1
|
Adıgüzel E, Yılmaz ŞG, Atabilen B, Şeref B. Microbiome modulation as a novel therapeutic modality for anxiety disorders: A review of clinical trials. Behav Brain Res 2025; 487:115595. [PMID: 40246176 DOI: 10.1016/j.bbr.2025.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/08/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Anxiety disorders are one of the major conditions in psychiatry characterized by symptoms such as worry, social and performance fears, unexpected and/or triggered panic attacks, anticipatory anxiety, and avoidance behaviors. Recent developments have drawn attention to the putative involvement of peripheral systems in the control of anxiety, and the gut microbiota has come to light as an emerging peripheral target for anxiety. The relationship between the gut-brain axis, a bidirectional communication network between the central nervous system (CNS) and enteric nervous system (ENS), and anxiety has been the subject of some recent studies. Therefore, this systematic review analyzed clinical trials evaluating the potential of microbiome modulation methods in mitigating and ameliorating anxiety disorders. Clinical studies on probiotic, prebiotic, synbiotic supplements, dietary interventions, and fecal microbiota transplantation in anxiety disorders were screened. All of the studies examined the effects of probiotic intervention. One of these studies compared a prebiotic-rich diet with probiotic supplementation. Longitudinal analyses showed that the probiotic intervention alleviated anxiety. However, most of the controlled studies reported that the probiotic intervention did not make a difference compared to placebo. Thus, the current findings suggest that it is too early to consider the promising role of microbiome modulation in the treatment of anxiety disorders. However, it is obvious that more clinical research is needed to clarify issues such as probiotic strains, prebiotic types, and their doses that may be effective on anxiety disorders.
Collapse
Affiliation(s)
- Emre Adıgüzel
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Karaman, Turkey.
| | - Şemsi Gül Yılmaz
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Karaman, Turkey.
| | - Büşra Atabilen
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Karaman, Turkey.
| | - Betül Şeref
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Karaman, Turkey.
| |
Collapse
|
2
|
Katsumata R, Hosokawa T, Manabe N, Mori H, Wani K, Kimura M, Oda S, Ishii K, Tanikawa T, Urata N, Ayaki M, Nishino K, Murao T, Suehiro M, Fujita M, Kawanaka M, Haruma K, Kawamoto H, Takao T, Kamada T. Brain activity during a public-speaking situation in virtual reality in patients with irritable bowel syndrome and functional dyspepsia. J Gastroenterol 2025; 60:561-572. [PMID: 39994039 DOI: 10.1007/s00535-025-02228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Psychosocial stress plays a central role in the pathophysiology of disorders of gut-brain interactions (DGBI), including functional dyspepsia (FD) and irritable bowel syndrome (IBS). Brain activity during psychosocial stress in patients with DGBI has not been adequately investigated. In this prospective study, we aimed to explore brain activity during psychosocial stress in patients with DGBI. METHODS Situations in an unmanned room, public space without attention, and public speaking were simulated in a virtual reality (VR) environment. Subjective stress, emotional state, and gastrointestinal (GI) symptoms were assessed using a visual analog scale, the State-Trait Anxiety Inventory, and the GI Symptom Rating Scale, respectively. Electrocardiograms were recorded to evaluate autonomic function. Activity in the prefrontal cortex (PFC) was examined using functional near-infrared spectroscopy (fNIRS). RESULTS Overall, 15 healthy controls, 15 patients with IBS, and 15 patients with FD were included. In the public-speaking scenario, subjective stress scores significantly decreased (indicating more stress) and sympathetic nervous activity increased equally among the three groups compared with those in an unmanned scene. Patients with IBS had higher activity in the left ventrolateral prefrontal cortex (VLPFC) and lower activity in the dorsolateral PFC (DLPFC) than those with FD and healthy controls. CONCLUSIONS Brain activity increased in the VLPFC and decreased in the DLPFC under stressful psychosocial situations created in the VR space in patients with IBS. Thus, the combination of VR and fNIRS is a viable option for evaluating brain activity under psychosocial stress in natural clinical settings.
Collapse
Affiliation(s)
- Ryo Katsumata
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, 2-6-1 Nakasange Kita-ku, Okayama City, Okayama, Japan.
| | - Takayuki Hosokawa
- Department of Orthoptics, Faculty of Rehabilitation, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Noriaki Manabe
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Hitoshi Mori
- Department of Neurology, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Minako Kimura
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Shintaro Oda
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Katsunori Ishii
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Tomohiro Tanikawa
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Noriyo Urata
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Maki Ayaki
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Ken Nishino
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Takahisa Murao
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, 2-6-1 Nakasange Kita-ku, Okayama City, Okayama, Japan
| | - Mitsuhiko Suehiro
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Minoru Fujita
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Miwa Kawanaka
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Ken Haruma
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Hirofumi Kawamoto
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Toshihiro Takao
- Department of Health Care Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Tomoari Kamada
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, 2-6-1 Nakasange Kita-ku, Okayama City, Okayama, Japan
| |
Collapse
|
3
|
Jiang H, Zhou F, Guo L, Gao Y, Kong N, Xu M, Zhang F. Implications of hippocampal excitatory amino acid transporter 2 in modulating anxiety and visceral pain in a mouse model of inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167832. [PMID: 40203955 DOI: 10.1016/j.bbadis.2025.167832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/22/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation and significantly impairs quality of life through anxiety-like behaviors and visceral pain. Early evaluation of the risk of anxiety-like behaviors and visceral pain in IBD patients, along with targeted treatment, may benefit disease management. Visceral pain and anxiety-like behavior are often accompanied by neurological damage. Previous studies have shown that abnormal accumulation of glutamate can cause excitatory neurotoxic effects, leading to central nervous system (CNS) damage. Excitatory amino acid transporters (EAATs), particularly EAAT2, are known to regulate glutamate levels. The impact of hippocampal EAAT2 modulation on these clinical features in IBD is yet to be evaluated. Therefore, we designed this experiment to test this hypothesis. This study aimed to investigate the impact of altered levels of hippocampal EAAT2 on anxiety-like behaviors and visceral pain in mice with IBD. We observed reduced EAAT2 expression, increased glutamate levels, elevated N-methyl-d-aspartate receptors (NMDAR) expression, and obvious glutamate toxicity in the hippocampus of dextran sulfate sodium (DSS) induced IBD model mice. These mice exhibited significant visceral pain and anxiety-like behaviors. In summary, the reduced expression of EAAT2 in the hippocampus of individuals with IBD leads to elevated glutamate levels, resulting in neuronal damage and ultimately contributing to visceral pain and anxiety-like behaviors. These findings suggest that EAAT2 could serve as a therapeutic target for neurologically derived IBD symptoms.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310024, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China
| | - Feini Zhou
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China
| | - Lingnan Guo
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310024, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China
| | - Yiyuan Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China
| | - Ning Kong
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China.
| | - Fan Zhang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China.
