1
|
Hsu TW, Tsai SJ, Bai YM, Cheng CM, Su TP, Chen TJ, Liang CS, Chen MH. Parental mental disorders in patients with comorbid schizophrenia and obsessive-compulsive disorder: a nationwide family-link study. Eur Child Adolesc Psychiatry 2024; 33:4325-4334. [PMID: 38814466 PMCID: PMC11618191 DOI: 10.1007/s00787-024-02480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Schizophrenia is highly comorbid with obsessive-compulsive disorder (OCD); both conditions share numerous pathophysiological etiologies. We, thus, examined the risk of mental disorders in the parents of probands with schizophrenia, OCD, or both conditions. Between 2001 and 2011, we enrolled a nationwide cohort of 69,813 patients with schizophrenia, OCD, or both. The control cohort included 698,130 individuals matched for demographics. Poisson regression models were employed to examine the risk of six mental disorders in their parents, including schizophrenia, bipolar disorder, depressive disorder, OCD, alcohol use disorder, and substance use disorder. We stratified patients into schizophrenia-only, OCD-only, and dual-diagnosis groups, and the dual-diagnosis group was further divided into schizophrenia-first, OCD-first, and simultaneously diagnosed groups. Compared with controls, the schizophrenia, OCD, and dual-diagnosis groups had higher risks for the six mental disorders in their parents (range of odds ratio [OR] 1.50-7.83). The sub-analysis of the dual-diagnosis group showed that the schizophrenia-first, OCD-first, and simultaneously diagnosed groups had higher odds for schizophrenia, bipolar disorder, depressive disorder, and OCD (range of OR 1.64-6.45) in their parents than the control group; the simultaneously diagnosed and OCD-first diagnosed groups had a higher odds of parental substance use disorder, while the schizophrenia-first diagnosed group had a higher odds of parental alcohol use disorder. The interrelationship between OCD and schizophrenia is linked to bipolar disorder, depressive disorder, alcohol use disorder, and substance use disorder. The results have implications for mental health policy and future research.
Collapse
Affiliation(s)
- Tien-Wei Hsu
- Department of Psychiatry, E-DA Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Beitou District, No. 201, Sec. 2, Shihpai Road, Taipei, 11217, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Beitou District, No. 201, Sec. 2, Shihpai Road, Taipei, 11217, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Beitou District, No. 201, Sec. 2, Shihpai Road, Taipei, 11217, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Cheng Hsin Hospital, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Family Medicine, Hsinchu Branch, Taipei Veterans General Hospital, Hsinchu, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, No. 60, Xinmin Road, Beitou District, Taipei, 11217, Taiwan.
- Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan.
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Beitou District, No. 201, Sec. 2, Shihpai Road, Taipei, 11217, Taiwan.
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Colijn MA. Genetic testing in individuals experiencing psychosis: A practical guide for psychiatrists. Psychiatry Res 2024; 339:116052. [PMID: 38924899 DOI: 10.1016/j.psychres.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Mark Ainsley Colijn
- Department of Psychiatry, Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, The University of Calgary, 2500 University Drive NW, Calgary T2N1N4, AB, Canada.
| |
Collapse
|
3
|
Shinsato RN, Correa CG, Herai RH. Genetic network analysis indicate that individuals affected by neurodevelopmental conditions have genetic variations associated with ophthalmologic alterations: A critical review of literature. Gene 2024; 908:148246. [PMID: 38325665 DOI: 10.1016/j.gene.2024.148246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Changes in the nervous system are related to a wide range of mental disorders, which include neurodevelopmental disorders (NDD) that are characterized by early onset mental conditions, such as schizophrenia and autism spectrum disorders and correlated conditions (ASD). Previous studies have shown distinct genetic components associated with diverse schizophrenia and ASD phenotypes, with mostly focused on rescuing neural phenotypes and brain activity, but alterations related to vision are overlooked. Thus, as the vision is composed by the eyes that itself represents a part of the brain, with the retina being formed by neurons and cells originating from the glia, genetic variations affecting the brain can also affect the vision. Here, we performed a critical systematic literature review to screen for all genetic variations in individuals presenting NDD with reported alterations in vision. Using these restricting criteria, we found 20 genes with distinct types of genetic variations, inherited or de novo, that includes SNP, SNV, deletion, insertion, duplication or indel. The variations occurring within protein coding regions have different impact on protein formation, such as missense, nonsense or frameshift. Moreover, a molecular analysis of the 20 genes found revealed that 17 shared a common protein-protein or genetic interaction network. Moreover, gene expression analysis in samples from the brain and other tissues indicates that 18 of the genes found are highly expressed in the brain and retina, indicating their potential role in adult vision phenotype. Finally, we only found 3 genes from our study described in standard public databanks of ophthalmogenetics, suggesting that the other 17 genes could be novel target for vision diseases.
Collapse
Affiliation(s)
- Rogério N Shinsato
- Unisalesiano, Araçatuba, São Paulo, Brazil; Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil.
| | - Camila Graczyk Correa
- Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil
| | - Roberto H Herai
- Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil; Research Division, Buko Kaesemodel Institute (IBK), Curitiba, Paraná 80240-000, Brazil; Research Division, 9p Brazil Association (A9pB), Santa Maria, Rio Grande do Sul 97060-580, Brazil.
| |
Collapse
|
4
|
Vasiliu O, Budeanu B, Cătănescu MȘ. The New Horizon of Antipsychotics beyond the Classic Dopaminergic Hypothesis-The Case of the Xanomeline-Trospium Combination: A Systematic Review. Pharmaceuticals (Basel) 2024; 17:610. [PMID: 38794180 PMCID: PMC11124398 DOI: 10.3390/ph17050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Although the dopamine hypothesis of schizophrenia explains the effects of all the available antipsychotics in clinical use, there is an increasing need for developing new drugs for the treatment of the positive, negative, and cognitive symptoms of chronic psychoses. Xanomeline-trospium (KarXT) is a drug combination that is based on the essential role played by acetylcholine in the regulation of cognitive processes and the interactions between this neurotransmitter and other signaling pathways in the central nervous system, with a potential role in the onset of schizophrenia, Alzheimer's disease, and substance use disorders. A systematic literature review that included four electronic databases (PubMed, Cochrane, Clarivate/Web of Science, and Google Scholar) and the US National Library of Medicine database for clinical trials detected twenty-one sources referring to fourteen studies focused on KarXT, out of which only four have available results. Based on the results of these trials, the short-term efficacy and tolerability of xanomeline-trospium are good, but more data are needed before this drug combination may be recommended for clinical use. However, on a theoretical level, the exploration of KarXT is useful for increasing the interest of researchers in finding new, non-dopaminergic, antipsychotics that could be used either as monotherapy or as add-on drugs.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, “Dr. Carol Davila” University Emergency Central Military Hospital, 010816 Bucharest, Romania
| | - Beatrice Budeanu
- Faculty of Medicine, « Carol Davila » University of Medicine and Pharmacy, 050474 Bucharest, Romania; (B.B.); (M.-Ș.C.)
| | - Mihai-Ștefan Cătănescu
- Faculty of Medicine, « Carol Davila » University of Medicine and Pharmacy, 050474 Bucharest, Romania; (B.B.); (M.-Ș.C.)
| |
Collapse
|
5
|
Vessels T, Strayer N, Lee H, Choi KW, Zhang S, Han L, Morley TJ, Smoller JW, Xu Y, Ruderfer DM. Integrating Electronic Health Records and Polygenic Risk to Identify Genetically Unrelated Comorbidities of Schizophrenia That May Be Modifiable. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100297. [PMID: 38645405 PMCID: PMC11033077 DOI: 10.1016/j.bpsgos.2024.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 04/23/2024] Open
Abstract
Background Patients with schizophrenia have substantial comorbidity that contributes to reduced life expectancy of 10 to 20 years. Identifying modifiable comorbidities could improve rates of premature mortality. Conditions that frequently co-occur but lack shared genetic risk with schizophrenia are more likely to be products of treatment, behavior, or environmental factors and therefore are enriched for potentially modifiable associations. Methods Phenome-wide comorbidity was calculated from electronic health records of 250,000 patients across 2 independent health care institutions (Vanderbilt University Medical Center and Mass General Brigham); associations with schizophrenia polygenic risk scores were calculated across the same phenotypes in linked biobanks. Results Schizophrenia comorbidity was significantly correlated across institutions (r = 0.85), and the 77 identified comorbidities were consistent with prior literature. Overall, comorbidity and polygenic risk score associations were significantly correlated (r = 0.55, p = 1.29 × 10-118). However, directly testing for the absence of genetic effects identified 36 comorbidities that had significantly equivalent schizophrenia polygenic risk score distributions between cases and controls. This set included phenotypes known to be consequences of antipsychotic medications (e.g., movement disorders) or of the disease such as reduced hygiene (e.g., diseases of the nail), thereby validating the approach. It also highlighted phenotypes with less clear causal relationships and minimal genetic effects such as tobacco use disorder and diabetes. Conclusions This work demonstrates the consistency and robustness of electronic health record-based schizophrenia comorbidities across independent institutions and with the existing literature. It identifies known and novel comorbidities with an absence of shared genetic risk, indicating other causes that may be modifiable and where further study of causal pathways could improve outcomes for patients.
