1
|
Wischnewski S, Rausch HW, Ikenaga C, Leipe J, Lloyd TE, Schirmer L. Emerging mechanisms and therapeutics in inflammatory muscle diseases. Trends Pharmacol Sci 2025; 46:249-263. [PMID: 39939222 DOI: 10.1016/j.tips.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
Idiopathic inflammatory myopathies (IIMs), or myositis, are rare diseases marked by immune-driven muscle damage and complications like skin lesions and interstitial lung disease (ILD). Despite advances, challenges in diagnosis and treatment persist, particularly in inclusion body myositis (IBM), where no effective therapy exists. Recent breakthroughs, including transcriptomics and insights into antibody-mediated immunity and interferon (IFN) signaling, have clarified IIM pathophysiology and spurred the development of new therapies, such as chimeric antigen receptor (CAR) T cells and Janus kinase (JAK) inhibitors. We explore the latest findings on the mechanisms underlying adult-onset IIMs, emphasizing IBM pathobiology and its unique immune and degenerative pathways, such as a selective type 2 myofiber damage and severe cell stress. Finally, we highlight the recent advances in transcriptomics, single-cell analysis, and machine learning in transforming IIM research by improving diagnostic accuracy, uncovering therapeutic targets, and supporting the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Sven Wischnewski
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Werner Rausch
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Kitasato University Hospital, Tokyo, Japan
| | - Jan Leipe
- Division of Rheumatology, Department of Medicine V, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Division of Rheumatology, Department of Internal Medicine I, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Han X, Kosari M, Xu L, Li Y, Yang MG, Gao H, Ge H, Bu B, Ji S. Amyloid myopathy mimicked with idiopathic inflammatory myopathy diagnosed using Congo red staining: a case report. BMC Neurol 2024; 24:463. [PMID: 39593007 PMCID: PMC11600647 DOI: 10.1186/s12883-024-03900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/03/2024] [Indexed: 11/28/2024] Open
Abstract
Amyloid myopathy often occurs in the context of systemic amyloidosis, as a rare manifestation of "light chain" (AL) amyloidosis, accounting for 1% of its incidence. A 58-year-old man with two years history of weakness and edema of lower extremity, elevated creatine kinase (CK), and inflammatory lesions from muscle biopsy which was misdiagnosed as inflammatory myopathy. After immunotherapy, the original symptoms worsened. We later confirmed the disease through MRI, Congo red staining and bone marrow puncture results. Our purpose is that to increase awareness of amyloid myopathy to minimize the risk of misdiagnosis and emphasize the importance of Congo red staining in diagnosing similar conditions.
Collapse
Affiliation(s)
- Xingyu Han
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Wuhan, 430030, China
| | - Mohammadreza Kosari
- MBBS student, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Wuhan, 430030, China
| | - Yue Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Wuhan, 430030, China
| | - Meng-Ge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Wuhan, 430030, China
| | - Huajie Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Wuhan, 430030, China
| | - Huizhen Ge
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Wuhan, 430030, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Wuhan, 430030, China
| | - Suqiong Ji
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Wuhan, 430030, China.
| |
Collapse
|
3
|
Shimojima Y, Nomura S, Ushiyama S, Ichikawa T, Takamatsu R, Kishida D, Sekijima Y. Early skeletal muscle manifestations in polyarteritis nodosa and ANCA-associated vasculitis. Autoimmun Rev 2024; 23:103602. [PMID: 39153646 DOI: 10.1016/j.autrev.2024.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Skeletal muscle involvement is common in patients with small- and medium-sized vasculitis, particularly polyarteritis nodosa (PAN) and antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Despite being not included in the standard classification criteria for PAN and AAV, skeletal muscle involvement is an important clinical indicator, particularly when vasculitic myopathy is the only pathological evidence in the absence of other organ involvement. Herein, we comprehensively reviewed and compared the clinical features of 71 and 135 patients with PAN and AAV, respectively, with skeletal muscle involvement at the time of disease onset. Most patients with PAN and AAV exhibited skeletal muscle involvement, often characterized by myalgia and occasional muscular weakness, predominantly in the lower extremities. Myalgia and weakness were observed more frequently in the distal lower extremities in patients with PAN than in those with AAV. In contrast, skeletal muscle involvement tended to exhibit a more dispersed distribution across all four extremities in those with AAV. Muscle magnetic resonance imaging T2-weighted and short-tau inversion recovery sequences can effectively identify hyperintense areas attributed to hypervascularity of affected muscle tissues and serve as a sensitive and useful modality for visually determining the suitable biopsy site. >90% of patients with PAN and AAV demonstrated perivascular inflammation in their affected muscle tissues, whereas fibrinoid necrosis of the vessel walls was reported in two-thirds of patients. Serum creatine kinase (CK) levels were within the normal range in approximately 80% of patients presenting with skeletal muscle involvement in PAN and AAV. Furthermore, muscle fiber damage was milder in patients with skeletal muscle involvement in PAN and AAV than those with idiopathic inflammatory myositis. Meanwhile, serum CK levels were elevated in 65-85% of patients with PAN and AAV who had myofiber necrosis and degeneration in the affected muscles. Most patients with PAN and AAV showed improvement in skeletal muscle involvement following glucocorticoids (GCs) administration; however, relapse was observed in some patients during the tapering of GCs. In summary, skeletal muscle involvement is a potential indicator for establishing PAN and AAV diagnoses during the early phases of the disease.
