1
|
Matta B, Thomas L, Sharma V, Barnes BJ. Dysregulation of T Follicular Helper and Regulatory Cells in IRF5-SLE Homozygous Risk Carriers and Systemic Lupus Erythematosus Patients. Cells 2025; 14:454. [PMID: 40136703 PMCID: PMC11941281 DOI: 10.3390/cells14060454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
T follicular helper (Tfh) and T follicular regulatory cells (Tfr) are required for antibody production and are dysregulated in SLE. Genetic variants within or near interferon regulatory factor 5 (IRF5) are associated with SLE risk. We previously reported higher plasma cells and autoantibodies in healthy IRF5-SLE homozygous risk carriers. Here, we report the dysregulation of circulating Tfh and Tfr in both SLE patients and presymptomatic IRF5-SLE homozygous risk carriers.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (B.M.); (L.T.)
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Lydia Thomas
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (B.M.); (L.T.)
- Division of Pediatric Rheumatology, Cohen Children’s Medical Center, Lake Success, NY 11042, USA
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (B.M.); (L.T.)
- Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
2
|
Matta B, Battaglia J, Lapan M, Sharma V, Barnes BJ. IRF5 Controls Plasma Cell Generation and Antibody Production via Distinct Mechanisms Depending on the Antigenic Trigger. Immunology 2025; 174:226-238. [PMID: 39572974 PMCID: PMC11999051 DOI: 10.1111/imm.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Elevated levels of serum autoantibodies are a hallmark of systemic lupus erythematosus (SLE) and are produced by plasma cells in response to a variety of antigenic triggers. In SLE, the triggers are complex and may include both T cell-dependent/-independent and TLR-dependent/-independent mechanisms of immune activation, which ultimately contributes to the significant immune dysregulation seen in patients at the level of cytokine production and cellular activation (B cells, T cells, dendritic cells, neutrophils and macrophages). Interferon regulatory factor 5 (IRF5) has been identified as an autoimmune susceptibility gene and polymorphisms in IRF5 associate with altered expression and hyper-activation in distinct SLE immune cell subsets. To gain further insight into the mechanisms that drive IRF5-mediated SLE immune activation, we characterised wild-type (WT) and Irf5 -/- Balb/c mice in response to immunisation. WT and Irf5 -/- Balb/c mice were immunised to activate various signalling pathways in vivo followed by systemic immunophenotyping and detection of antibody production by multi-colour flow cytometry and ELISPOT. We identified two pathways, TLR9-dependent and T cell-dependent that resulted in IRF5 cell type-specific function. Immunisation with either CpG-B + Alum or NP-KLH + Alum but not with R848 + Alum, NP-LPS + Alum or NP-Ficoll+Alum resulted in decreased plasma cell generation and reduced antibody production in Irf5 -/- mice. Notably, the mechanism(s) leading to this downstream phenotype was distinct. In CpG-B + Alum immunised mice, we found reduced activation of plasmacytoid dendritic cells, resulting in reduced IFNα and IL6 production in Irf5 -/- mice. Conversely, mice immunised with NP-KLH + Alum had reduced numbers of T follicular helper cells and germinal centre B cells with reduced expression of Bcl6 in Irf5 -/- mice. Moreover, T follicular helper cells from Irf5 -/- mice were functionally defective. Even though the downstream phenotype of reduced antibody production in Irf5 -/- mice was conserved between T cell-dependent and TLR9-dependent immunisation, the mechanisms leading to this phenotype were antigen- and cell type-specific.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jenna Battaglia
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Margaret Lapan
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
3
|
Drobek A, Bernaleau L, Delacrétaz M, Calderon Copete S, Royer-Chardon C, Longepierre M, Monguió-Tortajada M, Korzeniowski J, Rotman S, Marquis J, Rebsamen M. The TLR7/9 adaptors TASL and TASL2 mediate IRF5-dependent antiviral responses and autoimmunity in mouse. Nat Commun 2025; 16:967. [PMID: 39856058 PMCID: PMC11759703 DOI: 10.1038/s41467-024-55692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/14/2024] [Indexed: 01/30/2025] Open
Abstract
Endosomal nucleic acid sensing by Toll-like receptors (TLRs) is central to antimicrobial immunity and several autoimmune conditions such as systemic lupus erythematosus (SLE). The innate immune adaptor TASL mediates, via the interaction with SLC15A4, the activation of IRF5 downstream of human TLR7, TLR8 and TLR9, but the pathophysiological functions of this axis remain unexplored. Here we show that SLC15A4 deficiency results in a selective block of TLR7/9-induced IRF5 activation, while loss of TASL leads to a strong but incomplete impairment, which depends on the cell type and TLR engaged. This residual IRF5 activity is ascribed to a previously uncharacterized paralogue, Gm6377, named here TASL2. Double knockout of TASL and TASL2 (TASLDKO) phenocopies SLC15A4-deficient feeble mice showing comparable impairment of innate and humoral responses. Consequently, TASLDKO mice fail to control chronic LCMV infection, while being protected in a pristane-induced SLE disease model. Our study thus demonstrates the critical pathophysiological role of SLC15A4 and TASL/TASL2 for TLR7/9-driven inflammatory responses, further supporting the therapeutic potential of targeting this complex in SLE and related diseases.