Collapse
Affiliation(s)
- Tess Vessels
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicholas Strayer
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hyunjoon Lee
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Karmel W. Choi
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Siwei Zhang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lide Han
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Theodore J. Morley
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jordan W. Smoller
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas M. Ruderfer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Zeng Q, Zhang M, Wang R. Causal link between gut microbiome and schizophrenia: a Mendelian randomization study. Psychiatr Genet 2024; 34:43-53. [PMID: 38441075 DOI: 10.1097/ypg.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
OBJECTIVE Some observational studies have shown that gut microbiome is significantly changed in patients with schizophrenia. We aim to identify the genetic causal link between gut microbiome and schizophrenia. METHODS A two-sample Mendelian randomization (MR) study was used to evaluate the causal link between gut microbiome and schizophrenia with 28 gut microbiome-associated genetic instrumental variants chosen from recent MR reports and the largest schizophrenia genome-wide association studies (8-Apr-22 release). RESULTS Inverse variance weighted method showed that genetically increased Bacteroidales_S24-7 (per SD) resulted in increased risk of schizophrenia (OR = 1.110, 95% CI: [1.012-1.217], P = 0.027). Similarly, genetically increased Prevotellaceae promoted schizophrenia risk (OR = 1.124, 95% CI: [1.030-1.228], P = 0.009). However, genetically increased Lachnospiraceae reduced schizophrenia risk (OR = 0.878, 95% CI: [0.785-0.983], P = 0.023). In addition, schizophrenia risk was also suppressed by genetically increased Lactobacillaceae (OR = 0.878, 95% CI: [0.776-0.994], P = 0.040) and Verrucomicrobiaceae (OR = 0.860, 95% CI: [0.749-0.987], P = 0.032). Finally, we did not find any significant results in the causal association of other 23 gut microbiome with schizophrenia. CONCLUSION Our analysis suggests that genetically increased Bacteroidales_S24-7 and Prevotellaceae promotes schizophrenia risk, whereas genetically increased Lachnospiraceae, Lactobacillaceae, and Verrucomicrobiaceae reduces schizophrenia risk. Thus, regulation of the disturbed intestinal microbiota may represent a new therapeutic strategy for patients with schizophrenia.
Collapse
Affiliation(s)
- Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
7
|
Zhou C, Tang X, Yu M, Zhang H, Zhang X, Gao J, Zhang X, Chen J. Convergent and divergent genes expression profiles associated with brain-wide functional connectome dysfunction in deficit and non-deficit schizophrenia. Transl Psychiatry 2024; 14:124. [PMID: 38413564 PMCID: PMC10899251 DOI: 10.1038/s41398-024-02827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Deficit schizophrenia (DS) is a subtype of schizophrenia characterized by the primary and persistent negative symptoms. Previous studies have identified differences in brain functions between DS and non-deficit schizophrenia (NDS) patients. However, the genetic regulation features underlying these abnormal changes are still unknown. This study aimed to detect the altered patterns of functional connectivity (FC) in DS and NDS and investigate the gene expression profiles underlying these abnormal FC. The study recruited 82 DS patients, 96 NDS patients, and 124 healthy controls (CN). Voxel-based unbiased brain-wide association study was performed to reveal altered patterns of FC in DS and NDS patients. Machine learning techniques were used to access the utility of altered FC for diseases diagnosis. Weighted gene co-expression network analysis (WGCNA) was employed to explore the associations between altered FC and gene expression of 6 donated brains. Enrichment analysis was conducted to identify the genetic profiles, and the spatio-temporal expression patterns of the key genes were further explored. Comparing to CN, 23 and 20 brain regions with altered FC were identified in DS and NDS patients. The altered FC among these regions showed significant correlations with the SDS scores and exhibited high efficiency in disease classification. WGCNA revealed associations between DS/NDS-related gene expression and altered FC. Additionally, 22 overlapped genes, including 12 positive regulation genes and 10 negative regulation genes, were found between NDS and DS. Enrichment analyses demonstrated relationships between identified genes and significant pathways related to cellular response, neuro regulation, receptor binding, and channel activity. Spatial and temporal gene expression profiles of SCN1B showed the lowest expression at the initiation of embryonic development, while DPYSL3 exhibited rapid increased in the fetal. The present study revealed different altered patterns of FC in DS and NDS patients and highlighted the potential value of FC in disease classification. The associations between gene expression and neuroimaging provided insights into specific and common genetic regulation underlying these brain functional changes in DS and NDS, suggesting a potential genetic-imaging pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Miao Yu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongying Zhang
- Department of Radiology, Subei People's Hospital of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ju Gao
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, China.
- Medical Imaging Center, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Nasab MG, Heidari A, Sedighi M, Shakerian N, Mirbeyk M, Saghazadeh A, Rezaei N. Dietary inflammatory index and neuropsychiatric disorders. Rev Neurosci 2024; 35:21-33. [PMID: 37459114 DOI: 10.1515/revneuro-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/24/2023] [Indexed: 01/10/2024]
Abstract
Neuropsychiatric disorders (NPDs) are considered a potential threat to mental health. Inflammation predominantly plays a role in the pathophysiology of NPDs. Dietary patterns are widely postulated to be involved in the physiological response to inflammation. This review aims to discuss the literature on how dietary inflammatory index (DII) is related to inflammation and, consequently, NPDs. After comprehensive scrutiny in different databases, the articles that investigated the relation of DII score and various NPDs and psychological circumstances were included. The association between dietary patterns and mental disorders comprising depression, anxiety, and stress proved the role of a proinflammatory diet in these conditions' exacerbation. Aging is another condition closely associated with DII. The impact of proinflammatory and anti-inflammatory diet on sleep quality indicated related disorders like sleep latency and day dysfunctions among the different populations are in relation with the high DII score. The potential effects of genetic backgrounds, dietary patterns, and the gut microbiome on DII are discussed as well. To plan preventive or therapeutic interventions considering the DII, these factors, especially genetic variations, should be considered as there is a growing body of literature indicating the role of personalized medicine in different NPDs. To the best of our knowledge, there is a limited number of RCTs on this subject, so future research should evaluate the causality via RCTs and look for therapeutic interventions with an eye on personalized medicine using information about DII in NPDs.
Collapse
Affiliation(s)
- Mahsa Golshani Nasab
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Sedighi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Shakerian
- Student Research Committee, School of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Ahvaz, Iran
| | - Mona Mirbeyk
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Meta Cognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
9
|
Kang Y, Zhang Y, Huang K, Wang Z. Association of dopamine-based genetic risk score with dynamic low-frequency fluctuations in first-episode drug-naïve schizophrenia. Brain Imaging Behav 2023; 17:584-594. [PMID: 37382826 DOI: 10.1007/s11682-023-00786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 06/30/2023]
Abstract
Alterations in dynamic intrinsic brain activity and signaling of neurotransmitters, such as dopamine, have been independently detected in schizophrenia patients. Yet, it remains unclear whether the dopamine genetic risk variants have association with brain intrinsic activity. We aimed to investigate the schizophrenia-specific dynamic amplitude of low frequency fluctuation (dALFF) altered pattern, and its association with dopamine genetic risk score in first-episode drug-naïve schizophrenia (FES). Fifty-two FES and 51 healthy controls were included. A sliding-window method based on the dALFF was adopted to estimate the dynamic alterations in intrinsic brain activity. Subjects were genotyped, and a genetic risk score (GRS), which combined the additive effects of ten risk genotypes from five dopamine-related genes, was calculated. We used the voxel-wise correlation analysis to explore the association of dopamine-GRS with dALFF. FES showed significantly increased dALFF left medial prefrontal cortex and significantly decreased dALFF in the right posterior cingulate cortex compared with healthy controls. Greater dopamine GRS in FES was associated with higher dALFF in the left middle frontal gyrus and left inferior parietal gyrus. Our findings indicate that cumulative dopamine genetic risk is associated with a known imaging phenotype for schizophrenia.
Collapse
Affiliation(s)
- Yafei Kang
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Kexin Huang
- West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhenhong Wang
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, School of Psychology, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
10
|
Vessels T, Strayer N, Choi KW, Lee H, Zhang S, Han L, Morley TJ, Smoller JW, Xu Y, Ruderfer DM. Identifying modifiable comorbidities of schizophrenia by integrating electronic health records and polygenic risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.01.23290057. [PMID: 37333378 PMCID: PMC10274978 DOI: 10.1101/2023.06.01.23290057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Patients with schizophrenia have substantial comorbidity contributing to reduced life expectancy of 10-20 years. Identifying which comorbidities might be modifiable could improve rates of premature mortality in this population. We hypothesize that conditions that frequently co-occur but lack shared genetic risk with schizophrenia are more likely to be products of treatment, behavior, or environmental factors and therefore potentially modifiable. To test this hypothesis, we calculated phenome-wide comorbidity from electronic health records (EHR) in 250,000 patients in each of two independent health care institutions (Vanderbilt University Medical Center and Mass General Brigham) and association with schizophrenia polygenic risk scores (PRS) across the same phenotypes (phecodes) in linked biobanks. Comorbidity with schizophrenia was significantly correlated across institutions (r = 0.85) and consistent with prior literature. After multiple test correction, there were 77 significant phecodes comorbid with schizophrenia. Overall, comorbidity and PRS association were highly correlated (r = 0.55, p = 1.29×10-118), however, 36 of the EHR identified comorbidities had significantly equivalent schizophrenia PRS distributions between cases and controls. Fifteen of these lacked any PRS association and were enriched for phenotypes known to be side effects of antipsychotic medications (e.g., "movement disorders", "convulsions", "tachycardia") or other schizophrenia related factors such as from smoking ("bronchitis") or reduced hygiene (e.g., "diseases of the nail") highlighting the validity of this approach. Other phenotypes implicated by this approach where the contribution from shared common genetic risk with schizophrenia was minimal included tobacco use disorder, diabetes, and dementia. This work demonstrates the consistency and robustness of EHR-based schizophrenia comorbidities across independent institutions and with the existing literature. It identifies comorbidities with an absence of shared genetic risk indicating other causes that might be more modifiable and where further study of causal pathways could improve outcomes for patients.