| |
Collapse
|
4
|
Huang Y, Wang Y, Xu B, Zeng Y, Chen P, Huang Y, Liu X. The association between constipation and anxiety: a cross-sectional study and Mendelian randomization analysis. Front Psychiatry 2025; 16:1543692. [PMID: 40230819 PMCID: PMC11995435 DOI: 10.3389/fpsyt.2025.1543692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Objective The relationship between constipation and anxiety remains underexplored. This study investigates the association between constipation and anxiety in a representative sample of adults in the United States. Methods A cross-sectional analysis was conducted using data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2010, including 9,126 adults aged ≥20 years. Constipation and anxiety were assessed using standardized survey instruments. Multivariable logistic regression models were employed to calculate adjusted odds ratios (ORs), and subgroup and sensitivity analyses were performed to validate the findings. Additionally, Mendelian randomization (MR) was employed to assess the potential causal relationship between constipation and anxiety using genetic data from large GWAS datasets. Results Of the 9,126 participants, 324 reported constipation (prevalence: 3.6%), and 2,424 reported anxiety (prevalence: 26.6%). Anxiety prevalence was significantly higher in individuals with constipation compared to those without (41.4% vs. 26.0%; P < 0.001). After adjusting for demographic, socioeconomic, lifestyle, and comorbid factors, constipation remained independently associated with anxiety (adjusted OR: 1.33, 95% CI: 1.02-1.73; P = 0.038). Subgroup analyses revealed no significant interactions. Sensitivity analyses, including multiple imputations, weighted analysis, and propensity score matching, corroborated the robustness of the results. MR analysis, however, revealed no significant causal association between constipation and anxiety. Conclusion This study identifies a significant association between constipation and anxiety in a large, nationally representative cohort. While the association remains robust after adjusting for various factors, MR did not provide evidence for a causal relationship. Clinicians should consider evaluating and addressing anxiety symptoms as part of a comprehensive management strategy for patients presenting with constipation.
Collapse
Affiliation(s)
| | | | | | | | | | - Yisen Huang
- Department of Gastroenterology, First Hospital of Quanzhou Affiliated to Fujian Medical
University, Quanzhou, Fujian, China
| | - Xiaoqiang Liu
- Department of Gastroenterology, First Hospital of Quanzhou Affiliated to Fujian Medical
University, Quanzhou, Fujian, China
| |
Collapse
|
5
|
Storer B, Holden M, Kershaw KA, Braund TA, Chakouch C, Coleshill MJ, Haffar S, Harvey S, Sicouri G, Newby J, Murphy M. Global Prevalence of Anxiety in Gastroenterology and Hepatology Outpatients: A Systematic Review and Meta-Analysis. Curr Gastroenterol Rep 2025; 27:17. [PMID: 40014212 PMCID: PMC11868238 DOI: 10.1007/s11894-025-00963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/28/2025]
Abstract
PURPOSE OF REVIEW Many patients with chronic health conditions experience anxiety, which can have significant implications on physical health outcomes and quality of life. This systematic review and meta-analysis aimed to examine the prevalence of anxiety in gastroenterology and hepatology outpatients, across factors such as physical health condition, type of anxiety, and patient demographics, with the intention to support clinicians in providing effective patient care. RECENT FINDINGS Several recent systematic reviews have been published investigating rates of anxiety in different outpatient settings, and have found consistently high rates across the dermatology, endocrinology, cardiology and respiratory/sleep medicine fields, ranging between 25.1% and 30.3%. Whilst there are established links between gastroenterology and hepatology conditions with anxiety, there has yet to be a study estimating the overall global prevalence of anxiety in this outpatient setting. PubMed, Embase, Cochrane and PsycINFO databases were searched from database inception to January 2023 for studies reporting anxiety in gastroenterology and hepatology outpatients ≥ 16 years of age. Prevalence was extracted from self-report questionnaires, diagnostic interviews, and records. The final meta-analysis included 81 studies, with 28,334 participants. Pooled prevalence of anxiety was 31.2% (95% CI 28.2%-34.4%). Subgroup analyses identified significant differences in prevalence across anxiety type, with health anxiety showing the highest prevalence at 23.7%, followed by generalised anxiety 14.5%, specific phobia 12.5%, panic disorder/agoraphobia 12.2%, social anxiety 11.3%, post-traumatic stress disorder 4.9%, and obsessive-compulsive disorder 4.2%. No other significant differences were found. Anxiety is thus common amongst gastroenterology and hepatology outpatients, and so it is important that careful consideration be given to the identification and management of anxiety in these settings.
Collapse
Affiliation(s)
- Ben Storer
- Clinical Research Department, The Black Dog Institute, Sydney, Australia
| | - Monique Holden
- Clinical Research Department, The Black Dog Institute, Sydney, Australia
| | - Kelly Ann Kershaw
- Clinical Research Department, The Black Dog Institute, Sydney, Australia
| | - Taylor A Braund
- Clinical Research Department, The Black Dog Institute, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Cassandra Chakouch
- Clinical Research Department, The Black Dog Institute, Sydney, Australia
| | | | - Sam Haffar
- Clinical Research Department, The Black Dog Institute, Sydney, Australia
| | - Samuel Harvey
- Clinical Research Department, The Black Dog Institute, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Gemma Sicouri
- Clinical Research Department, The Black Dog Institute, Sydney, Australia
- School of Psychology, Faculty of Science, UNSW, Sydney, Australia
| | - Jill Newby
- Clinical Research Department, The Black Dog Institute, Sydney, Australia
- School of Psychology, Faculty of Science, UNSW, Sydney, Australia
| | - Michael Murphy
- Clinical Research Department, The Black Dog Institute, Sydney, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, Australia.
| |
Collapse
|
6
|
Interino N, Vitagliano R, D’Amico F, Lodi R, Porru E, Turroni S, Fiori J. Microbiota-Gut-Brain Axis: Mass-Spectrometry-Based Metabolomics in the Study of Microbiome Mediators-Stress Relationship. Biomolecules 2025; 15:243. [PMID: 40001546 PMCID: PMC11853089 DOI: 10.3390/biom15020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The microbiota-gut-brain axis is a complex bidirectional communication system that involves multiple interactions between intestinal functions and the emotional and cognitive centers of the brain. These interactions are mediated by molecules (metabolites) produced in both areas, which are considered mediators. To shed light on this complex mechanism, which is still largely unknown, a reliable characterization of the mediators is essential. Here, we review the most studied metabolites in the microbiota-gut-brain axis, the metabolic pathways in which they are involved, and their functions. This review focuses mainly on the use of mass spectrometry for their determination, reporting on the latest analytical methods, their limitations, and future perspectives. The analytical strategy for the qualitative-quantitative characterization of mediators must be reliable in order to elucidate the molecular mechanisms underlying the influence of the above-mentioned axis on stress resilience or vulnerability.
