ∆RewP amplitude varied based on children's age. Specifically, older, compared to younger, children exhibited stronger responses to gains versus losses between 11:15 a.m. and 12:30 p.m. and after around 5:15 p.m. Further, these age-related differences appeared to be driven specifically by older children's reduced neural responsiveness to losses. The findings have methodological implications by highlighting the importance of accounting for the ToD at which ∆RewP-focused study sessions are conducted as well as for demographic characteristics of the participants, such as their age.
Collapse
Affiliation(s)
- Aliona Tsypes
- Department of Psychology, Binghamton University (SUNY), Binghamton, NY, USA
| | - Brandon E Gibb
- Department of Psychology, Binghamton University (SUNY), Binghamton, NY, USA
| |
Collapse
|
20
|
Abstract
Feeding schedules entrain circadian clocks in multiple brain regions and most peripheral organs and tissues, thereby synchronizing daily rhythms of foraging behavior and physiology with times of day when food is most likely to be found. Entrainment of peripheral clocks to mealtime is accomplished by multiple feeding-related signals, including absorbed nutrients and metabolic hormones, acting in parallel or in series in a tissue-specific fashion. Less is known about the signals that synchronize circadian clocks in the brain with feeding time, some of which are presumed to generate the circadian rhythms of food-anticipatory activity that emerge when food is restricted to a fixed daily mealtime. In this commentary, I consider the possibility that food-anticipatory activity rhythms are driven or entrained by circulating ghrelin, ketone bodies or insulin. While evidence supports the potential of these signals to participate in the induction or amount of food-anticipatory behavior, it falls short of establishing either a necessary or sufficient role or accounting for circadian properties of anticipatory rhythms. The availability of multiple, circulating signals by which circadian oscillators in many brain regions might entrain to mealtime has supported a view that food-anticipatory rhythms of behavior are mediated by a broadly distributed system of clocks. The evidence, however, does not rule out the possibility that multiple peripheral and central food-entrained oscillators and feeding-related signals converge on circadian oscillators in a defined location which ultimately set the phase and gate the expression of anticipatory activity rhythms. A candidate location is the dorsal striatum, a core component of the neural system which mediates reward, motivation and action and which contains circadian oscillators entrainable by food and dopaminergic drugs. Systemic metabolic signals, such as ghrelin, ketones and insulin, may participate in circadian food anticipation to the extent that they modulate dopamine afferents to circadian clocks in this area.
Collapse
Affiliation(s)
- Ralph E Mistlberger
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A2S6, Canada
| |
Collapse
|
21
|
Haspel JA, Anafi R, Brown MK, Cermakian N, Depner C, Desplats P, Gelman AE, Haack M, Jelic S, Kim BS, Laposky AD, Lee YC, Mongodin E, Prather AA, Prendergast BJ, Reardon C, Shaw AC, Sengupta S, Szentirmai É, Thakkar M, Walker WE, Solt LA. Perfect timing: circadian rhythms, sleep, and immunity - an NIH workshop summary. JCI Insight 2020; 5:131487. [PMID: 31941836 PMCID: PMC7030790 DOI: 10.1172/jci.insight.131487] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent discoveries demonstrate a critical role for circadian rhythms and sleep in immune system homeostasis. Both innate and adaptive immune responses - ranging from leukocyte mobilization, trafficking, and chemotaxis to cytokine release and T cell differentiation -are mediated in a time of day-dependent manner. The National Institutes of Health (NIH) recently sponsored an interdisciplinary workshop, "Sleep Insufficiency, Circadian Misalignment, and the Immune Response," to highlight new research linking sleep and circadian biology to immune function and to identify areas of high translational potential. This Review summarizes topics discussed and highlights immediate opportunities for delineating clinically relevant connections among biological rhythms, sleep, and immune regulation.