Collapse
Affiliation(s)
- Yasuhiro Shimojima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan.
| | - Shun Nomura
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoru Ushiyama
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Takanori Ichikawa
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryota Takamatsu
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Dai Kishida
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
4
|
Ngo DQ, Le ST, Phan KHP, Doan TTP, Nguyen LNK, Dang MH, Ly TT, Phan TDA. Immunohistochemical expression in idiopathic inflammatory myopathies at a single center in Vietnam. J Pathol Transl Med 2024; 58:174-181. [PMID: 38910358 PMCID: PMC11261171 DOI: 10.4132/jptm.2024.05.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND The identification of idiopathic inflammatory myopathies (IIMs) requires a comprehensive analysis involving clinical manifestations and histological findings. This study aims to provide insights into the histopathological and immunohistochemical aspects of IIMs. METHODS This retrospective case series involved 56 patients diagnosed with IIMs at the Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, from 2019 to 2023. The histology and immunohistochemical expression of HLA-ABC, HLA-DR, C5b-9, Mx1/2/3, and p62 were detected. RESULTS We examined six categories of inflammatory myopathy, including immunemediated necrotizing myopathy (58.9%), dermatomyositis (DM; 23.2%), overlap myositis (8.9%), antisynthetase syndrome (5.4%), inclusion body myositis (IBM; 1.8%), and polymyositis (1.8%). The average age of the patients was 49.7 ± 16.1 years, with a female-to-male ratio of 3:1. Inflammatory cell infiltration in the endomysium was present in 62.5% of cases, perifascicular atrophy was found in 17.8%, and fiber necrosis was observed in 42 cases (75.0%). Rimmed vacuoles were present in 100% of cases in the IBM group. Immunohistochemistry showed the following positivity rates: HLA-ABC (89.2%), HLA-DR (19.6%), C5b-9 (57.1%), and Mx1/2/3 (10.7%). Mx1/2/3 expression was high in DM cases. p62 vacuole deposits were noted in the IBM case. The combination of membrane attack complex and major histocompatibility complex I helped detect IIMs in 96% of cases. CONCLUSIONS The diagnosis of IIMs and their subtypes should be based on clinical features and histopathological characteristics. Immunohistochemistry plays a crucial role in the diagnosis and differentiation of these subgroups.
Collapse
Affiliation(s)
- Dat Quoc Ngo
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Si Tri Le
- Neurology Center, University Medical Center Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Thao Thi Phuong Doan
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Linh Ngoc Khanh Nguyen
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh Hoang Dang
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thien Thanh Ly
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thu Dang Anh Phan
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Zhang Y, Zou Y, Tan W, Lv C. Value of radiomics-based automatic grading of muscle edema in polymyositis/dermatomyositis based on MRI fat-suppressed T2-weighted images. Acta Radiol 2024; 65:632-640. [PMID: 38591947 DOI: 10.1177/02841851241244507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
BACKGROUND The precise and objective assessment of thigh muscle edema is pivotal in diagnosing and monitoring the treatment of dermatomyositis (DM) and polymyositis (PM). PURPOSE Radiomic features are extracted from fat-suppressed (FS) T2-weighted (T2W) magnetic resonance imaging (MRI) of thigh muscles to enable automatic grading of muscle edema in cases of polymyositis and dermatomyositis. MATERIAL AND METHODS A total of 241 MR images were analyzed and classified into five levels using the Stramare criteria. The correlation between muscle edema grading and T2-mapping values was assessed using Spearman's correlation. The dataset was divided into a 7:3 ratio of training (168 samples) and testing (73 samples). Thigh muscle boundaries in FS T2W images were manually delineated with 3D-Slicer. Radiomics features were extracted using Python 3.7, applying Z-score normalization, Pearson correlation analysis, and recursive feature elimination for reduction. A Naive Bayes classifier was trained, and diagnostic performance was evaluated using receiver operating characteristic (ROC) curves and comparing sensitivity and specificity with senior doctors. RESULTS A total of 1198 radiomics parameters were extracted and reduced to 18 features for Naive Bayes modeling. In the testing set, the model achieved an area under the ROC curve of 0.97, sensitivity of 0.85, specificity of 0.98, and accuracy of 0.91. The Naive Bayes classifier demonstrated grading performance comparable to senior doctors. A significant correlation (r = 0.82, P <0.05) was observed between Stramare edema grading and T2-mapping values. CONCLUSION The Naive Bayes model, utilizing radiomics features extracted from thigh FS T2W images, accurately assesses the severity of muscle edema in cases of PM/DM.