Collapse
Affiliation(s)
- Ales Drobek
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Léa Bernaleau
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Maeva Delacrétaz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Sandra Calderon Copete
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, Lausanne, Switzerland
| | - Claire Royer-Chardon
- Department of Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | - Jakub Korzeniowski
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Samuel Rotman
- Department of Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Julien Marquis
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, Lausanne, Switzerland
| | - Manuele Rebsamen
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
4
|
Katikaneni D, Morel L, Scindia Y. Animal models of lupus nephritis: the past, present and a future outlook. Autoimmunity 2024; 57:2319203. [PMID: 38477884 PMCID: PMC10981450 DOI: 10.1080/08916934.2024.2319203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
Lupus nephritis (LN) is the most severe end-organ pathology in Systemic Lupus Erythematosus (SLE). Research has enhanced our understanding of immune effectors and inflammatory pathways in LN. However, even with the best available therapy, the rate of complete remission for proliferative LN remains below 50%. A deeper understanding of the resistance or susceptibility of renal cells to injury during the progression of SLE is critical for identifying new targets and developing effective long-term therapies. The complex and heterogeneous nature of LN, combined with the limitations of clinical research, make it challenging to investigate the aetiology of this disease directly in patients. Hence, multiple murine models resembling SLE-driven nephritis are utilised to dissect LN's cellular and genetic mechanisms, identify therapeutic targets, and screen novel compounds. This review discusses commonly used spontaneous and inducible mouse models that have provided insights into pathogenic mechanisms and long-term maintenance therapies in LN.
Collapse
Affiliation(s)
- Divya Katikaneni
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health, San Antonio, Texas, USA
| | - Yogesh Scindia
- Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Liu Z, Liu F, Xie J, Zhao Z, Pan S, Liu D, Xia Z, Liu Z. Recognition of differently expressed genes and DNA methylation markers in patients with Lupus nephritis. J Transl Int Med 2024; 12:367-383. [PMID: 39360156 PMCID: PMC11444471 DOI: 10.2478/jtim-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Background and Objectives Systemic lupus erythematosus (SLE) is distinguished by dysregulated immune system activity, resulting in a spectrum of clinical manifestations, with lupus nephritis being particularly prominent. This study endeavors to discern novel targets as potential therapeutic markers for this condition. Methods Weighted correlation network analysis (WGCNA) was used to construct the network and select the key hub genes in the co-expression module based on the gene expression dataset GSE81622. Subsequently, functional enrichment and pathway analysis were performed for SLE and lupus nephritis. In addition, also identify genes and differences in SLE with lupus nephritis and methylation site. Finally, qRT-PCR and western blot were used to verify the up-regulated expression levels of the selected key genes. Results Within the co-expression modules constructed by WGCNA, the MElightcyan module exhibited the strongest positive correlation with lupus nephritis (0.4, P = 0.003), while showing a weaker correlation with the control group SLE (0.058) and a negative correlation with the control group (-0.41, P = 0.002). Additionally, the MEgreenyellow module displayed the highest positive correlation with SLE (0.25), but its P value was 0.06, which did not reach statistical significance(P > 0.05). Furthermore, it had a negative correlation with the control group was (-0.38, P = 0.004). The module associated with lupus nephritis was characterized by processes such as neutrophil activation (neutrophil_activation), neutrophil degranulation (neutrophil_degranulation), neutrophil activation involved in immune response (neutrophil_activation_involved_in_immune_response), neutrophils mediated immune (neutrophil_mediated_immunity) and white blood cells degranulation (leukocyte_degranulation) and so on the adjustment of the process. Secondly, in the analysis of SLE samples, the identification of differentially expressed genes revealed 125 genes, with 49 being up-regulated and 76 down-regulated. In the case of lupus nephritis samples, 156 differentially expressed genes were discerned, include in 70 up-regulated and 86 down-regulated genes. When examining differential methylation sites, we observed 12432 such sites in the SLE sample analysis, encompassing 2260 hypermethylation sites and 10172 hypomethylation sites. In the lupus nephritis samples analysis, 9613 differential methylation sites were identified, comprising 4542 hypermethylation sites and 5071 hypomethylation sites. Substantiating our findings, experimental validation of the up-regulated genes in lupus nephritis confirmed increased levels of gene expression and protein expression for CEACAM1 and SLC2A5. Conclusions We have identified several genes, notably CEACAM1 and SLC2A5, as potential markers for lupus nephritis. Their elevated expression levels and reduced DNA methylation in lupus nephritis contribute to a more comprehensive understanding of the aberrant epigenetic regulation of expression in this condition. These findings hold significant implications for the diagnosis and therapeutic strategies of lupus nephritis.