Collapse
Affiliation(s)
- Jeffrey A. Haspel
- Division of Pulmonary, Critical Care and Sleep Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ron Anafi
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marishka K. Brown
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher Depner
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Paula Desplats
- Department of Neurosciences and
- Department of Pathology, UCSD, La Jolla, California, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Monika Haack
- Human Sleep and Inflammatory Systems Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Brian S. Kim
- Center for the Study of Itch
- Department of Medicine
- Department of Anesthesiology
- Department of Pathology, and
- Department of Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Aaron D. Laposky
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Yvonne C. Lee
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emmanuel Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aric A. Prather
- Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Brian J. Prendergast
- Department of Psychology and Committee on Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Colin Reardon
- Department, of Anatomy, Physiology, and Cell Biology, UCD School of Veterinary Medicine, Davis, California, USA
| | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shaon Sengupta
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Éva Szentirmai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
- Department of Neurology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Wendy E. Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Health Sciences Center, Texas Tech University, El Paso, Texas, USA
| | - Laura A. Solt
- Department of Immunology and Microbiology, Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
22
|
Ahrens AM, Ahmed OJ. Neural circuits linking sleep and addiction: Animal models to understand why select individuals are more vulnerable to substance use disorders after sleep deprivation. Neurosci Biobehav Rev 2019; 108:435-444. [PMID: 31756346 DOI: 10.1016/j.neubiorev.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Individuals differ widely in their drug-craving behaviors. One reason for these differences involves sleep. Sleep disturbances lead to an increased risk of substance use disorders and relapse in only some individuals. While animal studies have examined the impact of sleep on reward circuitry, few have addressed the role of individual differences in the effects of altered sleep. There does, however, exist a rodent model of individual differences in reward-seeking behavior: the sign/goal-tracker model of Pavlovian conditioned approach. In this model, only some rats show the key behavioral traits associated with addiction, including impulsivity and poor attentional control, making this an ideal model system to examine individually distinct sleep-reward interactions. Here, we describe how the limbic neural circuits responsible for individual differences in incentive motivation overlap with those involved in sleep-wake regulation, and how this model can elucidate the common underlying mechanisms. Consideration of individual differences in preclinical models would improve our understanding of how sleep interacts with motivational systems, and why sleep deprivation contributes to addiction in only select individuals.
Collapse
Affiliation(s)
| | - Omar J Ahmed
- Dept. of Psychology, United States; Neuroscience Graduate Program, United States; Michigan Center for Integrative Research in Critical Care, United States; Kresge Hearing Research Institute, United States; Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
23
|
Resting-state connectivity and the effects of treatment in restless legs syndrome. Sleep Med 2019; 67:33-38. [PMID: 31887606 DOI: 10.1016/j.sleep.2019.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Resting-state brain connectivity has been shown to differ for Restless Legs Syndrome (RLS) compared to healthy control (CON) groups. This study evaluates the degree these RLS-CON differences are changed by concurrent treatment. METHODS Resting-state functional MRIs were obtained from 32 idiopathic RLS patients during the morning asymptomatic period and 16 age and gender-matched CON subjects. Of the 32 RLS patients, 16 were drug-naïve (DN-RLS), and 16 were regularly drug-treated using a dopamine agonist (DT-RLS). Various assessments of disease characteristics were also performed. The primary purpose was to assess the replicability of prior results and the effects of treatment on these differences between controls and untreated RLS patients. Resting-state connectivity was analyzed by a seed-based method using the bilateral ventral-posterolateral nuclei (VPLN) in the thalamus. RESULTS In the DN-RLS group, compared to the CON group, three areas (the bilateral lingual gyri and right middle temporal gyrus) were replicated. The three replicated areas did not significantly differ for DT-RLS compared to DN-RLS. DT-RLS compared to DN-RLS had significantly higher thalamic connectivity for the left uvula, right tuber, left anterior insula, and right declive. CONCLUSIONS Thalamic connectivity to the bilateral lingual gyri and right middle temporal gyrus is a replicable finding in DN-RLS that was not affected by dopamine agonist treatments. Other changes in thalamic connectivity were altered by dopamine agonist treatment. These treatment effects may be pertinent to the known treatment benefits of a dopamine agonist on RLS symptoms.