Collapse
Affiliation(s)
- Nicolò Interino
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Rosalba Vitagliano
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Federica D’Amico
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Raffaele Lodi
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Emanuele Porru
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Jessica Fiori
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
7
|
Zhang Y, Liu C, Zhu Q, Wu H, Liu Z, Zeng L. Relationship Between Depression and Epigallocatechin Gallate from the Perspective of Gut Microbiota: A Systematic Review. Nutrients 2025; 17:259. [PMID: 39861389 PMCID: PMC11767295 DOI: 10.3390/nu17020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Depression, a serious mental illness, is characterized by high risk, high incidence, persistence, and tendency to relapse, posing a significant burden on global health. The connection between depression and gut microbiota is an emerging field of study in psychiatry and neuroscience. Understanding the gut-brain axis is pivotal for understanding the pathogenesis and treatment of depression. Gut microbes influence depression-like behaviors by impacting the hypothalamic-pituitary-adrenal axis (HPA), monoamine neurotransmitters, immune responses, cell signaling, and metabolic pathways. Tea, widely used in clinical practice to improve neuropsychiatric disorders, contains Epigallocatechin gallate (EGCG), a major ingredient of green tea, which effectively regulates intestinal flora. This review examined the risks and causes of depression, the complications associated with intestinal flora, their role in the development and treatment of depression, and how EGCG may alleviate depression through interactions with gut microbiota and other mechanisms.
Collapse
Affiliation(s)
- Yangbo Zhang
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qi Zhu
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| | - Hui Wu
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Li Zeng
- School of Pharmacy, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (Q.Z.); (H.W.)
| |
Collapse
|
8
|
Rajabi P, Noori AS, Sargolzaei J. Autism spectrum disorder and various mechanisms behind it. Pharmacol Biochem Behav 2024; 245:173887. [PMID: 39378931 DOI: 10.1016/j.pbb.2024.173887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex and heterogeneous neurodevelopmental condition characterized by a range of social, communicative, and behavioral challenges. This comprehensive review delves into key aspects of ASD. Clinical Overview and genetic features provide a foundational understanding of ASD, highlighting the clinical presentation and genetic underpinnings that contribute to its complexity. We explore the intricate neurobiological mechanisms at play in ASD, including structural and functional differences that may underlie the condition's hallmark traits. Emerging research has shed light on the role of the immune system and neuroinflammation in ASD. This section investigates the potential links between immunological factors and ASD, offering insights into the condition's pathophysiology. We examine how atypical functional connectivity and alterations in neurotransmitter systems may contribute to the unique cognitive and behavioral features of ASD. In the pursuit of effective interventions, this section reviews current therapeutic strategies, ranging from behavioral and educational interventions to pharmacological approaches, providing a glimpse into the diverse and evolving landscape of ASD treatment. This holistic exploration of mechanisms in ASD aims to contribute to our evolving understanding of the condition and to guide the development of more targeted and personalized interventions for individuals living with ASD.
Collapse
Affiliation(s)
- Parisa Rajabi
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran
| | - Ali Sabbah Noori
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Javad Sargolzaei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran.
| |
Collapse
|
9
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
10
|
Naqvi S, Rehman NU, Azhar I, Palla A. Unraveling the multi-faceted role of Rosmarinus officinalis L. (rosemary) and diosmetin in managing gut motility. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118395. [PMID: 38801915 DOI: 10.1016/j.jep.2024.118395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosmarinus officinalis L. (Rosemary) is a popular herb with reported effectiveness against diarrhea, anxiety and constipation, albeit with limited pharmacological evidence. AIM OF THE STUDY The current study was aimed at evaluating the therapeutic potential, possible pharmacological mechanisms of action and active constituents of hydro-ethanolic extract of rosemary (Rs.Cr), as potential anti-diarrheal, laxative and anxiolytic agent. METHOD Rs.Cr was analyzed through reverse-phase high pressure liquid chromatography (RP-HPLC). Laxative, antidiarrheal, and anxiolytic activities were assessed using in vivo models. Spasmogenic and spasmolytic mechanisms were studied on isolated guinea pig ileum and rabbit jejunum tissues, respectively. Possible role of diosmetin, one of the active constituents of Rs.Cr was also evaluated. RESULTS RP-HPLC analysis revealed presence of diosmetin, rutin and apigenin in Rs.Cr. Laxative effect was seen at low doses, which was partially reversed in atropinized mice. The spasmogenic mechanism was mediated by cholinergic and histaminergic receptors stimulation. At higher doses, antidiarrheal activity was evident, with reduction in gastrointestinal motility and secretions using charcoal meal and enteropooling assays, respectively. Rs.Cr also showed dose-dependent anxiolytic effect. The antispasmodic mechanisms were mediated by anti-muscarinic and K+ channel opening-like effect (predominant KATP-dependent). Diosmetin exhibited antidiarrheal and antispasmodic activities, but spasmogenic effect was not seen. CONCLUSION Rosemary leaves have dual antidiarrheal and laxative effects, and as well as anxiolytic activity. In addition, the possible modulation of muscarinic and histaminergic receptors, and KATP channels show it as potential herb to be explored for irritable bowel syndrome. Diosmetin is possibly one of its constituents that contributes to its antidiarrheal activity.
Collapse
Affiliation(s)
- Sara Naqvi
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan; Faculty of Pharmacy, Iqra University, North Campus, Karachi, Pakistan.
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.
| | - Iqbal Azhar
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan.
| | - Amber Palla
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
11
|
Qian J, Yu F, Zheng L, Luo D, Zhao M. Comparison of the Protective Effects of Casein Hydrolysate Containing Tyr-Pro-Val-Glu-Pro-Phe and Casein on the Behaviors and Peripheral and Brain Functions in Mice with Chronic-Stress-Induced Anxiety and Insomnia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11515-11530. [PMID: 38726599 DOI: 10.1021/acs.jafc.4c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Chronic stress is a major inducer of anxiety and insomnia. Milk casein has been studied for its stress-relieving effects. We previously prepared a casein hydrolysate (CP) rich in the sleep-enhancing peptide YPVEPF, and this study aims to systemically investigate the different protective effects of CP and casein on dysfunction and anxiety/insomnia behavior and its underlying mechanisms in chronically stressed mice. Behavioral results showed that CP ameliorated stress-induced insomnia and anxiety more effectively than milk casein, and this difference in amelioration was highly correlated with an increase in GABA, 5-HT, GABAA, 5-HT1A receptors, and BDNF and a decrease in IL-6 and NMDA receptors in stressed mice. Furthermore, CP restored these dysfunctions in the brain and colon by activating the HPA response, modulating the ERK/CREB-BDNF-TrκB signaling pathway, and alleviating inflammation. The abundant YPVEPF (1.20 ± 0.04%) and Tyr-based/Trp-containing peptides of CP may be the key reasons for its different effects compared to casein. Thus, this work revealed the main active structures of CP and provided a novel dietary intervention strategy for the prevention and treatment of chronic-stress-induced dysfunction and anxiety/insomnia behaviors.