Collapse
Affiliation(s)
- Zhenjie Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- Key Laboratory of Henan Provincial Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou450052, Henan Province, China
| | - Junwei Xie
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Zihao Zhao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- Key Laboratory of Henan Provincial Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou450052, Henan Province, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- Key Laboratory of Henan Provincial Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou450052, Henan Province, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- Key Laboratory of Henan Provincial Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou450052, Henan Province, China
| |
Collapse
|
7
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
8
|
Song S, De S, Nelson V, Chopra S, LaPan M, Kampta K, Sun S, He M, Thompson CD, Li D, Shih T, Tan N, Al-Abed Y, Capitle E, Aranow C, Mackay M, Clapp WL, Barnes BJ. Inhibition of IRF5 hyperactivation protects from lupus onset and severity. J Clin Invest 2021; 130:6700-6717. [PMID: 32897883 PMCID: PMC7685739 DOI: 10.1172/jci120288] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
The transcription factor IFN regulatory factor 5 (IRF5) is a central mediator of innate and adaptive immunity. Genetic variations within IRF5 are associated with a risk of systemic lupus erythematosus (SLE), and mice lacking Irf5 are protected from lupus onset and severity, but how IRF5 functions in the context of SLE disease progression remains unclear. Using the NZB/W F1 model of murine lupus, we show that murine IRF5 becomes hyperactivated before clinical onset. In patients with SLE, IRF5 hyperactivation correlated with dsDNA titers. To test whether IRF5 hyperactivation is a targetable function, we developed inhibitors that are cell permeable, nontoxic, and selectively bind to the inactive IRF5 monomer. Preclinical treatment of NZB/W F1 mice with an inhibitor attenuated lupus pathology by reducing serum antinuclear autoantibodies, dsDNA titers, and the number of circulating plasma cells, which alleviated kidney pathology and improved survival. Clinical treatment of MRL/lpr and pristane-induced lupus mice with an inhibitor led to significant reductions in dsDNA levels and improved survival. In ex vivo human studies, the inhibitor blocked SLE serum-induced IRF5 activation and reversed basal IRF5 hyperactivation in SLE immune cells. We believe this study provides the first in vivo clinical support for treating patients with SLE with an IRF5 inhibitor.
