1
|
Satyanarayanan SK, Yip TF, Han Z, Zhu H, Qin D, Lee SMY. Role of toll-like receptors in post-COVID-19 associated neurodegenerative disorders? Front Med (Lausanne) 2025; 12:1458281. [PMID: 40206484 PMCID: PMC11979212 DOI: 10.3389/fmed.2025.1458281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
In the intricate realm of interactions between hosts and pathogens, Toll-like receptors (TLRs), which play a crucial role in the innate immune response, possess the ability to identify specific molecular signatures. This includes components originating from pathogens such as SARS-CoV-2, as well as the resulting damage-associated molecular patterns (DAMPs), the endogenous molecules released after cellular damage. A developing perspective suggests that TLRs play a central role in neuroinflammation, a fundamental factor in neurodegenerative conditions like Alzheimer's and Parkinson's disease (PD). This comprehensive review consolidates current research investigating the potential interplay between TLRs, their signaling mechanisms, and the processes of neurodegeneration following SARS-CoV-2 infection with an aim to elucidate the involvement of TLRs in the long-term neurological complications of COVID-19 and explore the potential of targeting TLRs as a means of implementing intervention strategies for the prevention or treatment of COVID-19-associated long-term brain outcomes.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Tsz Fung Yip
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zixu Han
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Suki Man Yan Lee
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Park E, Liu E, Baker AJ. In vivo characterization of ACE2 expression in Sprague-Dawley rats and cultured primary brain pericytes highlights the utility of Rattus norvegicus in the study of COVID-19 brain pathophysiology. Brain Res 2025; 1848:149333. [PMID: 39542232 DOI: 10.1016/j.brainres.2024.149333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
A high number of COVID-19 patients report ongoing neurological impairments including headache, fatigue and memory impairments. Our understanding of COVID-19 disease mechanisms in the brain is limited and relies on post-mortem human tissues, in vitro studies in various cell lines (both human and animal) as well as preclinical studies in a variety of species. Notably the use of rats in the study of COVID-19 has been scarce in part due to early reports of low infectivity of the original Wuhan strain in mice and rats. Evidence has shown that subsequent strains that have mutated from the original strain are capable of infection in rats. Here we present an immunohistological characterization of ACE2 expression in the rat brain perivascular region. We found ACE2 to be expressed in pericytes but not endothelial cells or astrocytes in the perivascular space. We further examined the uptake of Omicron variants 1.1.529 and BA.2 receptor binding domains (RBD) of the SARS-CoV2 spike protein in primary brain pericytes derived from rats. We demonstrate that rat primary brain pericytes are susceptible to SARS-CoV2 spike protein uptake and induce functional changes in pericytes associated with a reduction in tight junction protein expression. These data provide evidence that rat primary cell responses to SARS-CoV2 infection are consistent with reports of infectivity in other species (transgenic mice expressing hACE2, ferrets, hamsters) and supports the use of this model organism with a long history of use in the study of disease which should be leveraged for study of COVID-19 in the brain.
Collapse
Affiliation(s)
- Eugene Park
- St. Michael's Hospital, Unity Health Toronto, Toronto, ON Canada
| | - Elaine Liu
- St. Michael's Hospital, Unity Health Toronto, Toronto, ON Canada
| | - Andrew J Baker
- St. Michael's Hospital, Unity Health Toronto, Toronto, ON Canada; Institute of Medical Science and the Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Chen Y, Zhang C, Feng Y. Medicinal plants for the management of post-COVID-19 fatigue: A literature review on the role and mechanisms. J Tradit Complement Med 2025; 15:15-23. [PMID: 39807273 PMCID: PMC11725095 DOI: 10.1016/j.jtcme.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 01/16/2025] Open
Abstract
Background COVID-19 infection has a lasting impact on human health, which is known as post-COVID-19 conditions. Fatigue is one of the most commonly reported post-COVID-19 conditions. Management of fatigue in the post-COVID-19 era is necessary and emerging. The use of medicinal plants may provide a strategy for the management of post-COVID-19 fatigue. Methods A literature search has been conducted by using PubMed, Embase and Cochrane library databases is performed for studies published up to March 2024. Keywords, such as "post-COVID-19 conditions, persistent COVID-19 symptoms, chronic COVID-19, long-term sequelae, fatigue, post-COVID-19 fatigue, herbal plants, medicinal herbs, traditional Chinese medicine, pharmacological mechanisms, pharmacological actions" are thoroughly searched in Englsih and Chinese. This study reviews the pathophysiology of post-COVID-19 fatigue and potential herbal plants for managing post-COVID-19 fatigue. Results and conclusion Representative medicinal plants that have been extensively investigated by previous studies are presented in the study. Three common mechanisms among the most extensively studied for post-COVID-19 fatigue, with each mechanism having medicinal plants as an example. The latest clinical studies concerning the management of post-COVID-19 fatigue using medicinal plants have also been summarized. The study shows the potential for improving post-COVID-19 fatigue by consuming medicinal plants.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