Collapse
Affiliation(s)
- Tess Vessels
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville TN
| | - Nicholas Strayer
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN
| | - Karmel W. Choi
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston MA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston MA
| | - Hyunjoon Lee
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston MA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston MA
| | - Siwei Zhang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville TN
| | - Lide Han
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville TN
| | - Theodore J. Morley
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville TN
| | - Jordan W. Smoller
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston MA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston MA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville TN
| | - Douglas M. Ruderfer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville TN
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
11
|
Chen Z, Li X, Cui X, Zhang L, Liu Q, Lu Y, Wang X, Shi H, Ding M, Yang Y, Li W, Lv L. Association of CTNND2 gene polymorphism with schizophrenia: Two-sample case-control study in Chinese Han population. Int J Psychiatry Med 2023:912174231164669. [PMID: 36930964 DOI: 10.1177/00912174231164669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
OBJECTIVES Genetic factors play an important role in the etiology of schizophrenia (SZ). Catenin Delta 2 (CTNND2) is one of the genes regulating neuronal development in the brain. It is unclear whether CTNND2 is involved in SZ. With the hypothesis that CTNND2 may be a risk gene for SZ, we performed a case-control association analysis to investigate if CTNND2 gene single nucleotide polymorphisms (SNPs) are implicated in SZ in a Han Chinese northern population. MATERIALS AND METHODS We recruited subjects from 2010 to 2022 from the Han population of northern Henan and divided them into two case-control samples, including a discovery sample (SZ = 528 and control = 528) and replication sample (SZ = 2458 and control = 6914). Twenty-one SNPs were genotyped on the Illumina BeadStation 500G platform using GoldenGate technology and analyzed by PLINK. Positive and Negative Syndrome Scale (PANSS) was used to assess clinical symptoms. RESULTS Rs16901943, rs7733427, and rs2168878 SNPs were associated with SZ (Chi2 = 7.484, 11.576, and 5.391, respectively, df = 1; p = 0.006, 0.00067, and 0.02, respectively) in two samples. Rs10058868 was associated with SZ in male patients in the discovery sample (Chi2 = 6.264, df = 1, p = .044). Only rs7733427 survived Bonferroni correction. Linkage disequilibrium block three haplotypes were associated with SZ in the discovery and total sample. PANSS analysis of the four SNPs implicated rs10058868 and rs2168878 with symptoms of depression and excitement, respectively, in the SZ patients. CONCLUSION Four SNPs were identified as being correlated with SZ. The CTNND2 gene may be involved in susceptibility to SZ.
Collapse
Affiliation(s)
- Zhaonian Chen
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaojing Li
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiangzheng Cui
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luwen Zhang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Qing Liu
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Lu
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiujuan Wang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Han Shi
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Minli Ding
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
12
|
Chen Y, Li S, Zhang T, Yang F, Lu B. Corticosterone antagonist or TrkB agonist attenuates schizophrenia-like behavior in a mouse model combining Bdnf-e6 deficiency and developmental stress. iScience 2022; 25:104609. [PMID: 35789832 PMCID: PMC9250029 DOI: 10.1016/j.isci.2022.104609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yanhui Chen
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shangjin Li
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyi Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100084, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Corresponding author
| |
Collapse
|
13
|
Chen CH, Cheng MC, Hu TM, Ping LY, Kushima I, Aleksic B. Identification of rare mutations of the vasoactive intestinal peptide receptor 2 gene in schizophrenia. Psychiatr Genet 2022; 32:125-130. [PMID: 35353798 DOI: 10.1097/ypg.0000000000000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Studies showed that rare copy number variations (CNVs) encompassing the vasoactive intestinal peptide receptor 2 gene (VIPR2) were associated with schizophrenia, indicating VIPR2 is a risk gene for schizophrenia. We hypothesized that besides CNV, rare pathogenic single-nucleotide variant (SNV) or small insertion/deletion (Indel) of VIPR2 might be present in some patients and contribute to the pathogenesis of schizophrenia. METHODS We performed genome-wide CNV analysis to screen CNV at the VIPR2 locus and targeted sequencing of all the exons of VIPR2 to search for SNV and indel in a sample of patients with chronic schizophrenia from Taiwan. RESULTS We detected a 230-kb microduplication encompassing the VIPR2 in 1 out of 200 patients. Furthermore, we identified six ultrarare SNVs, including one splicing SNV and five missense SNVs, in 516 patients. In-silico analyses showed these SNVs had a damaging effect on the function of VIPR2. CONCLUSION Our findings support the idea that besides CNV, rare pathogenic SNVs of VIPR2 might contribute to the pathogenesis of schizophrenia in some patients.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan
- Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Lieh-Yung Ping
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya
- Medical Genomics Center, Nagoya University Hospital, Aichi, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya
| |
Collapse
|
14
|
Luvsannyam E, Jain MS, Pormento MKL, Siddiqui H, Balagtas ARA, Emuze BO, Poprawski T. Neurobiology of Schizophrenia: A Comprehensive Review. Cureus 2022; 14:e23959. [PMID: 35541299 PMCID: PMC9080788 DOI: 10.7759/cureus.23959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia is a debilitating disease that presents with both positive and negative symptoms affecting cognition and emotions. Extensive studies have analyzed the different factors that contribute to the disorder. There is evidence of significant genetic etiology involving multiple genes such as dystrobrevin binding protein 1 (DTNBP1) and neuregulin 1 (NRG1). There is no clear link between neurotransmitter changes and the pathophysiology of schizophrenia; however, studies have shown that subcortical dopamine dysfunction is the key mechanism. Specific regions of gray and white matter changes are observed in patients with schizophrenia; gray matter changes being more significant after the onset of psychosis. These pathological changes may be implicated in the impairment of executive functioning, attention, and working memory. The disease can be managed with pharmacological treatments based on individual patient profile, patient compliance, and disease severity. The challenge of disease management sometimes persists due to the side effects. A better understanding of the pathological processes in schizophrenia may lead to more specific and effective therapies.
Collapse
|
15
|
Bioinformatics and Network-based Approaches for Determining Pathways, Signature Molecules, and Drug Substances connected to Genetic Basis of Schizophrenia etiology. Brain Res 2022; 1785:147889. [PMID: 35339428 DOI: 10.1016/j.brainres.2022.147889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Knowledge of heterogeneous etiology and pathophysiology of schizophrenia (SZP) is reasonably inadequate and non-deterministic due to its inherent complexity and underlying vast dynamics related to genetic mechanisms. The evolution of large-scale transcriptome-wide datasets and subsequent development of relevant, robust technologies for their analyses show promises toward elucidating the genetic basis of disease pathogenesis, its early risk prediction, and predicting drug molecule targets for therapeutic intervention. In this research, we have scrutinized the genetic basis of SZP through functional annotation and network-based system biology approaches. We have determined 96 overlapping differentially expressed genes (DEGs) from 2 microarray datasets and subsequently identified their interconnecting networks to reveal transcriptome signatures like hub proteins (FYN, RAD51, SOCS3, XIAP, AKAP13, PIK3C2A, CBX5, GATA3, EIF3K, and CDKN2B), transcription factors and miRNAs. In addition, we have employed gene set enrichment to highlight significant gene ontology (e.g., positive regulation of microglial cell activation) and relevant pathways (such as axon guidance and focal adhesion) interconnected to the genes associated with SZP. Finally, we have suggested candidate drug substances like Luteolin HL60 UP as a possible therapeutic target based on these key molecular signatures.