Collapse
Affiliation(s)
- Su Song
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Saurav De
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Rutgers Graduate School of Biomedical Sciences, Newark, New Jersey, USA
| | - Victoria Nelson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Samin Chopra
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Margaret LaPan
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Kyle Kampta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Shan Sun
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Mingzhu He
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Cherrie D Thompson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Dan Li
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Tiffany Shih
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Natalie Tan
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Eugenio Capitle
- Division of Allergy, Immunology and Rheumatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Cynthia Aranow
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Meggan Mackay
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - William L Clapp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
9
|
Zhao X, Zhang L, Wang J, Zhang M, Song Z, Ni B, You Y. Identification of key biomarkers and immune infiltration in systemic lupus erythematosus by integrated bioinformatics analysis. J Transl Med 2021; 19:35. [PMID: 33468161 PMCID: PMC7814551 DOI: 10.1186/s12967-020-02698-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a multisystemic, chronic inflammatory disease characterized by destructive systemic organ involvement, which could cause the decreased functional capacity, increased morbidity and mortality. Previous studies show that SLE is characterized by autoimmune, inflammatory processes, and tissue destruction. Some seriously-ill patients could develop into lupus nephritis. However, the cause and underlying molecular events of SLE needs to be further resolved. Methods The expression profiles of GSE144390, GSE4588, GSE50772 and GSE81622 were downloaded from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs) between SLE and healthy samples. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of DEGs were performed by metascape etc. online analyses. The protein–protein interaction (PPI) networks of the DEGs were constructed by GENEMANIA software. We performed Gene Set Enrichment Analysis (GSEA) to further understand the functions of the hub gene, Weighted gene co‐expression network analysis (WGCNA) would be utilized to build a gene co‐expression network, and the most significant module and hub genes was identified. CIBERSORT tools have facilitated the analysis of immune cell infiltration patterns of diseases. The receiver operating characteristic (ROC) analyses were conducted to explore the value of DEGs for SLE diagnosis. Results In total, 6 DEGs (IFI27, IFI44, IFI44L, IFI6, EPSTI1 and OAS1) were screened, Biological functions analysis identified key related pathways, gene modules and co‐expression networks in SLE. IFI27 may be closely correlated with the occurrence of SLE. We found that an increased infiltration of moncytes, while NK cells resting infiltrated less may be related to the occurrence of SLE. Conclusion IFI27 may be closely related pathogenesis of SLE, and represents a new candidate molecular marker of the occurrence and progression of SLE. Moreover immune cell infiltration plays important role in the progession of SLE.
Collapse
Affiliation(s)
- Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400038, China
| | - Longlong Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Juan Wang
- Department of Dermatology, Southwest Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400038, China
| | - Min Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400038, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400038, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, (Third Military Medical University), Chongqing, China.
| | - Yi You
- Department of Dermatology, Southwest Hospital, Army Medical University, (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
10
|
Banga J, Srinivasan D, Sun CC, Thompson CD, Milletti F, Huang KS, Hamilton S, Song S, Hoffman AF, Qin YG, Matta B, LaPan M, Guo Q, Lu G, Li D, Qian H, Bolin DR, Liang L, Wartchow C, Qiu J, Downing M, Narula S, Fotouhi N, DeMartino JA, Tan SL, Chen G, Barnes BJ. Inhibition of IRF5 cellular activity with cell-penetrating peptides that target homodimerization. SCIENCE ADVANCES 2020; 6:eaay1057. [PMID: 32440537 PMCID: PMC7228753 DOI: 10.1126/sciadv.aay1057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/05/2020] [Indexed: 05/07/2023]
Abstract
The transcription factor interferon regulatory factor 5 (IRF5) plays essential roles in pathogen-induced immunity downstream of Toll-, nucleotide-binding oligomerization domain-, and retinoic acid-inducible gene I-like receptors and is an autoimmune susceptibility gene. Normally, inactive in the cytoplasm, upon stimulation, IRF5 undergoes posttranslational modification(s), homodimerization, and nuclear translocation, where dimers mediate proinflammatory gene transcription. Here, we report the rational design of cell-penetrating peptides (CPPs) that disrupt IRF5 homodimerization. Biochemical and imaging analysis shows that IRF5-CPPs are cell permeable, noncytotoxic, and directly bind to endogenous IRF5. IRF5-CPPs were selective and afforded cell type- and species-specific inhibition. In plasmacytoid dendritic cells, inhibition of IRF5-mediated interferon-α production corresponded to a dose-dependent reduction in nuclear phosphorylated IRF5 [p(Ser462)IRF5], with no effect on pIRF5 levels. These data support that IRF5-CPPs function downstream of phosphorylation. Together, data support the utility of IRF5-CPPs as novel tools to probe IRF5 activation and function in disease.