Collapse
Affiliation(s)
- Jingjing Qian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Fengjie Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
12
|
Ratajska AM, Etheridge CB, Lopez FV, Kenney LE, Rodriguez K, Schade RN, Gertler J, Bowers D. The Relationship Between Autonomic Dysfunction and Mood Symptoms in De Novo Parkinson's Disease Patients Over Time. J Geriatr Psychiatry Neurol 2024; 37:242-252. [PMID: 37831611 PMCID: PMC10990848 DOI: 10.1177/08919887231204542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
BACKGROUND Autonomic dysfunction is prevalent in Parkinson's disease (PD) and can worsen quality of life. We examined: (a) whether specific autonomic symptoms were more strongly associated with anxiety or depression in PD and (b) whether overall autonomic dysfunction predicted mood trajectories over a 5-year period. METHODS Newly diagnosed individuals with PD (N = 414) from the Parkinson's Progression Markers Initiative completed self-report measures of depression, anxiety, and autonomic symptoms annually. Cross-sectional linear regressions examined relationships between specific autonomic subdomains (gastrointestinal, cardiovascular, thermoregulatory, etc.) and mood. Multilevel modeling examined longitudinal relationships with total autonomic load. RESULTS Gastrointestinal symptoms were associated with both higher anxiety (b = 1.04, 95% CI [.55, 1.53], P < .001) and depression (b = .24, 95% CI [.11, .37], P = .012), as were thermoregulatory symptoms (anxiety: b = 1.06, 95% CI [.46, 1.65], P = .004; depression: b = .25, 95% CI [.09, .42], P = .013), while cardiovascular (b = .36, 95% CI [.10, .62], P = .012) and urinary symptoms (b = .10, 95% CI [.01, .20], P = .037) were associated only with depression. Longitudinally, higher total autonomic load was associated with increases in both depression (b = .01, 95% CI [.00, .02], P = .015) and anxiety (b = .04, 95% CI [.01, .06], P < .001) over time, as well as occasion-to-occasion fluctuations (depression: b = .08, 95% CI [.05, .10], P < .001; anxiety: b = .24, 95% CI [.15, .32], P < .001). CONCLUSION Findings suggest autonomic dysfunction, particularly gastrointestinal and thermoregulatory symptoms, may be an indicator for elevated anxiety/depression and a potential treatment target early on in PD.
Collapse
Affiliation(s)
- Adrianna M. Ratajska
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Connor B. Etheridge
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Francesca V. Lopez
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Lauren E. Kenney
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Katie Rodriguez
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Rachel N. Schade
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Joshua Gertler
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Paiva IHRD, Maciel LM, Silva RSD, Mendonça IP, Souza JRBD, Peixoto CA. Prebiotics modulate the microbiota-gut-brain axis and ameliorate anxiety and depression-like behavior in HFD-fed mice. Food Res Int 2024; 182:114153. [PMID: 38519181 DOI: 10.1016/j.foodres.2024.114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Previous research has demonstrated that Prebiotics can influence the composition of the gut microbiota, consequently impacting mood regulation. This study aimed to assess the effects of Prebiotics, specifically Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on neuroinflammation, depression, and anxiety-like behavior in a mouse model fed a high-fat diet (HFD). Initially, mice were divided into two groups: a control group on a standard diet (n = 15) and a group on an HFD for 18 weeks (n = 45). By the 13th week, the HFD group was further divided into experimental groups: Control (n = 15), HFD (n = 15), HFD receiving Prebiotics (n = 15), and HFD receiving Fluoxetine (n = 15). From the 13th week onward, the HFD + Prebiotics group received both the high-fat diet and a combination of FOS and GOS, while the HFD + Fluoxetine group received Fluoxetine in their drinking water. In the 18th week, all mice underwent tests to evaluate behavior, including the Tail Suspension Test (TST), Forced Swimming Test (FST), Sucrose Preference Test (SPT), and the Plus Maze Test (PMT), after which they were euthanized. Mice on the HFD exhibited increased body weight, abdominal size, blood glucose, triglyceride levels, cholesterol, insulin, HOMA index, and higher serum IL-1β. These obese mice also displayed an increased number of microglia and astrocytes, activation of the TLR4 pathway, and elevated levels of neuroinflammatory markers like TNF-α, IL-1β, and COX-2. Moreover, obese mice showed increased activation of the IDO pathway and decreased levels of NMDA receptors. Additionally, markers of neurogenesis and synaptic plasticity, such as PSD, SAP 102, CREB-p, and BDNF, were lower. Treatment with FOS and GOS reversed symptoms of depression and anxiety in mice subjected to HD. This improvement in behavior resulted from a reduction in dysbiosis with an increase in acetate-producing bacteria (B. acidifaciens and B. dorei) and intestinal permeability, leading to a decrease in chronic peripheral and central inflammation. Furthermore, the modulation of the gut-brain axis by FOS and GOS promoted elevated acetate and GPR43 levels in the brain and a reduction in the levels of pro-inflammatory cytokines, positively impacting signaling pathways of neuronal proliferation and survival in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Laís Macedo Maciel
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil
| | - Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil.
| |
Collapse
|
14
|
Wilson DR, Binford L, Hickson S. The Gut Microbiome and Mental Health. J Holist Nurs 2024; 42:79-87. [PMID: 37082808 DOI: 10.1177/08980101231170487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The gut microbiome has been well researched in the past few years and may be a target for treating mental illness. Trillions of bacteria in the digestive system work with the brain, immune function, and endocrine pathways. This gut microbiome ecosystem mediates the interaction between the human being and the environment making its inclusion in holistic nursing essential. Changes in normal balance of the gut microbiome occur with diet, antibiotics and other medications, stress, cancer treatment, geography and environment, and current illnesses. When the microbiome is challenged a "dysbiotic" state leads to inadequate production of needed neurotransmitters such as serotonin and dopamine. Research has shown links between the dysbiosis, and the inflammatory response system that are known to contribute to depression, anxiety, and schizophrenia. Understanding the role of the gut microbiome can be beneficial to holistic nurses, providing a new tool to prevent, treat, or reduce symptoms of mental illness and improve general immune function. This innocuous holistic approach to mental wellness is becoming an important evidenced-based approach.
Collapse
Affiliation(s)
- Debra Rose Wilson
- Lenora C. Reuther Chair of Excellence. Austin Peay State University, Clarksville TN, Walden University, USA
| | | | | |
Collapse
|
15
|
Massey WJ, Kay KE, Jaramillo TC, Horak AJ, Cao S, Osborn LJ, Banerjee R, Mrdjen M, Hamoudi MK, Silver DJ, Burrows AC, Brown AL, Reizes O, Lathia JD, Wang Z, Hazen SL, Brown JM. Metaorganismal choline metabolism shapes olfactory perception. J Biol Chem 2023; 299:105299. [PMID: 37777156 PMCID: PMC10630631 DOI: 10.1016/j.jbc.2023.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023] Open
Abstract
Microbes living in the intestine can regulate key signaling processes in the central nervous system that directly impact brain health. This gut-brain signaling axis is partially mediated by microbe-host-dependent immune regulation, gut-innervating neuronal communication, and endocrine-like small molecule metabolites that originate from bacteria to ultimately cross the blood-brain barrier. Given the mounting evidence of gut-brain crosstalk, a new therapeutic approach of "psychobiotics" has emerged, whereby strategies designed to primarily modify the gut microbiome have been shown to improve mental health or slow neurodegenerative diseases. Diet is one of the most powerful determinants of gut microbiome community structure, and dietary habits are associated with brain health and disease. Recently, the metaorganismal (i.e., diet-microbe-host) trimethylamine N-oxide (TMAO) pathway has been linked to the development of several brain diseases including Alzheimer's, Parkinson's, and ischemic stroke. However, it is poorly understood how metaorganismal TMAO production influences brain function under normal physiological conditions. To address this, here we have reduced TMAO levels by inhibiting gut microbe-driven choline conversion to trimethylamine (TMA), and then performed comprehensive behavioral phenotyping in mice. Unexpectedly, we find that TMAO is particularly enriched in the murine olfactory bulb, and when TMAO production is blunted at the level of bacterial choline TMA lyase (CutC/D), olfactory perception is altered. Taken together, our studies demonstrate a previously underappreciated role for the TMAO pathway in olfactory-related behaviors.