Collapse
|
24
|
Byrne JEM, Tremain H, Leitan ND, Keating C, Johnson SL, Murray G. Circadian modulation of human reward function: Is there an evidentiary signal in existing neuroimaging studies? Neurosci Biobehav Rev 2019; 99:251-274. [PMID: 30721729 DOI: 10.1016/j.neubiorev.2019.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Reward functioning in animals is modulated by the circadian system, but such effects are poorly understood in the human case. The aim of this study was to address this deficit via a systematic review of human fMRI studies measuring one or more proxies for circadian function and a neural reward outcome. A narrative synthesis of 15 studies meeting inclusion criteria identified 13 studies that show a circadian impact on the human reward system, with four types of proxy (circadian system biology, downstream circadian rhythms, circadian challenge, and time of day) associated with neural reward activation. Specific reward-related regions/networks subserving this effect included the medial prefrontal cortex, ventral striatum, putamen and default mode network. The circadian effect was observed in measures of both reward anticipation and reward receipt, with more consistent evidence for the latter. Findings are limited by marked heterogeneity across study designs. We encourage a systematic program of research investigating circadian-reward interactions as an adapted biobehavioural feature and as an aetiological mechanism in reward-related pathologies.
Collapse
Affiliation(s)
- Jamie E M Byrne
- Centre for Mental Health, Swinburne University of Technology, PO Box 312 John St Hawthorn, VIC, 3122, Australia
| | - Hailey Tremain
- Centre for Mental Health, Swinburne University of Technology, PO Box 312 John St Hawthorn, VIC, 3122, Australia
| | - Nuwan D Leitan
- Centre for Mental Health, Swinburne University of Technology, PO Box 312 John St Hawthorn, VIC, 3122, Australia
| | - Charlotte Keating
- Centre for Mental Health, Swinburne University of Technology, PO Box 312 John St Hawthorn, VIC, 3122, Australia
| | - Sheri L Johnson
- Department of Psychology, University of California, Berkeley, 3210, Tolman Hall, Berkeley, CA, 94720-1650, USA
| | - Greg Murray
- Centre for Mental Health, Swinburne University of Technology, PO Box 312 John St Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
25
|
Saffroy R, Lafaye G, Desterke C, Ortiz-Tudela E, Amirouche A, Innominato P, Pham P, Benyamina A, Lemoine A. Several clock genes polymorphisms are meaningful risk factors in the development and severity of cannabis addiction. Chronobiol Int 2018; 36:122-134. [PMID: 30526093 DOI: 10.1080/07420528.2018.1523797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circadian rhythms have been related to psychiatric diseases and regulation of dopaminergic transmission, especially in substance abusers. The relationship between them remained enigmatic and no data on the role of clock genes on cannabis dependence have been documented. We aimed at exploring the role of clock gene genotypes as potential predisposing factor to cannabis addiction, using a high throughput mass spectrometry methodology that enables the large-scale analysis of the known relevant polymorphisms of the clock genes. We have conducted a case-control study on 177 Caucasians categorizing between cannabis-addicted subjects and casual consumers based on structured interviews recorded socio-demographic data, AUDIT, Fagerström test, MINI, and medical examinations. Alcohol, opiates, and stimulants' consumption was as exclusion criteria. We report an association between several Single Nucleotide Polymorphism (SNP)s in main circadian genes SNPs, especially the gene locus HES7/PER1 on chromosome 17 and cannabis consumption as well as the development of neuropsychiatric and social disorders. This SNP's signature that may represent a meaningful risk factor in the development of cannabis dependence and its severity requires to be deeply explored in a prospective study.