Collapse
Affiliation(s)
- Jaspreet Banga
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | | | - Chia-Chi Sun
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Cherrie D. Thompson
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Francesca Milletti
- Roche Innovation Center New York, 430 East 29th Street, New York, NY 10016, USA
| | - Kuo-Sen Huang
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Shannon Hamilton
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Su Song
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Ann F. Hoffman
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Yajuan Gu Qin
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Bharati Matta
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Margaret LaPan
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Qin Guo
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Gang Lu
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Dan Li
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Hong Qian
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - David R. Bolin
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Lena Liang
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Charles Wartchow
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Jin Qiu
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Michelle Downing
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Satwant Narula
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Nader Fotouhi
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Julie A. DeMartino
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Seng-Lai Tan
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Gang Chen
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
- Corresponding author. (B.J.B.); (G.C.)
| | - Betsy J. Barnes
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Corresponding author. (B.J.B.); (G.C.)
| |
Collapse
|
11
|
Li D, Matta B, Song S, Nelson V, Diggins K, Simpfendorfer KR, Gregersen PK, Linsley P, Barnes BJ. IRF5 genetic risk variants drive myeloid-specific IRF5 hyperactivation and presymptomatic SLE. JCI Insight 2020; 5:124020. [PMID: 31877114 DOI: 10.1172/jci.insight.124020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic variants within or near the interferon regulatory factor 5 (IRF5) locus associate with systemic lupus erythematosus (SLE) across ancestral groups. The major IRF5-SLE risk haplotype is common across populations, yet immune functions for the risk haplotype are undefined. We characterized the global immune phenotype of healthy donors homozygous for the major risk and nonrisk haplotypes and identified cell lineage-specific alterations that mimic presymptomatic SLE. Contrary to previous studies in B lymphoblastoid cell lines and SLE immune cells, IRF5 genetic variants had little effect on IRF5 protein levels in healthy donors. Instead, we detected basal IRF5 hyperactivation in the myeloid compartment of risk donors that drives the SLE immune phenotype. Risk donors were anti-nuclear antibody positive with anti-Ro and -MPO specificity, had increased circulating plasma cells and plasmacytoid dendritic cells, and had enhanced spontaneous NETosis. The IRF5-SLE immune phenotype was conserved over time and probed mechanistically by ex vivo coculture, indicating that risk neutrophils are drivers of the global immune phenotype. RNA-Seq of risk neutrophils revealed increased IRF5 transcript expression, IFN pathway enrichment, and decreased expression of ROS pathway genes. Altogether, the data support that individuals carrying the IRF5-SLE risk haplotype are more susceptible to environmental/stochastic influences that trigger chronic immune activation, predisposing to the development of clinical SLE.
Collapse
Affiliation(s)
- Dan Li
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Bharati Matta
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Su Song
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Victoria Nelson
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Kirsten Diggins
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Kim R Simpfendorfer
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Peter Linsley
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Betsy J Barnes
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
12
|
Idborg H, Zandian A, Ossipova E, Wigren E, Preger C, Mobarrez F, Checa A, Sohrabian A, Pucholt P, Sandling JK, Fernandes-Cerqueira C, Rönnelid J, Oke V, Grosso G, Kvarnström M, Larsson A, Wheelock CE, Syvänen AC, Rönnblom L, Kultima K, Persson H, Gräslund S, Gunnarsson I, Nilsson P, Svenungsson E, Jakobsson PJ. Circulating Levels of Interferon Regulatory Factor-5 Associates With Subgroups of Systemic Lupus Erythematosus Patients. Front Immunol 2019; 10:1029. [PMID: 31156624 PMCID: PMC6533644 DOI: 10.3389/fimmu.2019.01029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a heterogeneous autoimmune disease, which currently lacks specific diagnostic biomarkers. The diversity within the patients obstructs clinical trials but may also reflect differences in underlying pathogenesis. Our objective was to obtain protein profiles to identify potential general biomarkers of SLE and to determine molecular subgroups within SLE for patient stratification. Plasma samples from a cross-sectional study of well-characterized SLE patients (n = 379) and matched population controls (n = 316) were analyzed by antibody suspension bead array targeting 281 proteins. To investigate the differences between SLE and controls, Mann–Whitney U-test with Bonferroni correction, generalized linear modeling and receiver operating characteristics (ROC) analysis were performed. K-means clustering was used to identify molecular SLE subgroups. We identified Interferon regulating factor 5 (IRF5), solute carrier family 22 member 2 (SLC22A2) and S100 calcium binding protein A12 (S100A12) as the three proteins with the largest fold change between SLE patients and controls (SLE/Control = 1.4, 1.4, and 1.2 respectively). The lowest p-values comparing SLE patients and controls were obtained for S100A12, Matrix metalloproteinase-1 (MMP1) and SLC22A2 (padjusted = 3 × 10−9, 3 × 10−6, and 5 × 10−6 respectively). In a set of 15 potential biomarkers differentiating SLE patients and controls, two of the proteins were transcription factors, i.e., IRF5 and SAM pointed domain containing ETS transcription factor (SPDEF). IRF5 was up-regulated while SPDEF was found to be down-regulated in SLE patients. Unsupervised clustering of all investigated proteins identified three molecular subgroups among SLE patients, characterized by (1) high levels of rheumatoid factor-IgM, (2) low IRF5, and (3) high IRF5. IRF5 expressing microparticles were analyzed by flow cytometry in a subset of patients to confirm the presence of IRF5 in plasma and detection of extracellular IRF5 was further confirmed by immunoprecipitation-mass spectrometry (IP-MS). Interestingly IRF5, a known genetic risk factor for SLE, was detected extracellularly and suggested by unsupervised clustering analysis to differentiate between SLE subgroups. Our results imply a set of circulating molecules as markers of possible pathogenic importance in SLE. We believe that these findings could be of relevance for understanding the pathogenesis and diversity of SLE, as well as for selection of patients in clinical trials.