Collapse
Affiliation(s)
- William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kristen E Kay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Thomas C Jaramillo
- Rodent Behavior Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anthony J Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shijie Cao
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Marko Mrdjen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael K Hamoudi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy C Burrows
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amanda L Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
16
|
Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, Winer DA. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J 2023; 290:4163-4186. [PMID: 35727858 PMCID: PMC9768107 DOI: 10.1111/febs.16558] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 08/13/2023]
Abstract
Obesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases. Thus, it is becoming increasingly important to understand what drives this inflammation in affected tissues. Recent evidence, especially in the context of obesity, suggests that the intestine plays an important role as the gatekeeper of inflammatory stimuli that ultimately fuels low-grade chronic tissue inflammation. In addition to metabolic diseases, abnormalities in the intestinal mucosal barrier have been linked to a range of other chronic inflammatory conditions, such as neurodegeneration and ageing. The flow of inflammatory stimuli from the gut is in part controlled by local immunological inputs impacting the intestinal barrier. Here, we will review the impact of obesity and ageing on the intestinal immune system and its downstream consequences on gut barrier function, which is strongly implicated in the pathogenesis of obesity and age-related diseases. In particular, we will discuss the effects of age-related intestinal dysfunction on neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J. Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Rohini Emani
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Olga Bielska
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony J. Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Julie K. Andersen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Daniel A. Winer
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
17
|
Mhanna A, Alshehabi Z. The microbiota-gut-brain axis and three common neurological disorders: a mini-review. Ann Med Surg (Lond) 2023; 85:1780-1783. [PMID: 37228957 PMCID: PMC10205337 DOI: 10.1097/ms9.0000000000000552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023] Open
Abstract
Neurological disorders are an important cause of disability and death globally. Recently, a large body of research shows that the gut microbiome affects the brain and its conditions, through the gut-brain axis. The purpose of this mini-review is to provide a brief overview of the relationship between the microbiota-gut-brain axis in three neurological disorders: epilepsy, Parkinson's disease, and migraine. The authors chose these three disorders because of their burdensome and great effect on health care. We live on a microbial planet. Before humans, microorganisms existed for a hundred million years. Today, there are trillions of these microbes living in our bodies, it is called human microbiota. These organisms have a crucial role in our homeostasis and survival. Most of the human microbiota live in the gut. The number of gut microbiota is much more than the number of body cells. Gut microbiota has been regarded as a crucial regulator of the gut-brain axis. The discovery of the microbiota-gut-brain axis is described as a major advancement in neuroscience because it influences the pathophysiology of several neurological and psychiatric disorders. From this, more studies of the microbiota-gut-brain axis are needed in the future, to provide a better understanding of brain disorders and so that better treatment and prognosis.
Collapse
Affiliation(s)
| | - Zuheir Alshehabi
- Department of Pathology, Tishreen University Hospital, Latakia, Syrian Arab Republic
| |
Collapse
|
18
|
Nabeh OA. New insights on the impact of gut microbiota on premenstrual disorders. Will probiotics solve this mystery? Life Sci 2023; 321:121606. [PMID: 36948390 DOI: 10.1016/j.lfs.2023.121606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Premenstrual disorders (PMDs) refer to premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD), where both are characterized by physical and psychological changes occurring in the luteal phase of menstrual cycle. According to the available theories, there is no single accusation succeeded to explain the pathophysiology of PMDs. However, there is emerging evidence for the role of gut microbiota (GM) in PMDs, supported by the diverging impact of GM on our body systems. The direct secretory function of GM and their integration in hormonal, neurotransmitters and bioactive compounds secretion and activity reinforce this speculation. Moreover, the bidirectional relation between GM and steroid hormones and the impact of diet, drugs, and inflammation on both, GM and PMDs incidence and severity justify the need for more studies to determine the actual role of GM in PMDs and the possible potential of probiotics and prebiotics as therapeutic options.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt; Cardiovascular Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
19
|
Singewald N, Sartori SB, Reif A, Holmes A. Alleviating anxiety and taming trauma: Novel pharmacotherapeutics for anxiety disorders and posttraumatic stress disorder. Neuropharmacology 2023; 226:109418. [PMID: 36623804 PMCID: PMC10372846 DOI: 10.1016/j.neuropharm.2023.109418] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Psychiatric disorders associated with psychological trauma, stress and anxiety are a highly prevalent and increasing cause of morbidity worldwide. Current therapeutic approaches, including medication, are effective in alleviating symptoms of anxiety disorders and posttraumatic stress disorder (PTSD), at least in some individuals, but have unwanted side-effects and do not resolve underlying pathophysiology. After a period of stagnation, there is renewed enthusiasm from public, academic and commercial parties in designing and developing drug treatments for these disorders. Here, we aim to provide a snapshot of the current state of this field that is written for neuropharmacologists, but also practicing clinicians and the interested lay-reader. After introducing currently available drug treatments, we summarize recent/ongoing clinical assessment of novel medicines for anxiety and PTSD, grouped according to primary neurochemical targets and their potential to produce acute and/or enduring therapeutic effects. The evaluation of putative treatments targeting monoamine (including psychedelics), GABA, glutamate, cannabinoid, cholinergic and neuropeptide systems, amongst others, are discussed. We emphasize the importance of designing and clinically assessing new medications based on a firm understanding of the underlying neurobiology stemming from the rapid advances being made in neuroscience. This includes harnessing neuroplasticity to bring about lasting beneficial changes in the brain rather than - as many current medications do - produce a transient attenuation of symptoms, as exemplified by combining psychotropic/cognitive enhancing drugs with psychotherapeutic approaches. We conclude by noting some of the other emerging trends in this promising new phase of drug development.