Collapse
Affiliation(s)
- Yumei Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yuefen Zou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenfeng Tan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Chengyin Lv
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
6
|
Zierer LK, Naegel S, Schneider I, Kendzierski T, Kleeberg K, Koelsch AK, Scholle L, Schaefer C, Naegel A, Zierz S, Otto M, Stoltenburg-Didinger G, Kraya T, Stoevesandt D, Mensch A. Quantitative whole-body muscle MRI in idiopathic inflammatory myopathies including polymyositis with mitochondrial pathology: indications for a disease spectrum. J Neurol 2024; 271:3186-3202. [PMID: 38438820 PMCID: PMC11136737 DOI: 10.1007/s00415-024-12191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE Inflammatory myopathies (IIM) include dermatomyositis (DM), sporadic inclusion body myositis (sIBM), immune-mediated necrotizing myopathy (IMNM), and overlap myositis (OLM)/antisynthetase syndrome (ASyS). There is also a rare variant termed polymyositis with mitochondrial pathology (PM-Mito), which is considered a sIBM precursor. There is no information regarding muscle MRI for this rare entity. The aim of this study was to compare MRI findings in IIM, including PM-Mito. METHODS This retrospective analysis included 41 patients (7 PM-Mito, 11 sIBM, 11 PM/ASyS/OLM, 12 IMNM) and 20 healthy controls. Pattern of muscle involvement was assessed by semiquantitative evaluation, while Dixon method was used to quantify muscular fat fraction. RESULTS The sIBM typical pattern affecting the lower extremities was not found in the majority of PM-Mito-patients. Intramuscular edema in sIBM and PM-Mito was limited to the lower extremities, whereas IMNM and PM/ASyS/OLM showed additional edema in the trunk. Quantitative assessment showed increased fat content in sIBM, with an intramuscular proximo-distal gradient. Similar changes were also found in a few PM-Mito- and PM/ASyS/OLM patients. In sIBM and PM-Mito, mean fat fraction of several muscles correlated with clinical involvement. INTERPRETATION As MRI findings in patients with PM-Mito relevantly differed from sIBM, the attribution of PM-Mito as sIBM precursor should be critically discussed. Some patients in PM/ASyS/OLM and PM-Mito group showed MR-morphologic features predominantly observed in sIBM, indicative of a spectrum from PM/ASyS/OLM toward sIBM. In some IIM subtypes, MRI may serve as a biomarker of disease severity.
Collapse
Affiliation(s)
- Lea-Katharina Zierer
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Department of Radiology, University Medicine Halle, Halle (Saale), Germany
| | - Steffen Naegel
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Department of Neurology, Alfried-Krupp-Krankenhaus Essen, Essen, Germany
| | - Ilka Schneider
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Department of Neurology, St. Georg Hospital Leipzig, Leipzig, Germany
| | - Thomas Kendzierski
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Kathleen Kleeberg
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Anna Katharina Koelsch
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Leila Scholle
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Christoph Schaefer
- Department of Internal Medicine II, Rheumatology, University Medicine Halle, Halle (Saale), Germany
| | - Arne Naegel
- Goethe Center for Scientific Computing (G-CSC), Goethe University, Frankfurt/Main, Germany
| | - Stephan Zierz
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Gisela Stoltenburg-Didinger
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Institute of Cell and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
| | - Torsten Kraya
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Department of Neurology, St. Georg Hospital Leipzig, Leipzig, Germany
| | | | - Alexander Mensch
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
7
|
Xing C, Trivedi J, Bitencourt N, Burns DK, Reisch JS, Cai C. Myxovirus resistance protein A (MxA) expression in myositides: Sarcoplasmic expression is common in both dermatomyositis and lupus myositis. Muscle Nerve 2024; 69:548-555. [PMID: 38372203 DOI: 10.1002/mus.28066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION/AIMS Myxovirus resistance protein A (MxA) is a type I interferon (IFN1) pathway activation marker and MxA sarcoplasmic expression is currently recognized as a highly specific marker for dermatomyositis (DM). However, we have frequently observed endothelial tubuloreticular inclusions (TRI), another surrogate IFN1 activation marker, in a variety of overlap myositides. The aim of this study was to examine MxA expression in those myositides. METHODS We retrospectively performed MxA immunostaining on a wide range of myositides. RESULTS MxA sarcoplasmic expression was present in DM (94.4%, 17/18), active lupus myositis (LM, 80%,16/20), inactive LM (36%, 4/11), antisynthetase syndrome (ASyS, 20%, 2/10), systemic sclerosis (13%, 2/15), Sjogren's syndrome (7.7%, 1/13), and human immunodeficiency virus (HIV) myositis (5.6%, 1/18) and was absent in immune-mediated necrotizing myopathy (IMNM, 0/16) and hydroxychloroquine myopathy (0/5). The sensitivity and specificity of MxA sarcoplasmic expression for LM and DM combined compared with all other myositides were 84.6% (95% CI: 69.5-94.1) and 92.1 (95% CI: 83.6-97.0), respectively, and superior to TRIs. MxA capillary expression was nonspecific. Histologically, 35% of LM cases demonstrated a unique panfascicular necrotizing myopathy pattern. The remainder of the LM cases had significant morphological overlap with DM/ASyS (20%), IMNM (20%), or polymyositis (15%). DISCUSSION MxA sarcoplasmic expression is highly prevalent in LM and DM and is a useful marker in differentiating DM and LM from other myositides. LM can manifest in various pathology patterns that need to be differentiated from DM, IMNM, ASyS, and polymyositis.