Collapse
|
16
|
A multifactorial model for the etiology of neuropsychiatric disorders: the role of advanced paternal age. Pediatr Res 2022; 91:757-770. [PMID: 33674740 DOI: 10.1038/s41390-021-01435-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
Mental or neuropsychiatric disorders are widespread within our societies affecting one in every four people in the world. Very often the onset of a mental disorder (MD) occurs in early childhood and substantially reduces the quality of later life. Although the global burden of MDs is rising, mental health care is still suboptimal, partly due to insufficient understanding of the processes of disease development. New insights are needed to respond to this worldwide health problem. Next to the growing burden of MDs, there is a tendency to postpone pregnancy for various economic and practical reasons. In this review, we describe the current knowledge on the potential effect from advanced paternal age (APA) on development of autism spectrum disorder, schizophrenia, attention-deficit/hyperactivity disorder, bipolar disorder, obsessive-compulsive disorder, and Tourette syndrome. Although literature did not clearly define an age cut-off for APA, we here present a comprehensive multifactorial model for the development of MDs, including the role of aging, de novo mutations, epigenetic mechanisms, psychosocial environment, and selection into late fatherhood. Our model is part of the Paternal Origins of Health and Disease paradigm and may serve as a foundation for future epidemiological research designs. This blueprint will increase the understanding of the etiology of MDs and can be used as a practical guide for clinicians favoring early detection and developing a tailored treatment plan. Ultimately, this will help health policy practitioners to prevent the development of MDs and to inform health-care workers and the community about disease determinants. Better knowledge of the proportion of all risk factors, their interactions, and their role in the development of MDs will lead to an optimization of mental health care and management. IMPACT: We design a model of causation for MDs, integrating male aging, (epi)genetics, and environmental influences. It adds new insights into the current knowledge about associations between APA and MDs. In clinical practice, this comprehensive model may be helpful in early diagnosis and in treatment adopting a personal approach. It may help in identifying the proximate cause on an individual level or in a specific subpopulation. Besides the opportunity to measure the attributed proportions of risk factors, this model may be used as a blueprint to design prevention strategies for public health purposes.
Collapse
|
17
|
Antunes ASLM, Saia-Cereda VM, Crunfli F, Martins-de-Souza D. 14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia. World J Biol Psychiatry 2022; 23:14-32. [PMID: 33952049 DOI: 10.1080/15622975.2021.1925585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The 14-3-3 family comprises multifunctional proteins that play a role in neurogenesis, neuronal migration, neuronal differentiation, synaptogenesis and dopamine synthesis. 14-3-3 members function as adaptor proteins and impact a wide variety of cellular and physiological processes involved in the pathophysiology of neurological disorders. Schizophrenia is a psychiatric disorder and knowledge about its pathophysiology is still limited. 14-3-3 have been proven to be linked with the dopaminergic, glutamatergic and neurodevelopmental hypotheses of schizophrenia. Further, research using genetic models has demonstrated the role played by 14-3-3 proteins in neurodevelopment and neuronal circuits, however a more integrative and comprehensive approach is needed for a better understanding of their role in schizophrenia. For instance, we still lack an integrated assessment of the processes affected by 14-3-3 proteins in the dopaminergic and glutamatergic systems. In this context, it is also paramount to understand their involvement in the biology of brain cells other than neurons. Here, we present previous and recent research that has led to our current understanding of the roles 14-3-3 proteins play in brain development and schizophrenia, perform an assessment of their functional protein association network and discuss the use of protein-protein interaction modulators to target 14-3-3 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
18
|
Herstell S, Betz LT, Penzel N, Chechelnizki R, Filihagh L, Antonucci L, Kambeitz J. Insecure attachment as a transdiagnostic risk factor for major psychiatric conditions: A meta-analysis in bipolar disorder, depression and schizophrenia spectrum disorder. J Psychiatr Res 2021; 144:190-201. [PMID: 34678669 DOI: 10.1016/j.jpsychires.2021.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 01/15/2023]
Abstract
Insecure attachment has been suggested as a major risk factor for mental health problems as well as a key element for the development and trajectory of psychiatric disorders. The aim of this meta-analysis was to assess whether insecure attachment constitutes a global transdiagnostic risk factor in bipolar disorder, depression, and schizophrenia spectrum disorders. We conducted a PRISMA-based systematic quantitative review to explore the prevalence of insecure attachment among patients of three representative psychiatric disorders - major depression, schizophrenia spectrum disorders and bipolar disorder - in comparison with healthy controls (HC) from a transdiagnostic point of view. Effect sizes on differences of anxious, avoidant and insecure prevalence were calculated based on 40 samples including a total of n = 2927 individuals. Overall, results indicated a large effect on prevalence of insecure attachment across all disorders compared to HC (k = 30, g = 0.88, I2 = 71.0%, p < 0.001). In a transdiagnostic comparison, the only difference was found in avoidant attachment, which was significantly lower (p = 0.04) compared to HC in the schizophrenia spectrum disorder subgroup (k = 10, g = 0.31, I2 = 76.60%, p < 0.0001) than the depression subgroup subgroup (k = 12, g = 0.83, I2 = 46.65%, p < 0.0001). The lack of further transdiagnostic differences between three distinct psychiatric disorders corroborates insecure attachment as a general vulnerability factor to psychopathology. Our findings warrant further investigations, which should explore the pathways from attachment insecurity towards psychopathology. Insecure attachment likely has implications on assessment, prediction and treatment of psychiatric patients.
Collapse
Affiliation(s)
- Simon Herstell
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Linda T Betz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Nora Penzel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Nußbaumstraße 7, 80336, Munich, Germany.
| | - Ruth Chechelnizki
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Laura Filihagh
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Linda Antonucci
- Department of Education, Psychology and Communication - University of Bari Aldo Moro, Piazza Umberto I, 1, 70121, Bari BA, Italy; Department of Basic Medical Sciences, Neuroscience and Sense Organs - University of Bari Aldo Moro, Piazza Umberto I, 1, 70121, Bari BA, Italy.
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
19
|
Chen CH, Huang A, Huang YS, Fang TH. Identification of a Rare Novel KMT2C Mutation That Presents with Schizophrenia in a Multiplex Family. J Pers Med 2021; 11:jpm11121254. [PMID: 34945726 PMCID: PMC8707139 DOI: 10.3390/jpm11121254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia is a complex genetic disorder involving many common variants with modest effects and rare mutations with high penetrance. Rare mutations associated with schizophrenia are highly heterogeneous and private for affected individuals and families. Identifying such mutations can help establish the molecular diagnosis, elucidate the pathogenesis, and provide helpful genetic counseling for affected patients and families. We performed a whole-exome sequencing analysis to search for rare pathogenic mutations co-segregating with schizophrenia transmitted in a dominant inheritance in a two-generation multiplex family. We identified a rare missense mutation H1574R (Histidine1574Arginine, rs199796552) of KMT2C (lysine methyltransferase 2C) co-segregating with affected members in this family. The mutation is a novel deleterious mutation of KMT2C, not reported before in the literature. The KMT2C encodes a histone 3 lysine 4 (H3K4)-specific methyltransferase and involves epigenetic regulation of brain gene expression. Mutations of KMT2C have been found in neurodevelopmental disorders, such as Kleefstra syndrome, intellectual disability, and autism spectrum disorders. Our finding suggests that schizophrenia might be one of the clinical phenotype spectra of KMT2C mutations, and KMT2C might be a novel risk gene for schizophrenia. Nevertheless, the co-segregation of this mutation with schizophrenia in this family might also be due to chance; functional assays of this mutation are needed to address this issue.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan;
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Correspondence:
| | - Ailing Huang
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 981, Taiwan;
| | - Yu-Shu Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan;
| | - Ting-Hsuan Fang
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| |
Collapse
|
20
|
Expression Analysis of Ermin and Listerin E3 Ubiquitin Protein Ligase 1 Genes in the Periphery of Patients with Schizophrenia. J Mol Neurosci 2021; 72:246-254. [PMID: 34676516 DOI: 10.1007/s12031-021-01928-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
Schizophrenia (SCZ) is a severe mental disorder with an unknown etiology. Recent researches indicate that correct myelination and translational regulation play a role in the pathogeny of SCZ. This study evaluated the expression pattern of Ermin (ERMN) and Listerin E3 ubiquitin protein ligase 1 (LTN1) genes, which play a role in myelination and ribosome quality control, respectively. The expression of the ERMN and LTN1 genes in the peripheral blood (PB) of 50 SCZ patients (male/female: 22/28, age (mean ± standard deviation (SD)): 35.9 ± 5.6) and 50 matched healthy controls (male/female: 23/27, age (mean ± SD): 34.7 ± 5.4) were assessed using quantitative polymerase chain reaction. Additionally, we used a bioinformatics approach based on microarray dataset analysis to examine the expression of these two genes in olfactory epithelium (OE) specimens. The expression of ERMN demonstrated no significant differences in PB samples among SCZ patients and healthy controls (adjusted P-value = 0.101). The expression of LTN1 was significantly higher in PB samples obtained from female patients compared with sex-matched controls (posterior beta = 1.734, adjusted P-value < 0.0001). Significant correlations were found between expression of the mentioned genes in PB samples both among SCZ patients and among healthy controls (r = 0.485, P < 0.001 and r = 0.516, P < 0.001, respectively). According to our in silico findings, the ERMN expression levels in OE samples of SCZ were statistically higher than those in controls (log2FC = 1.93, adj.P.Val = 9.66E-15). On the contrary, LTN1 expression levels in OE samples were statistically lower in SCZ cases versus controls (log2FC = - 0.77, adj.P.Val = 2.14E-06). Besides, a significant correlation was found between the expression of the mentioned genes in OE samples (r = - 0.60, P < 0.001). In conclusion, the present study is the first evidence to highlight the expression of the ERMN and LTN1 genes in the periphery of SCZ patients. Our findings may provide light on the SCZ's pathogeny.