Collapse
Affiliation(s)
- Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| | - Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
20
|
Kumar N, Sahoo NK, Mehan S, Verma B. The importance of gut-brain axis and use of probiotics as a treatment strategy for multiple sclerosis. Mult Scler Relat Disord 2023; 71:104547. [PMID: 36805171 DOI: 10.1016/j.msard.2023.104547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
It has been shown that the dysbiosis of the gut's microbes substantially impacts CNS illnesses, including Alzheimer's, Parkinson's, autism, and autoimmune diseases like multiple sclerosis (MS). MS is a CNS-affected autoimmune demyelination condition. Through a two-way communication pathway known as the gut-brain axis, gut microbes communicate with the CNS. When there is a disruption in the gut microbiome, cytokines and other immune cells are secreted, which affects the BBB and gastrointestinal permeability. Recent research using animal models has revealed that the gut microbiota may greatly influence the pathophysiology of EAE/MS. Any change in the gut might increase inflammatory cytokinesand affect the quantity of SCFAs, and other metabolites that cause neuroinflammation and demyelination. In- vivo and in-vitro studies have concluded that probiotics affect the immune system and can be utilized to treat gastrointestinal dysbiosis. Any alteration in the gut microbial composition caused by probiotic intake may serve as a preventive and treatment strategy for MS. The major goal of this review is to emphasize an overview of recent research on the function of gut microbiota in the onset of MS and how probiotics have a substantial impact on gastrointestinal disruption in MS and other neuro disorders. It will be easier to develop new therapeutic approaches, particularly probiotic-based supplements, for treating multiple sclerosis (MS) if we know the link between the gut and CNS.
Collapse
Affiliation(s)
- Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India.
| | - Nalini Kanta Sahoo
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (An Autonomous College), Moga, Punjab 142001, India
| | - Bharti Verma
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| |
Collapse
|
21
|
Ritchie G, Strodl E, Parham S, Bambling M, Cramb S, Vitetta L. An exploratory study of the gut microbiota in major depression with anxious distress. J Affect Disord 2023; 320:595-604. [PMID: 36209779 DOI: 10.1016/j.jad.2022.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To explore differences in the diversity and composition of the gut microbiome between major depressive disorder (MDD) with and without anxious distress. METHODS The study comprised 117 participants (79 female, 36 male, 2 other, mean age 38.2 ± 13.4 years) with a current major depressive episode (MDE) with (n = 63) and without (n = 54) the anxious distress specifier. A clinical psychologist administered the structured clinical interview for the DSM-5-RV to confirm a diagnosis of depression. Participants provided stool samples which were immediately frozen and stored at -80 °C. These samples were analysed using the Illumina 16S Metagenomics sequencing protocol in which the sequencing primers target the V3 and V4 regions of the 16S rRNA gene. Participants also completed mental health questionnaires to assess severity of depression (BDI-II), generalized anxiety (GAD-7), and stress (PSS). RESULTS There were no significant group differences in α-diversity (Shannon's diversity Index; Simpson Index), richness (ACE; Chao1), (Pielou's) evenness, or beta diversity (Bray-Curtis dissimilarity index and weighted UniFrac distance) of gut bacteria. Significant group differences in the relative abundance of gut microbiota however were observed at each taxonomical level, including across 15 genera and 18 species. LIMITATIONS This was an exploratory study that needs to be replicated across larger samples and compared with a healthy control group. CONCLUSIONS The research contributes to knowledge of the depressive gut microbial profile unique to the anxious distress subtype of MDD.
Collapse
Affiliation(s)
- Gabrielle Ritchie
- Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | - Esben Strodl
- Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Sophie Parham
- Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Matthew Bambling
- Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Susanna Cramb
- Australian Centre for Health Services Innovation & Centre for Healthcare Transformation, Queensland University of Technology, Brisbane, Australia
| | - Luis Vitetta
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.; Medlab Clinical, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Han Y, Wang B, Gao H, He C, Hua R, Liang C, Zhang S, Wang Y, Xin S, Xu J. Vagus Nerve and Underlying Impact on the Gut Microbiota-Brain Axis in Behavior and Neurodegenerative Diseases. J Inflamm Res 2022; 15:6213-6230. [PMID: 36386584 PMCID: PMC9656367 DOI: 10.2147/jir.s384949] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
The gut microbiota is the most abundant and diverse microbiota in the human body and the vagus nerve is the most widely distributed and complex nerve in the body, both of them are essential in maintaining homeostasis. The most important phenomenon is how they coordinate to regulate functions, which has attracted the great attention of scientists. The academic literature on the correlation with a host of intestinal diseases and even systemic diseases has revealed the bidirectional communication between the gut microbiota and the brain, which can be carried out via multiple patterns. In the review, firstly, we have a general overview of the gut microbiota and the gut microbiota-brain axis. Secondly, according to the distribution characteristics of the vagus nerve, we analyzed and summarized its function in the intestinal tract. At the same time, we have summarized the underlying mechanism of some behavior changes such as depressive and anxiety-like behaviors and related neurodegenerative diseases caused by the vagus nerve and intestinal microecological environment disorders, and then we also analyzed inconsistency of the experimental evidence in order to propose novel strategies for the clinical practice.
Collapse
Affiliation(s)
- Yimin Han
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, 100083, People’s Republic of China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Ying Wang
- Department of Dermatology, Beijing Tong Ren Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People’s Republic of China
- Correspondence: Jingdong Xu, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10, Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, People’s Republic of China, Tel/Fax +86 10-8391-1469, Email
| |
Collapse
|
23
|
Ma Y, Liu T, Li X, Kong A, Xiao R, Xie R, Gao J, Wang Z, Cai Y, Zou J, Yang L, Wang L, Zhao J, Xu H, Margaret W, Xu X, Gustafsson JA, Fan X. Estrogen receptor β deficiency impairs gut microbiota: a possible mechanism of IBD-induced anxiety-like behavior. MICROBIOME 2022; 10:160. [PMID: 36175956 PMCID: PMC9520828 DOI: 10.1186/s40168-022-01356-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although the lack of estrogen receptor β (ERβ) is a risk factor for the development of inflammatory bowel disease (IBD) and psychiatric disorders, the underlying cellular and molecular mechanisms are not fully understood. Herein, we revealed the role of gut microbiota in the development of IBD and related anxiety-like behavior in ERβ-deficient mice. RESULTS In response to dextran sodium sulfate (DSS) insult, the ERβ knockout mice displayed significant shift in α and β diversity in the fecal microbiota composition and demonstrated worsening of colitis and anxiety-like behaviors. In addition, DSS-induced colitis also induced hypothalamic-pituitary-adrenal (HPA) axis hyperactivity in ERβ-deficient mice, which was associated with colitis and anxiety-like behaviors. In addition, RNA sequencing data suggested that ErbB4 might be the target of ERβ that is involved in regulating the HPA axis hyperactivity caused by DSS insult. Gut microbiota remodeling by co-housing showed that both the colitis and anxiety-like behaviors were aggravated in co-housed wild-type mice compared to single-housed wild-type mice. These findings suggest that gut microbiota play a critical role in mediating colitis disease activity and anxiety-like behaviors via aberrant neural processing within the gut-brain axis. CONCLUSIONS ERβ has the potential to inhibit colitis development and anxiety-like behaviors via remodeling of the gut microbiota, which suggests that ERβ is a promising therapeutic target for the treatment of IBD and related anxiety-like behaviors. Video Abstract.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Anqi Kong
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Rui Xiao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Ruxin Xie
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Zhongke Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Warner Margaret
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Jan-Ake Gustafsson
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, USA.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
24
|
Aupetit A, Grigioni S, Roman H, Coëffier M, Bréant A, Hennetier C, Achamrah N. Association between Endometriosis, Irritable Bowel Syndrome and Eating Disorders: ENDONUT Pilot Study. J Clin Med 2022; 11:jcm11195773. [PMID: 36233641 PMCID: PMC9571159 DOI: 10.3390/jcm11195773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Background and aim: Irritable bowel syndrome (IBS), eating disorders (ED) and endometriosis share common pathophysiological mechanisms, involving alterations of the gut−brain axis. The aim of the ENDONUT pilot study was to investigate an association between these three diseases by screening for IBS and ED in patients with endometriosis. Method: We included patients from the CIRENDO cohort (Inter-Regional North-West Cohort of women with ENDOmetriosis) with a recent documented diagnosis of endometriosis of less than 4 years, regardless of age, date of onset of symptoms, type of endometriosis (digestive or not), with or without endometriosis-related digestive surgery. Validated questionnaires were used to screen for IBS (Rome IV, Francis score), ED (SCOFF-F, EAT-26), and anxiety/depression (HAD). Anthropometric data and lifestyle habits were also collected. The primary composite endpoint was SCOFF-F and ROME-IV scores. Results: Among 100 patients meeting inclusion criteria, 54 patients completed all the questionnaires. Of these, 19 had a positive SCOFF-F score (35.2%), 26 had a positive ROME-IV score (48.1%), and 14 patients (25.9%) had both a positive SCOFF-F score and a positive ROME-IV score (p = 0.006). Patients with positive SCOFF-F and ROME-IV scores had significantly higher HAD-anxiety and depression scores (p < 0.05). Conclusion: These results suggest a significant association between IBS, ED and endometriosis. The prevalence of IBS and ED in our population is higher than in the general population. Larger studies are needed to confirm these results, to better understand this triad, and to improve the diagnostic and multidisciplinary therapeutic management of these patients.