Collapse
Affiliation(s)
- Raphael Saffroy
- a Dpt Biochimie et Oncogénétique, plate-forme Oncomolpath/INCa - F94800 , AP-HP, GH Paris-Sud, Hôpital Paul Brousse , Villejuif , France.,b INSERM UMR-S 1193 , Université Paris-Sud , Villejuif , France
| | - Genevieve Lafaye
- c Dpt Addictologie , AP-HP, GH Paris-Sud, Hôpital Paul Brousse , Villejuif , France.,d INSERM U1178 , Villejuif , France
| | - Christophe Desterke
- e INSERM UMS 33 , University Paris Saclay - UFR Medecine , Villejuif , France
| | - Elisabeth Ortiz-Tudela
- a Dpt Biochimie et Oncogénétique, plate-forme Oncomolpath/INCa - F94800 , AP-HP, GH Paris-Sud, Hôpital Paul Brousse , Villejuif , France.,b INSERM UMR-S 1193 , Université Paris-Sud , Villejuif , France
| | - Ammar Amirouche
- c Dpt Addictologie , AP-HP, GH Paris-Sud, Hôpital Paul Brousse , Villejuif , France.,d INSERM U1178 , Villejuif , France
| | - Pasquale Innominato
- f Cancer Chronotherapy Unit, Cancer Research Centre, Warwick Medical School, Coventry, Warwickshire, United Kingdom & Department of Oncology , Queen Elizabeth Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom & INSERM U935 , Villejuif , France
| | - Patrick Pham
- a Dpt Biochimie et Oncogénétique, plate-forme Oncomolpath/INCa - F94800 , AP-HP, GH Paris-Sud, Hôpital Paul Brousse , Villejuif , France.,b INSERM UMR-S 1193 , Université Paris-Sud , Villejuif , France
| | - Amine Benyamina
- c Dpt Addictologie , AP-HP, GH Paris-Sud, Hôpital Paul Brousse , Villejuif , France.,d INSERM U1178 , Villejuif , France
| | - Antoinette Lemoine
- a Dpt Biochimie et Oncogénétique, plate-forme Oncomolpath/INCa - F94800 , AP-HP, GH Paris-Sud, Hôpital Paul Brousse , Villejuif , France.,b INSERM UMR-S 1193 , Université Paris-Sud , Villejuif , France
| |
Collapse
|
26
|
Onaolapo OJ, Onaolapo AY. Melatonin in drug addiction and addiction management: Exploring an evolving multidimensional relationship. World J Psychiatry 2018; 8:64-74. [PMID: 29988891 PMCID: PMC6033744 DOI: 10.5498/wjp.v8.i2.64] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/06/2018] [Accepted: 05/10/2018] [Indexed: 02/05/2023] Open
Abstract
Melatonin is a pleiotropic signalling molecule that regulates several physiological functions, and synchronises biological rhythms. Recent evidences are beginning to reveal that a dysregulation of endogenous melatonin rhythm or action may play a larger role in the aetiology and behavioural expression of drug addiction, than was previously considered. Also, the findings from a number of animal studies suggest that exogenous melatonin supplementation and therapeutic manipulation of melatonin/melatonin receptor interactions may be beneficial in the management of behavioural manifestations of drug addiction. However, repeated exogenous melatonin administration may cause a disruption of its endogenous rhythm and be associated with potential drawbacks that might limit its usefulness. In this review, we examine the roles of melatonin and its receptors in addictive behaviours; discussing how our understanding of melatonin’s modulatory effects on the brain rewards system and crucial neurotransmitters such as dopamine has evolved over the years. Possible indications(s) for melatonergic agents in addiction management, and how manipulations of the endogenous melatonin system may be of benefit are also discussed. Finally, the potential impediments to application of melatonin in the management of addictive behaviours are considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Ladoke Akintola University of Technology, Osogbo 230263, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho 210211, Oyo State, Nigeria
| |
Collapse
|
27
|
De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017; 2017:4723836. [PMID: 29391952 PMCID: PMC5748135 DOI: 10.1155/2017/4723836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/13/2017] [Indexed: 01/12/2023] Open
Abstract
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.
Collapse
Affiliation(s)
- Aliza K. De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C. Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
28
|
Neural Mechanisms of Circadian Regulation of Natural and Drug Reward. Neural Plast 2017; 2017:5720842. [PMID: 29359051 PMCID: PMC5735684 DOI: 10.1155/2017/5720842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/07/2017] [Accepted: 10/11/2017] [Indexed: 01/26/2023] Open
Abstract
Circadian rhythms are endogenously generated near 24-hour variations of physiological and behavioral functions. In humans, disruptions to the circadian system are associated with negative health outcomes, including metabolic, immune, and psychiatric diseases, such as addiction. Animal models suggest bidirectional relationships between the circadian system and drugs of abuse, whereby desynchrony, misalignment, or disruption may promote vulnerability to drug use and the transition to addiction, while exposure to drugs of abuse may entrain, disrupt, or perturb the circadian timing system. Recent evidence suggests natural (i.e., food) and drug rewards may influence overlapping neural circuitry, and the circadian system may modulate the physiological and behavioral responses to these stimuli. Environmental disruptions, such as shifting schedules or shorter/longer days, influence food and drug intake, and certain mutations of circadian genes that control cellular rhythms are associated with altered behavioral reward. We highlight the more recent findings associating circadian rhythms to reward function, linking environmental and genetic evidence to natural and drug reward and related neural circuitry.
Collapse
|