Collapse
|
21
|
Chen CH, Cheng MC, Hu TM, Ping LY. Chromosomal Microarray Analysis as First-Tier Genetic Test for Schizophrenia. Front Genet 2021; 12:620496. [PMID: 34659328 PMCID: PMC8517076 DOI: 10.3389/fgene.2021.620496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/20/2021] [Indexed: 01/07/2023] Open
Abstract
Schizophrenia is a chronic, devastating mental disorder with complex genetic components. Given the advancements in the molecular genetic research of schizophrenia in recent years, there is still a lack of genetic tests that can be used in clinical settings. Chromosomal microarray analysis (CMA) has been used as first-tier genetic testing for congenital abnormalities, developmental delay, and autism spectrum disorders. This study attempted to gain some experience in applying chromosomal microarray analysis as a first-tier genetic test for patients with schizophrenia. We consecutively enrolled patients with schizophrenia spectrum disorder from a clinical setting and conducted genome-wide copy number variation (CNV) analysis using a chromosomal microarray platform. We followed the 2020 “Technical Standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)” to interpret the clinical significance of CNVs detected from patients. We recruited a total of 60 patients (36 females and 24 males) into this study. We detected three pathogenic CNVs and one likely pathogenic CNV in four patients, respectively. The detection rate was 6.7% (4/60, 95% CI: 0.004–0.13), comparable with previous studies in the literature. Also, we detected thirteen CNVs classified as uncertain clinical significance in nine patients. Detecting these CNVs can help establish the molecular genetic diagnosis of schizophrenia patients and provide helpful information for genetic counseling and clinical management. Also, it can increase our understanding of the pathogenesis of schizophrenia. Hence, we suggest CMA is a valuable genetic tool and considered first-tier genetic testing for schizophrenia spectrum disorders in clinical settings.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Lieh-Yung Ping
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| |
Collapse
|
22
|
Chamera K, Szuster-Głuszczak M, Basta-Kaim A. Shedding light on the role of CX3CR1 in the pathogenesis of schizophrenia. Pharmacol Rep 2021; 73:1063-1078. [PMID: 34021899 PMCID: PMC8413165 DOI: 10.1007/s43440-021-00269-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Schizophrenia has a complex and heterogeneous molecular and clinical picture. Over the years of research on this disease, many factors have been suggested to contribute to its pathogenesis. Recently, the inflammatory processes have gained particular interest in the context of schizophrenia due to the increasing evidence from epidemiological, clinical and experimental studies. Within the immunological component, special attention has been brought to chemokines and their receptors. Among them, CX3C chemokine receptor 1 (CX3CR1), which belongs to the family of seven-transmembrane G protein-coupled receptors, and its cognate ligand (CX3CL1) constitute a unique system in the central nervous system. In the view of regulation of the brain homeostasis through immune response, as well as control of microglia reactivity, the CX3CL1–CX3CR1 system may represent an attractive target for further research and schizophrenia treatment. In the review, we described the general characteristics of the CX3CL1–CX3CR1 axis and the involvement of this signaling pathway in the physiological processes whose disruptions are reported to participate in mechanisms underlying schizophrenia. Furthermore, based on the available clinical and experimental data, we presented a guide to understanding the implication of the CX3CL1–CX3CR1 dysfunctions in the course of schizophrenia.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland.
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| |
Collapse
|
23
|
Migratory cortical interneuron-specific transcriptome abnormalities in schizophrenia. J Psychiatr Res 2021; 137:111-116. [PMID: 33677214 DOI: 10.1016/j.jpsychires.2021.02.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
Cortical interneurons (cINs) are substantially affected in Schizophrenia (SCZ) and enriched for SCZ heritability during development. To understand SCZ-specific changes in these cells during development, we isolated migratory cINs from cIN spheres derived from 5 healthy control (HC) and 5 SCZ induced pluripotent stem cell lines (iPSCs). Transcriptome analyses show dysregulation in extracellular matrix pathways as the major disturbances in SCZ migratory cINs, whereas sphere cINs show dysregulation in immune pathways. This result suggests the importance of using homogeneous cell populations to identify stage-specific abnormalities and provides a platform to further study the biology of schizophrenia pathogenesis during early development.
Collapse
|
24
|
Tromp A, Mowry B, Giacomotto J. Neurexins in autism and schizophrenia-a review of patient mutations, mouse models and potential future directions. Mol Psychiatry 2021; 26:747-760. [PMID: 33191396 DOI: 10.1038/s41380-020-00944-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Mutations in the family of neurexins (NRXN1, NRXN2 and NRXN3) have been repeatedly identified in patients with autism spectrum disorder (ASD) and schizophrenia (SCZ). However, it remains unclear how these DNA variants affect neurexin functions and thereby predispose to these neurodevelopmental disorders. Understanding both the wild-type and pathologic roles of these genes in the brain could help unveil biological mechanisms underlying mental disorders. In this regard, numerous studies have focused on generating relevant loss-of-function (LOF) mammalian models. Although this has increased our knowledge about their normal functions, the potential pathologic role(s) of these human variants remains elusive. Indeed, after reviewing the literature, it seems apparent that a traditional LOF-genetic approach based on complete LOF might not be sufficient to unveil the role of these human mutations. First, these genes present a very complex transcriptome and total-LOF of all isoforms may not be the cause of toxicity in patients, particularly given evidence that causative variants act through haploinsufficiency. Moreover, human DNA variants may not all lead to LOF but potentially to intricate transcriptome changes that could also include the generation of aberrant isoforms acting as a gain-of-function (GOF). Furthermore, their transcriptomic complexity most likely renders them prone to genetic compensation when one tries to manipulate them using traditional site-directed mutagenesis approaches, and this could act differently from model to model leading to heterogeneous and conflicting phenotypes. This review compiles the relevant literature on variants identified in human studies and on the mouse models currently deployed, and offers suggestions for future research.
Collapse
Affiliation(s)
- Alisha Tromp
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
25
|
Lipina TV, O'Tuathaigh C, Li S. Editorial: Antipsychotics of New Generation: Where Are We now? Front Pharmacol 2021; 12:646286. [PMID: 33692696 PMCID: PMC7937884 DOI: 10.3389/fphar.2021.646286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/18/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tatiana V Lipina
- Dementia Research Center, University College London, London, United Kingdom
| | | | | |
Collapse
|
26
|
Bourdon JL, Davies RA, Long EC. Four Actionable Bottlenecks and Potential Solutions to Translating Psychiatric Genetics Research: An Expert Review. Public Health Genomics 2020; 23:171-183. [PMID: 33147585 PMCID: PMC7854816 DOI: 10.1159/000510832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Psychiatric genetics has had limited success in translational efforts. A thorough understanding of the present state of translation in this field will be useful in the facilitation and assessment of future translational progress. PURPOSE A narrative literature review was conducted. Combinations of 3 groups of terms were searched in EBSCOhost, Google Scholar, and PubMed. The review occurred in multiple steps, including abstract collection, inclusion/exclusion criteria review, coding, and analysis of included papers. RESULTS One hundred and fourteen articles were analyzed for the narrative review. Across those, 4 bottlenecks were noted that, if addressed, may provide insights and help improve and increase translation in the field of psychiatric genetics. These 4 bottlenecks are emphasizing linear translational frameworks, relying on molecular genomic findings, prioritizing certain psychiatric disorders, and publishing more reviews than experiments. CONCLUSIONS These entwined bottlenecks are examined with one another. Awareness of these bottlenecks can inform stakeholders who work to translate and/or utilize psychiatric genetic information. Potential solutions include utilizing nonlinear translational frameworks as well as a wider array of psychiatric genetic information (e.g., family history and gene-environment interplay) in this area of research, expanding which psychiatric disorders are considered for translation, and when possible, conducting original research. Researchers are urged to consider how their research is translational in the context of the frameworks, genetic information, and psychiatric disorders discussed in this review. At a broader level, these efforts should be supported with translational efforts in funding and policy shifts.
Collapse
Affiliation(s)
- Jessica L Bourdon
- Department of Psychiatry, Brown School of Social Work, Washington University in St. Louis, St. Louis, Missouri, USA,
| | - Rachel A Davies
- Yerkes National Primate Research Center, Division of Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, Georgia, USA
| | - Elizabeth C Long
- Edna Bennett Pierce Prevention Research Center, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
27
|
Kokkosis AG, Tsirka SE. Neuroimmune Mechanisms and Sex/Gender-Dependent Effects in the Pathophysiology of Mental Disorders. J Pharmacol Exp Ther 2020; 375:175-192. [PMID: 32661057 PMCID: PMC7569311 DOI: 10.1124/jpet.120.266163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Innate and adaptive immune mechanisms have emerged as critical regulators of CNS homeostasis and mental health. A plethora of immunologic factors have been reported to interact with emotion- and behavior-related neuronal circuits, modulating susceptibility and resilience to mental disorders. However, it remains unclear whether immune dysregulation is a cardinal causal factor or an outcome of the pathologies associated with mental disorders. Emerging variations in immune regulatory pathways based on sex differences provide an additional framework for discussion in these psychiatric disorders. In this review, we present the current literature pertaining to the effects that disrupted immune pathways have in mental disorder pathophysiology, including immune dysregulation in CNS and periphery, microglial activation, and disturbances of the blood-brain barrier. In addition, we present the suggested origins of such immune dysregulation and discuss the gender and sex influence of the neuroimmune substrates that contribute to mental disorders. The findings challenge the conventional view of these disorders and open the window to a diverse spectrum of innovative therapeutic targets that focus on the immune-specific pathophenotypes in neuronal circuits and behavior. SIGNIFICANCE STATEMENT: The involvement of gender-dependent inflammatory mechanisms on the development of mental pathologies is gaining momentum. This review addresses these novel factors and presents the accumulating evidence introducing microglia and proinflammatory elements as critical components and potential targets for the treatment of mental disorders.