4
|
Narayanan SN, Padiyath S, Chandrababu K, Raj L, P S BC, Ninan GA, Sivadasan A, Jacobs AR, Li YW, Bhaskar A. Neurological, psychological, psychosocial complications of long-COVID and their management. Neurol Sci 2025; 46:1-23. [PMID: 39516425 PMCID: PMC11698801 DOI: 10.1007/s10072-024-07854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Since it first appeared, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has had a significant and lasting negative impact on the health and economies of millions of individuals all over the globe. At the level of individual health too, many patients are not recovering fully and experiencing a long-term condition now commonly termed 'long-COVID'. Long-COVID is a collection of symptoms which must last more than 12 weeks following initial COVID infection, and which cannot be adequately explained by alternate diagnoses. The neurological and psychosocial impact of long-COVID is itself now a global health crisis and therefore preventing, diagnosing, and managing these patients is of paramount importance. This review focuses primarily on: neurological functioning deficits; mental health impacts; long-term mood problems; and associated psychosocial issues, among patients suffering from long-COVID with an eye towards the neurological basis of these symptoms. A concise account of the clinical relevance of the neurological and psychosocial impacts of long-COVID, the effects on long-term morbidity, and varied approaches in managing patients with significant chronic neurological symptoms and conditions was extracted from the literature, analysed and reported. A comprehensive account of plausible pathophysiological mechanisms involved in the development of long-COVID, its management, and future research needs have been discussed.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, School of Medicine and Dentistry, AUC-UK Track, University of Central Lancashire, Preston, UK.
| | - Sreeshma Padiyath
- Department of Microbiology, School of Medicine and Dentistry, AUC-UK Track, University of Central Lancashire, Preston, UK
| | - Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Kochi, India
| | - Lima Raj
- Department of Psychology, Sree Sankaracharya University of Sanskrit, Kalady, India
| | - Baby Chakrapani P S
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Kochi, India
- Centre for Excellence in Neurodegeneration and Brain Health (CENABH), Cochin University of Science and Technology (CUSAT), Kochi, India
| | | | - Ajith Sivadasan
- Department of Neurology, Christian Medical College (CMC), Vellore, India
| | - Alexander Ryan Jacobs
- School of Medicine and Dentistry, AUC-UK Track, University of Central Lancashire, Preston, UK
| | - Yan Wa Li
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Anand Bhaskar
- Department of Physiology, Christian Medical College (CMC), Vellore, India
| |
Collapse
|
5
|
Morita S, Tokumasu K, Otsuka Y, Honda H, Nakano Y, Sunada N, Sakurada Y, Matsuda Y, Soejima Y, Ueda K, Otsuka F. Phase-dependent trends in the prevalence of myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) related to long COVID: A criteria-based retrospective study in Japan. PLoS One 2024; 19:e0315385. [PMID: 39652555 PMCID: PMC11627433 DOI: 10.1371/journal.pone.0315385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND The characteristics of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) related to COVID-19 have remained uncertain. To elucidate the clinical trend of ME/CFS induced by long COVID, we examined data for patients who visited our outpatient clinic established in a university hospital during the period from Feb 2021 to July 2023. METHODS Long COVID patients were classified into two groups, an ME/CFS group and a non-ME/CFS group, based on three diagnostic criteria. RESULTS The prevalence of ME/CFS in the long COVID patients was 8.4% (62 of 739 cases; female: 51.6%) and factors related to ME/CFS were severe illness, smoking and alcohol drinking habits, and fewer vaccinations. The frequency of ME/CFS decreased from 23.9% in the Preceding period to 13.7% in the Delta-dominant period and to 3.3% in the Omicron-dominant period. Fatigue and headache were commonly frequent complaints in the ME/CFS group, and the frequency of poor concentration in the ME/CFS group was higher in the Omicron period. Serum ferritin levels were significantly higher in female patients in the ME/CFS group infected in the Preceding period. In the ME/CFS group, the proportion of patients complaining of brain fog significantly increased from 22.2% in the Preceding period to 47.9% in the Delta period and to 81.3% in the Omicron period. The percentage of patients who had received vaccination was lower in the ME/CFS group than the non-ME/CFS group over the study period, whereas there were no differences in the vaccination rate between the groups in each period. CONCLUSION The proportion of long COVID patients who developed ME/CFS strictly diagnosed by three criteria was lower among patients infected in the Omicron phase than among patients infected in the other phases, while the proportion of patients with brain fog inversely increased. Attention should be paid to the variant-dependent trends of ME/CFS triggered by long COVID (300 words).