Collapse
Affiliation(s)
- Changhong Xing
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jaya Trivedi
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole Bitencourt
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dennis K Burns
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joan S Reisch
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunyu Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Oyama M, Holzer MT, Ohnuki Y, Saito Y, Nishimori Y, Suzuki S, Shiina T, Leonard-Louis S, Benveniste O, Schneider U, Stenzel W, Nishino I, Suzuki S, Uruha A. Pathologic Features of Anti-Ku Myositis. Neurology 2024; 102:e209268. [PMID: 38547417 PMCID: PMC11175641 DOI: 10.1212/wnl.0000000000209268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/16/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE Characteristics of myositis with anti-Ku antibodies are poorly understood. The purpose of this study was to elucidate the pathologic features of myositis associated with anti-Ku antibodies, compared with immune-mediated necrotizing myopathy (IMNM) with anti-signal recognition particle (SRP) and anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) antibodies, in muscle biopsy-oriented registration cohorts in Japan and Germany. METHODS We performed a retrospective pathology review of patients with anti-Ku myositis samples diagnosed in the Japanese and German cohorts. We evaluated histologic features and performed HLA phenotyping. RESULTS Fifty biopsied muscle samples in the Japanese cohort and 10 in the German cohort were obtained. After exclusion of myositis-specific autoantibodies or other autoimmune connective tissue diseases, 26 samples (43%) of anti-Ku antibody-positive myositis were analyzed. All the samples shared some common features with IMNM, whereas they showed expression of MHC class II and clusters of perivascular inflammatory cells more frequently than the anti-SRP/HMGCR IMNM samples (71% vs 7%/16%; p < 0.005/<0.005; 64% vs 0%/0%; p < 0.005/<0.005). Anti-Ku myositis biopsies could be divided into 2 subgroups based on the extent of necrosis and regeneration. The group with more abundant necrosis and regeneration showed a higher frequency of MHC class II expression and perivascular inflammatory cell clusters. HLA phenotyping in the 44 available patients showed possible associations of HLA-DRB1*03:01, HLA-DRB1*11:01, and HLA-DQB1*03:01 (p = 0.0045, 0.019, and 0.027; odds ratio [OR] 50.2, 4.6, and 2.8; 95% CI 2.6-2942.1, 1.1-14.5, and 1.0-7.0) in the group with less conspicuous necrosis and regeneration. On the contrary, in the group of more abundant necrosis and regeneration, the allele frequencies of HLA-A*24:02, HLA-B*52:01, HLA-C*12:02, and HLA-DRB1*15:02 were lower than those of healthy controls (p = 0.0036, 0.027, 0.016, and 0.026; OR = 0.27, 0, 0, and 0; 95% CI 0.1-0.7, 0-0.8, 0-0.8, and 0-0.8). However, these HLA associations did not remain significant after statistical correction for multiple testing. DISCUSSION While anti-Ku myositis shows necrotizing myopathy features, they can be distinguished from anti-SRP/HMGCR IMNM by their MHC class II expression and clusters of perivascular inflammatory cells. The HLA analyses suggest that anti-Ku myositis may have different subsets associated with myopathologic subgroups.
Collapse
Affiliation(s)
- Munenori Oyama
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Marie-Therese Holzer
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Yuko Ohnuki
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Yoshihiko Saito
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Yukako Nishimori
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Shingo Suzuki
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Takashi Shiina
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Sarah Leonard-Louis
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Olivier Benveniste
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Udo Schneider
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Werner Stenzel
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Ichizo Nishino
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Shigeaki Suzuki
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| | - Akinori Uruha
- From the Department of Neurology (M.O., S. Suzuki), Keio University School of Medicine, Tokyo, Japan; Department of Medicine for Nephrology, Rheumatology and Endocrinology (M.-T.H.), Division of Rheumatology and Systemic Inflammatory Diseases, III, University Medical Center Hamburg-Eppendorf, Germany; Department of Medical Ethics (Y.O.), Tokai University School of Medicine; Department of Clinical Genetics (Y.O.), Tokai University Hospital, Kanagawa; Department of Neuromuscular Research (Y.S., Y.N., I.N.), National Institute of Neuroscience, and Department of Genome Medicine Development (Y.S., Y.N., I.N.), Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo; Department of Neurology (Y.N.), Nara Medical University; Department of Molecular Life Science (S. Suzuki, T.S.), Tokai University School of Medicine, Kanagawa, Japan; Department of Neuropathology (S.L.-L.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Neuromyology (S.L.-L.), National Reference Center of Neuromuscular Disorders, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital; Department of Internal Medicine and Clinical Immunology (O.B.), Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Universi, France; Department of Rheumatology (U.S.), and Department of Neuropathology (W.S.), Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universtät zu Berlin, and Berlin Institute of Health; Leibniz ScienceCampus Chronic Inflammation (W.S.), Berlin, Germany; and Department of Neurology (A.U.), Tokyo Metropolitan Neurological Hospital, Japan
| |
Collapse
|
9
|
Lilleker JB, Naddaf E, Saris CGJ, Schmidt J, de Visser M, Weihl CC. 272nd ENMC international workshop: 10 Years of progress - revision of the ENMC 2013 diagnostic criteria for inclusion body myositis and clinical trial readiness. 16-18 June 2023, Hoofddorp, The Netherlands. Neuromuscul Disord 2024; 37:36-51. [PMID: 38522330 DOI: 10.1016/j.nmd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Since the publication of the 2013 European Neuromuscular Center (ENMC) diagnostic criteria for Inclusion Body Myositis (IBM), several advances have been made regarding IBM epidemiology, pathogenesis, diagnostic tools, and clinical trial readiness. Novel diagnostic tools include muscle imaging techniques such as MRI and ultrasound, and serological testing for cytosolic 5'-nucleotidase-1A antibodies. The 272nd ENMC workshop aimed to develop new diagnostic criteria, discuss clinical outcome measures and clinical trial readiness. The workshop started with patient representatives highlighting several understudied symptoms and the urge for a timely diagnosis. This was followed by presentations from IBM experts highlighting the new developments in the field. This report is composed of two parts, the first part providing new diagnostic criteria on which consensus was achieved. The second part focuses on the use of outcome measures in clinical practice and clinical trials, highlighting current limitations and outlining the goals for future studies.