Collapse
Affiliation(s)
- Alexandros G Kokkosis
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
28
|
Zhang X, Yang J, Liu X, Zhao G, Li X, Xun G. Glutathione S-transferase gene polymorphisms (GSTT1 and GSTM1) and risk of schizophrenia: A case-control study in Chinese Han population. Medicine (Baltimore) 2020; 99:e21918. [PMID: 32899025 PMCID: PMC7478483 DOI: 10.1097/md.0000000000021918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Schizophrenia (SCZ) is a chronic disability disorder related to oxidative stress. Glutathione S-transferase (GST) is a group enzyme that protects cells and tissues from oxidative stress damage. Among GSTs, GSTT1 and GSTM1 have well defined genetic polymorphisms. The purpose of our research was to explore the correlation between GSTT1 and GSTM1 polymorphism and SCZ risk in Chinese Han population.A total of 650 subjects (386 SCZ patients and 264 healthy individuals) were included in this case-control designed study. The GSTT1 and GSTM1 polymorphisms were analyzed by multiplex polymerase chain reaction (PCR). We explored the relationship between these 2 polymorphisms and the risk of SCZ.We found that the GSTT1 null genotype had a protective effect on the development of SCZ [odds ratio (OR) = 0.601, 95% confidence interval (95% CI) = 0.412-0.986, P = .031]. We also found that the combination of null genotypes of the GSTT1 and GSTM1 genes was made at a lower risk of SCZ (OR = 0.452, 95% CI = 0.238-0.845, P = .028). However, we found no correction between Positive and Negative Syndrome Scale score (PANSS) and GSTM1, GSST1 genotypes in SCZ patients.Our finding revealed that GSTT1 null polymorphisms may be related to the reduced risk of SCZ in Chinese Han population, and this risk was further reduced with the combination of GSTT1 null polymorphisms and GSTM1 null polymorphisms.
Collapse
Affiliation(s)
- Xin Zhang
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Jinmei Yang
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Xia Liu
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Gaofeng Zhao
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Xue Li
- Jining Medical University, Jining, Shandong Province, China
| | - Guanglei Xun
- Shandong Mental Health Center, Jinan, Shandong Province, China
| |
Collapse
|
29
|
Pal G, Di L, Orunmuyi A, Olapade-Olaopa EO, Qiu W, Ogunwobi OO. Population Differentiation at the PVT1 Gene Locus: Implications for Prostate Cancer. G3 (BETHESDA, MD.) 2020; 10:2257-2264. [PMID: 32358016 PMCID: PMC7341130 DOI: 10.1534/g3.120.401291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Genetic variation in susceptibility to complex diseases, such as cancer, is well-established. Enrichment of disease associated alleles in specific populations could have implications for disease incidence and prevalence. Prostate cancer (PCa) is a disease with well-established higher incidence, prevalence, and worse outcomes among men of African ancestry in comparison to other populations. PCa is a multi-factorial, complex disease, but the exact mechanisms for its development and progression are unclear. The gene desert located on chromosome 8q24 is associated with aggressiveness of PCa. Interestingly, the non-protein coding gene locus Plasmacytoma Variant Translocation (PVT1) is present at chromosome 8q24 and is overexpressed in PCa. PVT1 gives rise to multiple transcripts with potentially different molecular and cellular functions. In an analysis of the PVT1 locus using data from the 1000 Genomes Project, we found the chromosomal region spanning PVT1 exons 4A and 4B to be highly differentiated between African and non-African populations. We further investigated levels of gene expression of PVT1 exons 4A and 4B and observed significant overexpression of these exons in PCa tissues relative to benign prostatic hyperplasia and to normal prostate tissues obtained from men of African ancestry. These results indicate that PVT1 exons 4A and 4B may have clinical implications in PCa a conclusion supported by the observation that transient and stable overexpression of PVT1 exons 4A and 4B significantly induce greater prostate epithelial cell migration and proliferation. We anticipate that further exploration of the role of PVT1 exons 4A and 4B may lead to the development of diagnostic, therapeutic, and other clinical applications in PCa.
Collapse
Affiliation(s)
- Gargi Pal
- Department of Biological Sciences, Hunter College of The City University of New York, NY
| | - Lia Di
- Department of Biological Sciences, Hunter College of The City University of New York, NY
| | | | | | - Weigang Qiu
- Department of Biological Sciences, Hunter College of The City University of New York, NY
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, NY,
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY
| |
Collapse
|
30
|
Takeuchi S, Kawanai T, Yamauchi R, Chen L, Miyaoka T, Yamada M, Asano S, Hayata-Takano A, Nakazawa T, Yano K, Horiguchi N, Nakagawa S, Takuma K, Waschek JA, Hashimoto H, Ago Y. Activation of the VPAC2 Receptor Impairs Axon Outgrowth and Decreases Dendritic Arborization in Mouse Cortical Neurons by a PKA-Dependent Mechanism. Front Neurosci 2020; 14:521. [PMID: 32581681 PMCID: PMC7287155 DOI: 10.3389/fnins.2020.00521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Clinical studies have shown that microduplications at 7q36.3, containing VIPR2, confer significant risk for schizophrenia and autism spectrum disorder (ASD). VIPR2 gene encodes the VPAC2 receptor for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Lymphocytes from patients with these mutations exhibited higher VIPR2 gene expression and VIP-induced cAMP responsiveness, but mechanisms by which overactive VPAC2 signaling may lead to these psychiatric disorders are unknown. We have previously found that repeated administration of a selective VPAC2 receptor agonist Ro25-1553 in the mouse during early postnatal development caused synaptic alterations in the prefrontal cortex and sensorimotor gating deficits. In this study, we aimed to clarify the effects of VPAC2 receptor activation on neurite outgrowth in cultured primary mouse cortical neurons. Ro25-1553 and VIP caused reductions in total numbers and lengths of both neuronal dendrites and axons, while PACAP38 facilitated elongation of dendrites, but not axons. These effects of Ro25-1553 and VIP were blocked by a VPAC2 receptor antagonist PG99-465 and abolished in VPAC2 receptor-deficient mice. Additionally, Ro25-1553-induced decreases in axon and dendritic outgrowth in wild-type mice were blocked by a protein kinase A (PKA) inhibitor H89, but not by a PKC inhibitor GF109203X or a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor U0126. PACAP38- induced facilitation of dendritic outgrowth was blocked by U0126. These results suggest that activation of the VPAC2 receptor impairs neurite outgrowth and decreases branching of cortical neurons by a PKA-dependent mechanism. These findings also imply that the VIPR2-linkage to mental health disorders may be due in part to deficits in neuronal maturation induced by VPAC2 receptor overactivation.
Collapse
Affiliation(s)
- Shuto Takeuchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takuya Kawanai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ryosuke Yamauchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Lu Chen
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tatsunori Miyaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Mei Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Koji Yano
- Neuroscience Department, Drug Discovery and Disease Research Laboratory, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Naotaka Horiguchi
- Neuroscience Department, Drug Discovery and Disease Research Laboratory, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Shinsaku Nakagawa
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Kazuhiro Takuma
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan.,Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - James A Waschek
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Japan.,Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.,Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukio Ago
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
31
|
Crespi BJ. Evolutionary and genetic insights for clinical psychology. Clin Psychol Rev 2020; 78:101857. [DOI: 10.1016/j.cpr.2020.101857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
|
32
|
Chen CH, Cheng MC, Huang A, Hu TM, Ping LY, Chang YS. Detection of Rare Methyl-CpG Binding Protein 2 Gene Missense Mutations in Patients With Schizophrenia. Front Genet 2020; 11:476. [PMID: 32457807 PMCID: PMC7227600 DOI: 10.3389/fgene.2020.00476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Deleterious mutations of MECP2 are responsible for Rett syndrome, a severe X-linked childhood neurodevelopmental disorder predominates in females, male patients are considered fatal. However, increasing reports indicate that some MECP2 mutations may also present various neuropsychiatric phenotypes, including intellectual disability, autism spectrum disorder, depression, cocaine addiction, and schizophrenia in both males and females, suggesting varied clinical expressivity in some MECP2 mutations. Most of the MECP2 mutations are private de novo mutations. To understand whether MECP2 mutations are associated with schizophrenia, we systematically screen for mutations at the protein-coding regions of the MECP2 gene in a sample of 404 schizophrenic patients (171 females, 233 males) and 390 non-psychotic controls (171 females, 218 males). We identified six rare missense mutations in this sample, including T197M in one male patient and two female controls, L201V in nine patients (three males and six females) and 4 controls (three females and one male), L213V in one female patient, A358T in one male patient and one female control, P376S in one female patient, and P419S in one male patient. These mutations had been reported to be present in patients with various neuropsychiatric disorders other than Rett syndrome in the literature. Furthermore, we detected a novel double-missense mutation P376S-P419R in a male patient. The family study revealed that his affected sister also had this mutation. The mutation was transmitted from their mother who had a mild cognitive deficit. Our findings suggest that rare MECP2 mutations exist in some schizophrenia patients and the MECP2 gene could be considered a risk gene of schizophrenia.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Ailing Huang
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Tsung-Ming Hu
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Lieh-Yung Ping
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Yu-Syuan Chang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
33
|
Novel Approaches for Identifying the Molecular Background of Schizophrenia. Cells 2020; 9:cells9010246. [PMID: 31963710 PMCID: PMC7017322 DOI: 10.3390/cells9010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Recent advances in psychiatric genetics have led to the discovery of dozens of genomic loci associated with schizophrenia. However, a gap exists between the detection of genetic associations and understanding the underlying molecular mechanisms. This review describes the basic approaches used in the so-called post-GWAS studies to generate biological interpretation of the existing population genetic data, including both molecular (creation and analysis of knockout animals, exploration of the transcriptional effects of common variants in human brain cells) and computational (fine-mapping of causal variability, gene set enrichment analysis, partitioned heritability analysis) methods. The results of the crucial studies, in which these approaches were used to uncover the molecular and neurobiological basis of the disease, are also reported.