Collapse
Affiliation(s)
- Alexandra Aupetit
- Department of Gastroenterology, Rouen University Hospital, 37 Boulevard Gambetta, 76000 Rouen, France
- Correspondence: ; Tel.: +33-07-70-50-28-82
| | - Sébastien Grigioni
- Department of Nutrition, Rouen University Hospital, 37 Boulevard Gambetta, 76000 Rouen, France
- INSERM UMR 1073 «Nutrition, Inflammation and Gut–Brain Axis Dysfunction», Normandie University, 76000 Rouen, France
- Clinical Investigation Center CIC 1404, INSERM, Rouen University Hospital, 76000 Rouen, France
| | - Horace Roman
- Multidisciplinary Franco-European Institute of Endometriosis, Clinique Tivoli-Ducos, 91 Rue de Rivière, 33000 Bordeaux, France
| | - Moïse Coëffier
- Department of Nutrition, Rouen University Hospital, 37 Boulevard Gambetta, 76000 Rouen, France
- INSERM UMR 1073 «Nutrition, Inflammation and Gut–Brain Axis Dysfunction», Normandie University, 76000 Rouen, France
- Clinical Investigation Center CIC 1404, INSERM, Rouen University Hospital, 76000 Rouen, France
| | - Amélie Bréant
- Department of Gynecology, Rouen University Hospital, 37 Boulevard Gambetta, 76000 Rouen, France
| | - Clotilde Hennetier
- Department of Gynecology, Rouen University Hospital, 37 Boulevard Gambetta, 76000 Rouen, France
| | - Najate Achamrah
- Department of Nutrition, Rouen University Hospital, 37 Boulevard Gambetta, 76000 Rouen, France
- INSERM UMR 1073 «Nutrition, Inflammation and Gut–Brain Axis Dysfunction», Normandie University, 76000 Rouen, France
- Clinical Investigation Center CIC 1404, INSERM, Rouen University Hospital, 76000 Rouen, France
| |
Collapse
|
25
|
Hong M, Yu J, Wang X, Liu Y, Zhan S, Wu Z, Zhang X. Tea Polyphenols as Prospective Natural Attenuators of Brain Aging. Nutrients 2022; 14:3012. [PMID: 35893865 PMCID: PMC9332553 DOI: 10.3390/nu14153012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022] Open
Abstract
No organism can avoid the process of aging, which is often accompanied by chronic disease. The process of biological aging is driven by a series of interrelated mechanisms through different signal pathways, including oxidative stress, inflammatory states, autophagy and others. In addition, the intestinal microbiota play a key role in regulating oxidative stress of microglia, maintaining homeostasis of microglia and alleviating age-related diseases. Tea polyphenols can effectively regulate the composition of the intestinal microbiota. In recent years, the potential anti-aging benefits of tea polyphenols have attracted increasing attention because they can inhibit neuroinflammation and prevent degenerative effects in the brain. The interaction between human neurological function and the gut microbiota suggests that intervention with tea polyphenols is a possible way to alleviate brain-aging. Studies have been undertaken into the possible mechanisms underpinning the preventative effect of tea polyphenols on brain-aging mediated by the intestinal microbiota. Tea polyphenols may be regarded as potential neuroprotective substances which can act with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Jing Yu
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Xuanpeng Wang
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| |
Collapse
|
26
|
Lalonde R, Strazielle C. Probiotic effects on anxiety-like behavior in animal models. Rev Neurosci 2022; 33:691-701. [PMID: 35381125 DOI: 10.1515/revneuro-2021-0173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022]
Abstract
Gut microbiota have been shown to be useful in treating gastrointestinal diseases, cancer, obesity, infections, and, more recently, neuropsychiatric conditions such as degenerative diseases and depression. There has also been recent expansion in testing probiotics and prebiotics on anxiety-like behaviors in animals. Current results indicate that probiotic substances of the Lactobacillus and Bifidobacterium type are effective in reducing anxiety-like behaviors in mice or rats evaluated in the elevated plus-maze, the open-field, the light-dark box, and conditioned defensive burying. Probiotics are also effective in reducing serum or plasma corticosterone levels after acute stress. It is hypothesized that probiotics cause anxiolytic-like effects via vagal influences on caudal solitary nucleus, periaqueductal gray, central nucleus of the amygdala, and bed nucleus of the stria terminalis. Further experimentation is needed to trace the neurochemical anatomy underlying anxiolytic-like behaviors of gut microbiata exerting effects via vagal or nonvagal pathways.