Collapse
Affiliation(s)
- James B Lilleker
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK; Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christiaan G J Saris
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jens Schmidt
- Department of Neurology and Pain Treatment, Neuromuscular Center and Center for Translational Medicine, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School MHB, Rüdersdorf bei Berlin, Germany; Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Marianne de Visser
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Conrad C Weihl
- Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
10
|
Robert M, Lessard LER, Bouhour F, Petiot P, Fenouil T, Svahn J, Fiscus J, Fabien N, Perard L, Robinson P, Durieu I, Coury F, Streichenberger N, Hot A, Gallay L. Inaugural dropped head syndrome and camptocormia in inflammatory myopathies: a retrospective study. Rheumatology (Oxford) 2024; 63:506-515. [PMID: 37462538 PMCID: PMC10837000 DOI: 10.1093/rheumatology/kead347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/27/2023] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVES Inaugural axial muscle involvement, defined as dropped head syndrome (DHS) and/or camptocormia (CC), is poorly described in inflammatory myopathies (IM). This study aimed to further characterize IM patients with inaugural DHS/CC, their outcome and care management. METHODS This retrospective study included IM patients diagnosed between 2000 and 2021. The main inclusion criterion was IM revealed by axial muscle deficit (DHS/CC). RESULTS Twenty-seven patients were included; median (IQR) age at first symptoms was 66.0 years (55.5-75.0); 21 were female (77.8%). There were nine IBM, 33.3%, nine overlap myositis (OM, 33.3%), five DM, 18.5%, two immune checkpoint inhibitor-related myositis (7.4%), one focal myositis (3.7%) and one myositis with anti-Hu antibodies (3.7%). Age at first symptoms was ≤70 years in 16 patients (59.3%), including all DM patients and 8/9 OM patients (88.9%). In this group, partial remission of the disease was obtained in 9/16 (56.3%) and complete remission in 1/16 patients (6.3%); regression of DHS/CC was achieved in 3/16 patients (18.8%). Conversely, in the group of 11 patients aged >70 years at first symptoms, there were eight IBM (72.7%). Partial remission was obtained in 5/11 patients (45.5%), the disease was stable in 6/11 patients (54.5%); no complete remission was obtained nor regression of DHS/CC. CONCLUSION The analysis of IM patients with inaugural DHS/CC delineates two groups of patients according to the age at first symptoms in terms of clinical and outcome specificities, and proposes an adapted diagnostic and care management approach to prevent long-term complications.
Collapse
Affiliation(s)
- Marie Robert
- Service de Médecine Interne et Immunologie Clinique, Centre Hospitalier Universitaire Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Lola E R Lessard
- Service d’Electroneuromyographie et Pathologies Neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), CNRS UMR5261—INSERM U1315, Institut NeuroMyoGène—Université Claude Bernard Lyon 1, Lyon, France
| | - Françoise Bouhour
- Service d’Electroneuromyographie et Pathologies Neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Philippe Petiot
- Service d’Electroneuromyographie et Pathologies Neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Tanguy Fenouil
- Service de Cytologie et d'Anatomie Pathologique, Département de Neuropathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- Equipe Ribosome Traduction et Cancer, UMR Inserm 1052 CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Juliette Svahn
- Service d’Electroneuromyographie et Pathologies Neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Julie Fiscus
- Service d’Immunologie, UF Autoimmunité, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Nicole Fabien
- Service d’Immunologie, UF Autoimmunité, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Laurent Perard
- Service de Médecine Interne, Centre Hospitalier Saint Joseph Saint Luc, Lyon, France
| | - Philip Robinson
- Direction de la Recherche en Santé, Hospices Civils de Lyon, Lyon, France
| | - Isabelle Durieu
- Service de Médecine interne, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Fabienne Coury
- Département de Rhumatologie, Hôpital Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, France
- Inserm UMR1033, Université Claude Bernard Lyon 1, Lyon, France
| | - Nathalie Streichenberger
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), CNRS UMR5261—INSERM U1315, Institut NeuroMyoGène—Université Claude Bernard Lyon 1, Lyon, France
- Service de Cytologie et d'Anatomie Pathologique, Département de Neuropathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Hot
- Service de Médecine Interne et Immunologie Clinique, Centre Hospitalier Universitaire Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Laure Gallay
- Service de Médecine Interne et Immunologie Clinique, Centre Hospitalier Universitaire Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire Cell Therapy & Musculoskeletal Disorders, Université de Genève, Genève, Switzerland
| |
Collapse
|
11
|
Granger A, Soontrapa P, Klein CJ, Milone M. Cancer-associated regional ischemic myopathy: a rare myopathy. Neuromuscul Disord 2023; 33:790-791. [PMID: 37783629 DOI: 10.1016/j.nmd.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Affiliation(s)
- Andre Granger
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
12
|
La Rocca G, Ferro F, Baldini C, Libra A, Sambataro D, Colaci M, Malatino L, Palmucci S, Vancheri C, Sambataro G. Targeting intracellular pathways in idiopathic inflammatory myopathies: A narrative review. Front Med (Lausanne) 2023; 10:1158768. [PMID: 36993798 PMCID: PMC10040547 DOI: 10.3389/fmed.2023.1158768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
In recent decades, several pieces of evidence have drawn greater attention to the topic of innate immunity, in particular, interferon (IFN) and Interleukin 6 in the pathogenesis of idiopathic inflammatory myopathies (IIM). Both of these molecules transduce their signal through a receptor coupled with Janus kinases (JAK)/signal transducer and activator of transcription proteins (STAT). In this review, we discuss the role of the JAK/STAT pathway in IIM, evaluate a possible therapeutic role for JAK inhibitors in this group of diseases, focusing on those with the strongest IFN signature (dermatomyositis and antisynthetase syndrome).