Collapse
Affiliation(s)
- Helena Idborg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Arash Zandian
- SciLifeLab, Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elena Ossipova
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Edvard Wigren
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotta Preger
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Fariborz Mobarrez
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Akademiska Hospital, Uppsala University, Uppsala, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Azita Sohrabian
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Johanna K Sandling
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Cátia Fernandes-Cerqueira
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Vilija Oke
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Giorgia Grosso
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marika Kvarnström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development & School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Susanne Gräslund
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Nilsson
- SciLifeLab, Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Lee KS, Kronbichler A, Pereira Vasconcelos DF, Pereira da Silva FR, Ko Y, Oh YS, Eisenhut M, Merkel PA, Jayne D, Amos CI, Siminovitch KA, Rahmattulla C, Lee KH, Shin JI. Genetic Variants in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: A Bayesian Approach and Systematic Review. J Clin Med 2019; 8:E266. [PMID: 30795559 PMCID: PMC6406345 DOI: 10.3390/jcm8020266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022] Open
Abstract
A number of genome-wide association studies (GWASs) and meta-analyses of genetic variants have been performed in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. We reinterpreted previous studies using false-positive report probability (FPRP) and Bayesian false discovery probability (BFDP). This study searched publications in PubMed and Excerpta Medica Database (EMBASE) up to February 2018. Identification of noteworthy associations were analyzed using FPRP and BFDP, and data (i.e., odds ratio (OR), 95% confidence interval (CI), p-value) related to significant associations were separately extracted. Using filtered gene variants, gene ontology (GO) enrichment analysis and protein⁻protein interaction (PPI) networks were performed. Overall, 241 articles were identified, and 7 were selected for analysis. Single nucleotide polymorphisms (SNPs) discovered by GWASs were shown to be noteworthy, whereas only 27% of significant results from meta-analyses of observational studies were noteworthy. Eighty-five percent of SNPs with borderline p-values (5.0 × 10-8 < p < 0.05) in GWASs were found to be noteworthy. No overlapping SNPs were found between PR3-ANCA and MPO-ANCA vasculitis. GO analysis revealed immune-related GO terms, including "antigen processing and presentation of peptide or polysaccharide antigen via major histocompatibility complex (MHC) class II", "interferon-gamma-mediated (IFN-γ) signaling pathway". By using FPRP and BFDP, network analysis of noteworthy genetic variants discovered genetic risk factors associated with the IFN-γ pathway as novel mechanisms potentially implicated in the complex pathogenesis of ANCA-associated vasculitis.
Collapse
Affiliation(s)
- Kwang Seob Lee
- Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria.
| | | | | | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 17035, Korea.
| | - Yeon Su Oh
- Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Michael Eisenhut
- Department of Pediatrics, Luton & Dunstable University Hospital NHS Foundation Trust, Luton LU4 0DZ, UK.
| | - Peter A Merkel
- Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA.
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19146, USA.
| | - David Jayne
- Vasculitis and Lupus Clinic, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Katherine A Siminovitch
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto General Research Institute and University of Toronto, Toronto, ON M5G 1X5, Canada.
| | - Chinar Rahmattulla
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Pediatric Nephrology, Severance Children's Hospital, Seoul 03722, Korea.
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Pediatric Nephrology, Severance Children's Hospital, Seoul 03722, Korea.
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|