Collapse
Affiliation(s)
- Robert Lalonde
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, 54500 Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, 54500 Vandœuvre-les-Nancy, France.,CHRU Nancy, 54500 Vandœuvre-les-Nancy, France
| |
Collapse
|
27
|
Labrenz F, Spisák T, Ernst TM, Gomes CA, Quick HH, Axmacher N, Elsenbruch S, Timmann D. Temporal dynamics of fMRI signal changes during conditioned interoceptive pain-related fear and safety acquisition and extinction. Behav Brain Res 2022; 427:113868. [PMID: 35364111 DOI: 10.1016/j.bbr.2022.113868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/18/2022]
Abstract
Associative learning and memory mechanisms drive interoceptive signaling along the gut-brain axis, thus shaping affective-emotional reactions and behavior. Specifically, learning to predict potentially harmful, visceral pain is assumed to succeed within very few trials. However, the temporal dynamics of cerebellar and cerebral fMRI signal changes underlying early acquisition and extinction of learned fear signals and the concomitant evolvement of safety learning remain incompletely understood. 3T fMRI data of healthy individuals from three studies were uniformly processed across the whole brain and the cerebellum including an advanced normalizing method of the cerebellum. All studies employed differential delay conditioning (N=94) with one visual cue (CS+) being repeatedly paired with visceral pain as unconditioned stimulus (US) while a second cue remained unpaired (CS-). During subsequent extinction (N=51), all CS were presented without US. Behavioral results revealed increased CS+-aversiveness and CS--pleasantness after conditioning and diminished valence ratings for both CS following extinction. During early acquisition, the CS- induced linearly increasing neural activation in the insula, midcingulate cortex, hippocampus, precuneus as well as cerebral and cerebellar somatomotor regions. The comparison between acquisition and extinction phases yielded a CS--induced linear increase in the posterior cingulate cortex and precuneus during early acquisition, while there was no evidence for linear fMRI signal changes for the CS+ during acquisition and for both CS during extinction. Based on theoretical accounts of discrimination and temporal difference learning, these results suggest a gradual evolvement of learned safety cues that engage emotional arousal, memory, and cortical modulatory networks. As safety signals are presumably more difficult to learn and to discriminate from learned threat cues, the underlying temporal dynamics may reflect enhanced salience and prediction processing as well as increasing demands for attentional resources and the integration of multisensory information. Maladaptive responses to learned safety signals are a clinically relevant phenotype in multiple conditions, including chronic visceral pain, and can be exceptionally resistant to modification or extinction. Through sustained hypervigilance, safety seeking constitutes one key component in pain and stress-related avoidance behavior, calling for future studies targeting the mechanisms of safety learning and extinction to advance current cognitive-behavioral treatment approaches.
Collapse
Affiliation(s)
- Franziska Labrenz
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany; Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Tamás Spisák
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas M Ernst
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carlos A Gomes
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Harald H Quick
- High-Field and Hybrid Magnetic Resonance Imaging, University Hospital Essen, Essen, Germany; Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Sigrid Elsenbruch
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany; Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dagmar Timmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
28
|
Shobeiri P, Kalantari A, Teixeira AL, Rezaei N. Shedding light on biological sex differences and microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biol Sex Differ 2022; 13:12. [PMID: 35337376 PMCID: PMC8949832 DOI: 10.1186/s13293-022-00422-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Women and men are suggested to have differences in vulnerability to neuropsychiatric disorders, including major depressive disorder (MDD), generalized anxiety disorder (GAD), schizophrenia, eating disorders, including anorexia nervosa, and bulimia nervosa, neurodevelopmental disorders, such as autism spectrum disorder (ASD), and neurodegenerative disorders including Alzheimer's disease, Parkinson's disease. Genetic factors and sex hormones are apparently the main mediators of these differences. Recent evidence uncovers that reciprocal interactions between sex-related features (e.g., sex hormones and sex differences in the brain) and gut microbiota could play a role in the development of neuropsychiatric disorders via influencing the gut-brain axis. It is increasingly evident that sex-microbiota-brain interactions take part in the occurrence of neurologic and psychiatric disorders. Accordingly, integrating the existing evidence might help to enlighten the fundamental roles of these interactions in the pathogenesis of neuropsychiatric disorders. In addition, an increased understanding of the biological sex differences on the microbiota-brain may lead to advances in the treatment of neuropsychiatric disorders and increase the potential for precision medicine. This review discusses the effects of sex differences on the brain and gut microbiota and the putative underlying mechanisms of action. Additionally, we discuss the consequences of interactions between sex differences and gut microbiota on the emergence of particular neuropsychiatric disorders.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Zhang Y, Huang J, Xiong Y, Zhang X, Lin Y, Liu Z. Jasmine Tea Attenuates Chronic Unpredictable Mild Stress-Induced Depressive-like Behavior in Rats via the Gut-Brain Axis. Nutrients 2021; 14:nu14010099. [PMID: 35010973 PMCID: PMC8746588 DOI: 10.3390/nu14010099] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
The number of depressed people has increased worldwide. Dysfunction of the gut microbiota has been closely related to depression. The mechanism by which jasmine tea ameliorates depression via the brain-gut-microbiome (BGM) axis remains unclear. Here, the effects of jasmine tea on rats with depressive-like symptoms via the gut microbiome were investigated. We first established a chronic unpredictable mild stress (CUMS) rat model to induce depressive symptoms and measured the changes in depression-related indicators. Simultaneously, the changes in gut microbiota were investigated by 16S rRNA sequencing. Jasmine tea treatment improved depressive-like behaviors and neurotransmitters in CUMS rats. Jasmine tea increased the gut microbiota diversity and richness of depressed rats induced by CUMS. Spearman’s analysis showed correlations between the differential microbiota (Patescibacteria, Firmicutes, Bacteroidetes, Spirochaetes, Elusimicrobia, and Proteobacteria) and depressive-related indicators (BDNF, GLP-1, and 5-HT in the hippocampus and cerebral cortex). Combined with the correlation analysis of gut microbiota, the result indicated that jasmine tea could attenuate depression in rats via the brain- gut-microbiome axis.
Collapse
Affiliation(s)
- Yangbo Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yifan Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
| | - Xiangna Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
| | - Yong Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (J.H.); (Y.X.); (X.Z.); (Y.L.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Correspondence: ; Tel.: +86-0731-84635304
| |
Collapse
|
30
|
Gut Bacteria and Neuropsychiatric Disorders. Microorganisms 2021; 9:microorganisms9122583. [PMID: 34946184 PMCID: PMC8708963 DOI: 10.3390/microorganisms9122583] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteria in the gut microbiome plays an intrinsic part in immune activation, intestinal permeability, enteric reflex, and entero-endocrine signaling. Apart from physiological and structural changes brought about by gut bacteria on entero-epithelial cells and mucus layers, a vast number of signals generated in the gastro-intestinal tract (GIT) reaches the brain via the vagus nerve. Research on the gut–brain axis (GBA) has mostly been devoted to digestive functions and satiety. Less papers have been published on the role gut microbiota play in mood, cognitive behavior and neuropsychiatric disorders such as autism, depression and schizophrenia. Whether we will be able to fully decipher the connection between gut microbiota and mental health is debatable, especially since the gut microbiome is diverse, everchanging and highly responsive to external stimuli. Nevertheless, the more we discover about the gut microbiome and the more we learn about the GBA, the greater the chance of developing novel therapeutics, probiotics and psychobiotics to treat gastro-intestinal disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), but also improve cognitive functions and prevent or treat mental disorders. In this review we focus on the influence gut bacteria and their metabolites have on neuropsychiatric disorders.
Collapse
|