Collapse
Affiliation(s)
- Gaetano La Rocca
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Ferro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Baldini
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Libra
- Regional Referral Centre for Rare Lung Disease, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| | | | - Michele Colaci
- Internal Medicine Unit, Rheumatology Clinic, Azienda Ospedaliera per l’Emergenza Cannizzaro, University of Catania, Catania, Italy
| | - Lorenzo Malatino
- Internal Medicine Unit, Rheumatology Clinic, Azienda Ospedaliera per l’Emergenza Cannizzaro, University of Catania, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Carlo Vancheri
- Regional Referral Centre for Rare Lung Disease, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| | - Gianluca Sambataro
- Regional Referral Centre for Rare Lung Disease, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
- Artroreuma S.R.L., Rheumatology Outpatient Clinic, Catania, Italy
- *Correspondence: Gianluca Sambataro,
| |
Collapse
|
13
|
Wang CH, Liang WC. Pediatric immune-mediated necrotizing myopathy. Front Neurol 2023; 14:1123380. [PMID: 37021281 PMCID: PMC10067916 DOI: 10.3389/fneur.2023.1123380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Immune-mediated necrotizing myopathy (IMNM) is a type of inflammatory myopathy. Most patients with IMNM produce anti-3-hydroxy-3-methylglutaryl coenzyme A reductase or anti-signal-recognition particle autoantibodies. IMNM is much rarer in children than in adults. We conducted this mini review focusing on pediatric IMNM to present current evidence regarding its epidemiology, clinical characteristics, diagnosis, and treatment. Our findings indicate that pediatric IMNM often causes severe muscle weakness and is refractory to corticosteroids alone. Furthermore, delayed diagnosis is common because of the clinicopathological similarity between IMNM and inherited myopathy. Raising awareness regarding pediatric IMNM may facilitate early diagnosis and effective treatment.
Collapse
Affiliation(s)
- Chen-Hua Wang
- Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chen Liang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Wen-Chen Liang,
| |
Collapse
|
14
|
Goyal NA. Inclusion Body Myositis. Continuum (Minneap Minn) 2022; 28:1663-1677. [PMID: 36537974 DOI: 10.1212/con.0000000000001204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW This article highlights the clinical and diagnostic features of inclusion body myositis (IBM) and provides recent insights into the pathomechanisms and therapeutic strategies of the disease. RECENT FINDINGS IBM is an often-misdiagnosed myopathy subtype. Due to the insidious onset and slow progression of muscle weakness, it can often be dismissed as a sign of aging as it commonly presents in older adults. While challenging to recognize upon initial clinical evaluation, the recent recognition of specialized stains highlighting features seen on muscle pathology, the use of diagnostic tools such as the anti-cytosolic 5'-nucleotidase 1A antibody biomarker, and the ability of muscle imaging to detect patterns of preferential muscle involvement seen in IBM has allowed for earlier diagnosis of the disease than was previously possible. While the pathogenesis of IBM has historically been poorly understood, several ongoing studies point toward mechanisms of autophagy and highly differentiated cytotoxic T cells that are postulated to be pathogenic in IBM. SUMMARY Overall advancements in our understanding of IBM have resulted in improvements in the management of the disease and are the foundation of several strategies for current and upcoming novel therapeutic drug trials in IBM.
Collapse
|
15
|
Liu C, Liu A, Zhou J, Zhang Y, Zhou F, Chen H, Liu Q, Zhang S, Huang J, Liu Z. Role and Mechanism of Theaflavins in Regulating Skeletal Muscle Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13233-13250. [PMID: 36215649 DOI: 10.1021/acs.jafc.2c04063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Persistent inflammatory infiltration of skeletal muscle is a principal trigger for the loss of muscle mass and strength. Theaflavins, the main functional components of black tea, have effects on muscle health, but their biological effects on skeletal muscle inflammation are unclear. We constructed in vitro and in vivo models of muscle inflammation and found that theaflavins reduced the expression of inflammatory factors (IL-1β, IL-6, and TNF-α) by regulating the TLR4/MyD88/NF-κB signaling pathway to alleviate muscle inflammation. In addition, TF1 can regulate the metabolic function of skeletal muscle under inflammatory conditions, reduce the content of proinflammatory substances, improve the mechanical properties (stiffness and roughness) of the surface of inflammatory myotubes, and promote the recovery of muscle after an inflammatory injury. In conclusion, theaflavins may serve as a diet-derived anti-inflammatory factor with potential modulatory effects on skeletal muscle metabolism and mechanical properties in an inflammatory environment.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Jinghui Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yangbo Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Fang Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongyu Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Qi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| |
Collapse
|
16
|
Corona-Sanchez EG, Martínez-García EA, Lujano-Benítez AV, Pizano-Martinez O, Guerra-Durán IA, Chavarria-Avila E, Aguilar-Vazquez A, Martín-Márquez BT, Arellano-Arteaga KJ, Armendariz-Borunda J, Perez-Vazquez F, García-De la Torre I, Llamas-García A, Palacios-Zárate BL, Toriz-González G, Vazquez-Del Mercado M. Autoantibodies in the pathogenesis of idiopathic inflammatory myopathies: Does the endoplasmic reticulum stress response have a role? Front Immunol 2022; 13:940122. [PMID: 36189221 PMCID: PMC9520918 DOI: 10.3389/fimmu.2022.940122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of rare, acquired autoimmune diseases characterized by profound muscle weakness and immune cell invasion into non-necrotic muscle. They are related to the presence of antibodies known as myositis-specific antibodies and myositis-associated antibodies, which are associated with various IIM phenotypes and the clinical prognosis. The possibility of the participation of other pathological mechanisms involved in the inflammatory response in IIM has been proposed. Such mechanisms include the overexpression of major histocompatibility complex class I in myofibers, which correlates with the activation of stress responses of the endoplasmic reticulum (ER). Taking into account the importance of the ER for the maintenance of homeostasis of the musculoskeletal system in the regulation of proteins, there is probably a relationship between immunological and non-immunological processes and autoimmunity, and an example of this might be IIM. We propose that ER stress and its relief mechanisms could be related to inflammatory mechanisms triggering a humoral response in IIM, suggesting that ER stress might be related to the triggering of IIMs and their auto-antibodies’ production.