Collapse
|
34
|
Chamera K, Trojan E, Szuster-Głuszczak M, Basta-Kaim A. The Potential Role of Dysfunctions in Neuron-Microglia Communication in the Pathogenesis of Brain Disorders. Curr Neuropharmacol 2020; 18:408-430. [PMID: 31729301 PMCID: PMC7457436 DOI: 10.2174/1570159x17666191113101629] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022] Open
Abstract
The bidirectional communication between neurons and microglia is fundamental for the proper functioning of the central nervous system (CNS). Chemokines and clusters of differentiation (CD) along with their receptors represent ligand-receptor signalling that is uniquely important for neuron - microglia communication. Among these molecules, CX3CL1 (fractalkine) and CD200 (OX-2 membrane glycoprotein) come to the fore because of their cell-type-specific localization. They are principally expressed by neurons when their receptors, CX3CR1 and CD200R, respectively, are predominantly present on the microglia, resulting in the specific axis which maintains the CNS homeostasis. Disruptions to this balance are suggested as contributors or even the basis for many neurological diseases. In this review, we discuss the roles of CX3CL1, CD200 and their receptors in both physiological and pathological processes within the CNS. We want to underline the critical involvement of these molecules in controlling neuron - microglia communication, noting that dysfunctions in their interactions constitute a key factor in severe neurological diseases, such as schizophrenia, depression and neurodegeneration-based conditions.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Magdalena Szuster-Głuszczak
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| |
Collapse
|
35
|
Acute stress-induced change in polysialic acid levels mediated by sialidase in mouse brain. Sci Rep 2019; 9:9950. [PMID: 31289315 PMCID: PMC6616613 DOI: 10.1038/s41598-019-46240-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022] Open
Abstract
Stress is an important environmental factor influencing human behaviour and causing several mental disorders. Alterations in the structure of polysialic acid (polySia/PSA) due to genetic alterations in ST8SIA2, which encodes a polySia-synthesizing enzyme, are related to certain mental disorders. However, whether stress as an environmental factor leads to changes in polySia structure is unknown. Here we studied the effects of acute stress on polySia expression and found reductions in both the quantity and quality of polySia in the olfactory bulb and prefrontal cortex, even with short-term exposure to acute stress. The use of inhibitors for sialidase, microglia and astrocytes revealed that these declines were due to a transient action of sialidase from microglia and astrocytes in the olfactory bulb and prefrontal cortex, respectively. These data suggest that sialidase dynamically regulates polySia expression in a brain region-specific manner.
Collapse
|
36
|
Nikoghosyan M, Hakobyan S, Hovhannisyan A, Loeffler-Wirth H, Binder H, Arakelyan A. Population Levels Assessment of the Distribution of Disease-Associated Variants With Emphasis on Armenians - A Machine Learning Approach. Front Genet 2019; 10:394. [PMID: 31105750 PMCID: PMC6498285 DOI: 10.3389/fgene.2019.00394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/11/2019] [Indexed: 12/25/2022] Open
Abstract
Background: During the last decades a number of genome-wide association studies (GWASs) has identified numerous single nucleotide polymorphisms (SNPs) associated with different complex diseases. However, associations reported in one population are often conflicting and did not replicate when studied in other populations. One of the reasons could be that most GWAS employ a case-control design in one or a limited number of populations, but little attention was paid to the global distribution of disease-associated alleles across different populations. Moreover, the majority of GWAS have been performed on selected European, African, and Chinese populations and the considerable number of populations remains understudied. Aim: We have investigated the global distribution of so far discovered disease-associated SNPs across worldwide populations of different ancestry and geographical regions with a special focus on the understudied population of Armenians. Data and Methods: We have used genotyping data from the Human Genome Diversity Project and of Armenian population and combined them with disease-associated SNP data taken from public repositories leading to a final dataset of 44,234 markers. Their frequency distribution across 1039 individuals from 53 populations was analyzed using self-organizing maps (SOM) machine learning. Our SOM portrayal approach reduces data dimensionality, clusters SNPs with similar frequency profiles and provides two-dimensional data images which enable visual evaluation of disease-associated SNPs landscapes among human populations. Results: We find that populations from Africa, Oceania, and America show specific patterns of minor allele frequencies of disease-associated SNPs, while populations from Europe, Middle East, Central South Asia, and Armenia mostly share similar patterns. Importantly, different sets of SNPs associated with common polygenic diseases, such as cancer, diabetes, neurodegeneration in populations from different geographic regions. Armenians are characterized by a set of SNPs that are distinct from other populations from the neighboring geographical regions. Conclusion: Genetic associations of diseases considerably vary across populations which necessitates health-related genotyping efforts especially for so far understudied populations. SOM portrayal represents novel promising methods in population genetic research with special strength in visualization-based comparison of SNP data.
Collapse
Affiliation(s)
- Maria Nikoghosyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
- Research Group of Bioinformatics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Siras Hakobyan
- Research Group of Bioinformatics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Anahit Hovhannisyan
- Laboratory of Ethnogenomics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Arsen Arakelyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
- Research Group of Bioinformatics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| |
Collapse
|
37
|
Enhanced Molecular Appreciation of Psychiatric Disorders Through High-Dimensionality Data Acquisition and Analytics. Methods Mol Biol 2019; 2011:671-723. [PMID: 31273728 DOI: 10.1007/978-1-4939-9554-7_39] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The initial diagnosis, molecular investigation, treatment, and posttreatment care of major psychiatric disorders (schizophrenia and bipolar depression) are all still significantly hindered by the current inability to define these disorders in an explicit molecular signaling manner. High-dimensionality data analytics, using large datastreams from transcriptomic, proteomic, or metabolomic investigations, will likely advance both the appreciation of the molecular nature of major psychiatric disorders and simultaneously enhance our ability to more efficiently diagnose and treat these debilitating conditions. High-dimensionality data analysis in psychiatric research has been heterogeneous in aims and methods and limited by insufficient sample sizes, poorly defined case definitions, methodological inhomogeneity, and confounding results. All of these issues combine to constrain the conclusions that can be extracted from them. Here, we discuss possibilities for overcoming methodological challenges through the implementation of transcriptomic, proteomic, or metabolomics signatures in psychiatric diagnosis and offer an outlook for future investigations. To fulfill the promise of intelligent high-dimensionality data-based differential diagnosis in mental disease diagnosis and treatment, future research will need large, well-defined cohorts in combination with state-of-the-art technologies.
Collapse
|
38
|
Bearden CE, Forsyth JK. The many roads to psychosis: recent advances in understanding risk and mechanisms. F1000Res 2018; 7:F1000 Faculty Rev-1883. [PMID: 30631427 PMCID: PMC6281008 DOI: 10.12688/f1000research.16574.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 01/01/2023] Open
Abstract
Schizophrenia is a chronic and severe mental illness which frequently leads to substantial lifelong disability. The past five years have seen major progress in our understanding of the complex genetic architecture of this disorder. Two major barriers to understanding the core biological processes that underlie schizophrenia and developing better interventions are (1) the absence of etiologically defined biomarkers and (2) the clinical and genetic heterogeneity of the disorder. Here, we review recent advances that have led to changes in our understanding of risk factors and mechanisms involved in the development of schizophrenia. In particular, mechanistic and clinically oriented approaches have now converged on a focus on disruptions in early neurodevelopment and synaptic plasticity as being critical for both understanding trajectories and intervening to change them. Translating these new findings into treatments that substantively change the lives of patients is the next major challenge for the field.
Collapse
Affiliation(s)
- Carrie E. Bearden
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA, USA
| | - Jennifer K. Forsyth
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Russo P, Prinzi G, Proietti S, Lamonaca P, Frustaci A, Boccia S, Amore R, Lorenzi M, Onder G, Marzetti E, Valdiglesias V, Guadagni F, Valente MG, Cascio GL, Fraietta S, Ducci G, Bonassi S. Shorter telomere length in schizophrenia: Evidence from a real-world population and meta-analysis of most recent literature. Schizophr Res 2018; 202:37-45. [PMID: 30001973 DOI: 10.1016/j.schres.2018.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/05/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a severe, chronic mental disorder. Schizophrenia is visualized as an accelerated cellular aging syndrome characterized by early onset of cardiovascular disease causing premature mortality. In human aging involves alterations in telomere length (TL). To investigate the presence of TL shortening in schizophrenia and psychiatric syndromes associated, this condition was studied in leukocytes (LTL) of a sample of patients suffering from schizophrenia and other psychotic disorders, and compared with a group of non-psychiatric controls. We explored the relationship between LTL and age, gender, and smoking habit with the aim to control whether these potential confounding factors may influence the rate of telomeres shortening. We also performed a new comprehensive meta-analysis including studies on LTL in schizophrenia patients compared to healthy subjects published in the last two years and the results of the present study. Our results suggest that a diagnosis of schizophrenia, more than gender, age, cigarette smoking or alcohol drinking, is the most important condition responsible of the LTL shortening. A strong LTL shortening was observed in patients affected by schizophrenia, Schizoaffective disorder, and Psychosis not otherwise specified when they were younger than 50 years, while in the group of older subjects no major differences were observed. Additional evidence supporting the causal link of schizophrenia with accelerated telomeres shortening came from the analysis of the updated meta-analysis. The availability of a personalized profile of mechanistic pathways, risk factors, and clinical features may pose the basis for a rehabilitative treatment addressing individual needs of the psychiatric patients.
Collapse
Affiliation(s)
- Patrizia Russo
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, RM, Italy
| | - Giulia Prinzi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, RM, Italy
| | - Stefania Proietti
- Scientific Direction, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, RM, Italy
| | - Palma Lamonaca
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, RM, Italy
| | - Alessandra Frustaci
- Specialist Services-Eating Disorders, Barnet and Enfield and Haringey Mental Health NHS Trust, St. Ann's Hospitals, St. Ann's Road, N15 3TH, London, UK
| | - Stefania Boccia
- Section of Hygiene-Institute of Public Health, Università Cattolica del Sacro Cuore, Fondazione Policlinico Agostino Gemelli, Largo Agostino Gemelli, 8, 00168, RM, Italy
| | - Rosarita Amore
- Section of Hygiene-Institute of Public Health, Università Cattolica del Sacro Cuore, Fondazione Policlinico Agostino Gemelli, Largo Agostino Gemelli, 8, 00168, RM, Italy
| | - Maria Lorenzi
- Department of Geriatrics, Neurosciences and Orthopedics, Università Cattolica del Sacro Cuore, Fondazione Policlinico Agostino Gemelli, Largo Agostino Gemelli, 8, 00168, RM, Italy
| | - Graziano Onder
- Department of Geriatrics, Neurosciences and Orthopedics, Università Cattolica del Sacro Cuore, Fondazione Policlinico Agostino Gemelli, Largo Agostino Gemelli, 8, 00168, RM, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Università Cattolica del Sacro Cuore, Fondazione Policlinico Agostino Gemelli, Largo Agostino Gemelli, 8, 00168, RM, Italy
| | - Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Universidade de A Coruña, Campus Elviña, s/n -15071, A Coruña, Spain
| | - Fiorella Guadagni
- Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, RM, Italy; San Raffaele University, Via di Val Cannuta 247, 00166, RM, Italy
| | - Maria Giovanna Valente
- Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, RM, Italy
| | - Gerland Lo Cascio
- San Raffaele Montecompatri, Via San Silvestro 67, 00077 Montecompatri, RM, Italy
| | - Sara Fraietta
- Mental Health Department, ASL Roma 1, Piazza Santa Maria della Pietà 5, RM, 00135, Italy
| | - Giuseppe Ducci
- Mental Health Department, ASL Roma 1, Piazza Santa Maria della Pietà 5, RM, 00135, Italy
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, RM, Italy; San Raffaele University, Via di Val Cannuta 247, 00166, RM, Italy.
| |
Collapse
|
40
|
Nurnberger JI, Austin J, Berrettini WH, Besterman AD, DeLisi LE, Grice DE, Kennedy JL, Moreno-De-Luca D, Potash JB, Ross DA, Schulze TG, Zai G. What Should a Psychiatrist Know About Genetics? Review and Recommendations From the Residency Education Committee of the International Society of Psychiatric Genetics. J Clin Psychiatry 2018; 80:17nr12046. [PMID: 30549495 PMCID: PMC6480395 DOI: 10.4088/jcp.17nr12046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/01/2018] [Indexed: 01/23/2023]
Abstract
The International Society of Psychiatric Genetics (ISPG) created a Residency Education Committee with the purpose of identifying key genetic knowledge that should be taught in psychiatric training programs. Thirteen committee members were appointed by the ISPG Board of Directors, based on varied training, expertise, gender, and national origin. The Committee has met quarterly for the past 2 years, with periodic reports to the Board and to the members of the Society. The information summarized includes the existing literature in the field of psychiatric genetics and the output of ongoing large genomics consortia. An outline of clinically relevant areas of genetic knowledge was developed, circulated, and approved. This document was expanded and annotated with appropriate references, and the manuscript was developed. Specific information regarding the contribution of common and rare genetic variants to major psychiatric disorders and treatment response is now available. Current challenges include the following: (1) Genetic testing is recommended in the evaluation of autism and intellectual disability, but its use is limited in current clinical practice. (2) Commercial pharmacogenomic testing is widely available, but its utility has not yet been clearly established. (3) Other methods, such as whole exome and whole genome sequencing, will soon be clinically applicable. The need for informed genetic counseling in psychiatry is greater than ever before, knowledge in the field is rapidly growing, and genetic education should become an integral part of psychiatric training.
Collapse
Affiliation(s)
- John I Nurnberger
- 320 W 15th St, Indianapolis, IN 46202.
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jehannine Austin
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Wade H Berrettini
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Aaron D Besterman
- University of California Los Angeles Semel Institute of Neuroscience and Human Behavior, Los Angeles, California, USA
| | - Lynn E DeLisi
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | | | - James L Kennedy
- Centre for Addiction and Mental Health and University of Toronto, Toronto, Ontario, Canada
| | | | - James B Potash
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David A Ross
- Yale University School of Medicine, Hartford, Connecticut, USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, Germany
| | - Gwyneth Zai
- Centre for Addiction and Mental Health and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Solana C, Pereira D, Tarazona R. Early Senescence and Leukocyte Telomere Shortening in SCHIZOPHRENIA: A Role for Cytomegalovirus Infection? Brain Sci 2018; 8:brainsci8100188. [PMID: 30340343 PMCID: PMC6210638 DOI: 10.3390/brainsci8100188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a severe, chronic mental disorder characterized by delusions and hallucinations. Several evidences support the link of schizophrenia with accelerated telomeres shortening and accelerated aging. Thus, schizophrenia patients show higher mortality compared to age-matched healthy donors. The etiology of schizophrenia is multifactorial, involving genetic and environmental factors. Telomere erosion has been shown to be accelerated by different factors including environmental factors such as cigarette smoking and chronic alcohol consumption or by psychosocial stress such as childhood maltreatment. In humans, telomere studies have mainly relied on measurements of leukocyte telomere length and it is generally accepted that individuals with short leukocyte telomere length are considered biologically older than those with longer ones. A dysregulation of both innate and adaptive immune systems has been described in schizophrenia patients and other mental diseases supporting the contribution of the immune system to disease symptoms. Thus, it has been suggested that abnormal immune activation with high pro-inflammatory cytokine production in response to still undefined environmental agents such as herpesviruses infections can be involved in the pathogenesis and pathophysiology of schizophrenia. It has been proposed that chronic inflammation and oxidative stress are involved in the course of schizophrenia illness, early onset of cardiovascular disease, accelerated aging, and premature mortality in schizophrenia. Prenatal or neonatal exposures to neurotropic pathogens such as Cytomegalovirus or Toxoplasma gondii have been proposed as environmental risk factors for schizophrenia in individuals with a risk genetic background. Thus, pro-inflammatory cytokines and microglia activation, together with genetic vulnerability, are considered etiological factors for schizophrenia, and support that inflammation status is involved in the course of illness in schizophrenia.
Collapse
Affiliation(s)
- Corona Solana
- Centro Hospitalar Psiquiatrico de Lisboa, 1700-063 Lisboa, Portugal.
| | - Diana Pereira
- Centro Hospitalar Psiquiatrico de Lisboa, 1700-063 Lisboa, Portugal.
| | - Raquel Tarazona
- Immunology Unit, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
42
|
|
43
|
Mental disorders and an acidic glycan-from the perspective of polysialic acid (PSA/polySia) and the synthesizing enzyme, ST8SIA2. Glycoconj J 2018; 35:353-373. [PMID: 30058042 DOI: 10.1007/s10719-018-9832-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023]
Abstract
Mental disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder, are challenging to manage, worldwide. Understanding the molecular mechanisms underlying these disorders is essential and required. Studies investigating such molecular mechanisms are well performed and important findings are accumulating apace. Based on the fact that these disorders are due in part to the accumulation of genetic and environmental risk factors, consideration of multi-molecular and/or multi-system dependent phenomena might be important. Acidic glycans are an attractive family of molecules for understanding these disorders, because impairment of the fine-tuned glycan system affects a large number of molecules that are deeply involved in normal brain function. One of the candidates of this important family of glycan epitopes in the brain is polysialic acid (PSA/polySia). PSA is a well-known molecule because of its role as an oncodevelopmental antigen and is also widely used as a marker of adult neurogenesis. Recently, several reports have suggested that PSA and PSA-related genes are associated with multiple mental disorders. The relationships among PSA, PSA-related genes, and mental disorders are reviewed here.
Collapse
|