Collapse
Affiliation(s)
- Esther Guadalupe Corona-Sanchez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Verónica Lujano-Benítez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomedicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Oscar Pizano-Martinez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ivette Alejandra Guerra-Durán
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Efrain Chavarria-Avila
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Disciplinas Filosófico Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Aguilar-Vazquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomedicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Kevin Javier Arellano-Arteaga
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Especialidad de Medicina Interna, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Juan Armendariz-Borunda
- Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Zapopan, Mexico
| | - Felipe Perez-Vazquez
- Departamento de Disciplinas Filosófico Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ignacio García-De la Torre
- Departamento de Inmunología y Reumatología, Hospital General de Occidente y Universidad de Guadalajara, Guadalajara, Mexico
| | - Arcelia Llamas-García
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Brenda Lucía Palacios-Zárate
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Guillermo Toriz-González
- Instituto Transdisciplinar de Investigación y Servicios (ITRANS), Universidad de Guadalajara, Zapopan, Mexico
| | - Monica Vazquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
- *Correspondence: Monica Vazquez-Del Mercado,
| |
Collapse
|
17
|
Paramalingam S, Needham M, Harris S, O’Hanlon S, Mastaglia F, Keen H. Muscle B mode ultrasound and shear-wave elastography in idiopathic inflammatory myopathies (SWIM): criterion validation against MRI and muscle biopsy findings in an incident patient cohort. BMC Rheumatol 2022; 6:47. [PMID: 35934717 PMCID: PMC9358818 DOI: 10.1186/s41927-022-00276-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Background B mode ultrasound (US) and shear wave elastography (SWE) are easily accessible imaging tools for idiopathic inflammatory myopathies (IIM) but require further validation against standard diagnostic procedures such as MRI and muscle biopsy. Methods In this prospective cross-sectional study we compared US findings to MRI and muscle biopsy findings in a group of 18 patients (11 F, 7 M) with active IIM (dermatomyositis 6, necrotising autoimmune myopathy 7, inclusion body myositis 4, overlap myositis 1) who had one or both procedures on the same muscle. US domains (echogenicity, fascial thickness, muscle bulk, shear wave speed and power doppler) in the deltoid and vastus lateralis were compared to MRI domains (muscle oedema, fatty infiltration/atrophy) and muscle biopsy findings (lymphocytic inflammation, myonecrosis, atrophy and fibro-fatty infiltration). A composite index score (1–4) was also used as an arbitrary indicator of overall muscle pathology in biopsies. Results Increased echogenicity correlated with the presence of fatty infiltration/atrophy on MRI (p = 0.047) in the vastus lateralis, and showed a non-significant association with muscle inflammation, myonecrosis, fibrosis and fatty infiltration/atrophy (p > 0.333) Severe echogenicity also had a non-significant association with higher composite biopsy index score in the vastus lateralis (p = 0.380). SWS and US measures of fascial thickness and muscle bulk showed poor discrimination in differentiating between pathologies on MRI or muscle biopsy. Power Doppler measures of vascularity correlated poorly with the presence of oedema on MRI, or with inflammation or fatty infiltration on biopsy. Overall, US was sensitive in detecting the presence of muscle pathology shown on MRI (67–100%) but showed poorer specificity (13–100%). Increased echogenicity showed good sensitivity when detecting muscle pathology (100%) but lacked specificity in differentiating muscle pathologies (0%). Most study participants rated US as the preferred imaging modality. Conclusions Our findings show that US, in particular muscle echogenicity, has a high sensitivity, but low specificity, for detecting muscle pathology in IIM. Traditional visual grading scores are not IIM-specific and require further modification and validation. Future studies should continue to focus on developing a feasible scoring system, which is reliable and allows translation to clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s41927-022-00276-w.
Collapse
|
18
|
Clinical characteristics and outcome in muscular sarcoidosis: a retrospective cohort study and literature review. Neuromuscul Disord 2022; 32:557-563. [PMID: 35654706 DOI: 10.1016/j.nmd.2022.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022]
Abstract
We evaluated the clinical features and treatment response of patients with muscular sarcoidosis. A retrospective cohort of 12 patients showed muscle weakness in 11 and myalgia in seven. One had focal myositis. Four had a negative medical history for sarcoidosis. Muscle imaging showed muscle edema in all and replacement of muscle tissue by fat in half of patients. Muscle biopsy showed non-caseating granulomas in six of nine patients and inflammation without granulomas in three. None of the muscle biopsies showed features of inclusion body myositis. Imaging in three patients without muscle biopsy showed focal intramuscular masses or a 'tiger man' appearance typical for muscular sarcoidosis. Treatment consisted of glucocorticoids in 11, additional methotrexate or azathioprine in seven and infliximab in two patients. Half of the patients had symptoms leading to substantial disability (modified Rankin scale score >1) at last follow-up. A literature review of articles describing more than one muscular sarcoidosis patient published in the last 25 years identified 153 additional patients. We found muscular sarcoidosis to be a rare and often disabling disease which may be recognized by typical muscle imaging characteristics and add focal myositis to the muscular phenotypes of sarcoidosis.
Collapse
|
19
|
Shiota T, Eura N, Hasegawa A, Kiriyama T, Sugie K. Pathological features of inflammatory myopathy as a manifestation of chronic graft-versus-host disease after allogeneic bone marrow transplantation. Neuropathology 2022; 42:309-314. [PMID: 35508303 DOI: 10.1111/neup.12816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is the most important complication resulting in the death of bone marrow transplantation (BMT) survivors. It is also a relatively rare cause of inflammatory myopathy (IM). We report the case of a 46-year-old woman who developed severe cGVHD-related IM after BMT for myelodysplastic syndrome. She presented with severe muscle pain and weakness with cGVHD-related symptoms in other organs. Myopathological analysis showed moderate cell infiltration with remarkable necrotic and regenerative fibers. Sarcoplasm and capillaries expressed C5b9 and myxovirus resistance protein 1. Non-necrotic fibers in perifascicular regions expressed MHC-II. Steroid therapy did not sufficiently control cGVHD-related IM, and the patient was concurrently treated with an immunosuppressant. Our findings show that IM is a key manifestation of cGVHD and that the expression of interferon-inducible proteins in muscle pathology is useful for identifying cGVHD-related IM.
Collapse
Affiliation(s)
- Tomo Shiota
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Nobuyuki Eura
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Atsushi Hasegawa
- Department of Hematology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Takao Kiriyama
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
20
|
Pathophysiological Mechanisms and Treatment of Dermatomyositis and Immune Mediated Necrotizing Myopathies: A Focused Review. Int J Mol Sci 2022; 23:ijms23084301. [PMID: 35457124 PMCID: PMC9030619 DOI: 10.3390/ijms23084301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIM), collectively known as myositis, are a composite group of rare autoimmune diseases affecting mostly skeletal muscle, although other organs or tissues may also be involved. The main clinical feature of myositis is subacute, progressive, symmetrical muscle weakness in the proximal arms and legs, whereas subtypes of myositis may also present with extramuscular features, such as skin involvement, arthritis or interstitial lung disease (ILD). Established subgroups of IIM include dermatomyositis (DM), immune-mediated necrotizing myopathy (IMNM), anti-synthetase syndrome (ASyS), overlap myositis (OM) and inclusion body myositis (IBM). Although these subgroups have overlapping clinical features, the widespread variation in the clinical manifestations of IIM suggests different pathophysiological mechanisms. Various components of the immune system are known to be important immunopathogenic pathways in IIM, although the exact pathophysiological mechanisms causing the muscle damage remain unknown. Current treatment, which consists of glucocorticoids and other immunosuppressive or immunomodulating agents, often fails to achieve a sustained beneficial response and is associated with various adverse effects. New therapeutic targets have been identified that may improve outcomes in patients with IIM. A better understanding of the overlapping and diverging pathophysiological mechanisms of the major subgroups of myositis is needed to optimize treatment. The aim of this review is to report on recent advancements regarding DM and IMNM.
Collapse
|
21
|
Wu MJ, Liao WA, Lin PY, Sun YT. Muscle Biopsy: A Requirement for Precision Medicine in Adult-Onset Myopathy. J Clin Med 2022; 11:jcm11061580. [PMID: 35329906 PMCID: PMC8951002 DOI: 10.3390/jcm11061580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Muscle biopsy is a fundamental procedure to assist the final diagnosis of myopathy. With the recent advances in molecular diagnosis, serology tests, and mechanism-based classification in myopathy, the précised diagnosis for myopathy required the applications of multiple tools. This study intends to reappraise the benefit of muscle biopsy in adult-onset myopathy under the setting of an optimized muscle biopsy protocol and comprehensive serology tests. A one-group pretest-posttest study design was used. The pre- and post-biopsy diagnoses and treatments in 69 adult patients were compared. Muscle biopsy yielded 85.5% of definitive diagnoses, including changes in pre-biopsy diagnoses (40.6%) and narrowing down the suspicious myopathies (49.3%). The demographic data and clinical parameters between the group “with change” and “without change” after biopsy were not different. Among those with changes in diagnosis, 39.3% also had a corresponding shift in treatment, which benefits the patients significantly. Regarding the most common adult-onset myopathy, idiopathic inflammatory myopathy (IIM), 41% of patients with pre-biopsy diagnosis as IIM had changes in their IIM subtype diagnosis, and 53% was finally not IIM after muscle biopsy. Although there have been advances in molecular diagnosis recently, muscle biopsy still undoubtedly critically guided the diagnosis and treatment of adult-onset myopathy in the era of precision medicine.
Collapse
Affiliation(s)
- Meng-Ju Wu
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (M.-J.W.); (P.-Y.L.)
| | - Wei-An Liao
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Po-Yu Lin
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (M.-J.W.); (P.-Y.L.)
| | - Yuan-Ting Sun
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (M.-J.W.); (P.-Y.L.)
- Department of Medical Genomics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence:
| |
Collapse
|