Collapse
Affiliation(s)
- Satoru Morita
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuki Tokumasu
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Honda
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naruhiko Sunada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasue Sakurada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yui Matsuda
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keigo Ueda
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
6
|
Wei J, Chen X, Wang L, Wang Z, Li J, Wang Z. A cross-sectional study of fundus lesion characteristics in patients with acute visual impairment caused by COVID-19 infection. Sci Rep 2024; 14:28134. [PMID: 39548221 PMCID: PMC11568121 DOI: 10.1038/s41598-024-79509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
To investigate the characteristics of acute visual dysfunction and fundus lesions in patients with COVID-19 pneumonia. A retrospective case series study was conducted. Data from 48 patients (96 eyes) with COVID-19 infection who presented to our ophthalmology department with acute onset visual disturbance between December 5, 2022, and February 28, 2023 were collected. Asymptomatic patients and those who had already recovered were excluded. Data collected included patient demographics, ophthalmic examinations, multicolor imaging (MCI), infrared autofluorescence (IR), spectral-domain optical coherence tomography (OCT), fundus fluorescein angiography (FFA). Of the 48 patients, 15 were male and 33 were female, with a mean age of 32 years. All patients had bilateral involvement. OCT showed hyperreflective signals in the outer plexiform layer and outer nuclear layer of the macular region in all 96 eyes of 48 patients (100%). Additionally, 66 eyes of 33 patients (68.8%) of eyes demonstrated abnormal reflectivity in the ellipsoid and interdigitation zones. MCI revealed petaloid or wedge-shaped hyperreflective areas in the macula in 46 (47.9%) of eyes, corresponding to hyporeflective areas on IR. Cotton-wool spots were observed in the peripapillary or posterior pole area in 54 (56.3%) of eyes. COVID-19 infection can lead to acute, bilateral, symmetric, and widespread retinal damage. Characteristic findings can be observed in ophthalmological examinations such as OCT, MCI, and IR.
Collapse
Affiliation(s)
- Jia Wei
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Chen
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lihong Wang
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhonghua Wang
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junmeng Li
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhili Wang
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Yang L, Li J, Zhang D. Acute onset psychiatric diseases after SARS-CoV-2 virus infection among pediatric patients. Front Neurol 2024; 15:1445903. [PMID: 39445192 PMCID: PMC11496280 DOI: 10.3389/fneur.2024.1445903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Background Psychiatric symptoms directly associated with SARS-CoV-2 virus infection have been reported sporadically in children. More cases of new-onset psychosis without severe cardinal symptoms, altered consciousness level, and psychogenic drug usage would offer compelling grounds for the association between the virus infection and psychosis. Methods We collected the clinical data of pediatric patients with new onset psychiatric symptoms after the SARS-CoV-2 virus infection from December 2022 to Feb 2023 and followed up with them for 1 year. These children did not have severe respiratory, cardiovascular, or systemic symptoms. They were not given psychogenic drugs. We also searched Pubmed to identify previously reported acute onset psychiatric cases related to SARS-CoV-2 virus infection in children. We summarized these patients' clinical symptoms, laboratory examination, treatment, and prognosis. Results We reported 11 new cases of psychiatric disease directly related to SARS-CoV-2 virus infection and reviewed 12 previously reported cases among children and adolescents. They had various psychiatric symptoms within 3 weeks after the virus infection. Brain MRI and EEG recording did not reveal remarkable abnormalities. The cerebrospinal fluid analysis (CSF) could find increased protein, immunoglobulin, and IL-8 levels, disrupted blood-brain barrier, and positive oligoclonal band in a minority of the patients. Most of the patients had good outcomes. Conclusion New-onset psychiatric symptoms directly related to SARS-CoV-2 virus infection are not rare phenomena among pediatric patients. CSF tests support the presence of central immune responses in some patients. Although these patients received different treatments, most of them had good prognoses.
Collapse
Affiliation(s)
| | | | - Dongqing Zhang
- Pediatric Department, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
8
|
Pandey S, Bapat V, Abraham JN, Abraham NM. Long COVID: From olfactory dysfunctions to viral Parkinsonism. World J Otorhinolaryngol Head Neck Surg 2024; 10:137-147. [PMID: 38855289 PMCID: PMC11156689 DOI: 10.1002/wjo2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 06/11/2024] Open
Abstract
Neurological and psychiatric complications continue to be a public health concern in long coronavirus disease 2019 (COVID-19). This varies from olfactory dysfunctions such as parosmia to cognitive and emotional challenges. Historically, the surge of neurological disorders followed the viral pandemics, for example, the emergence of Encephalitis Lethargica after the outbreak of Spanish Influenza. During and after COVID-19 infection, the problems associated with the sense of smell and the reports of affected olfactory and limbic brain areas are leading to a growing concern about the similarity with the symptoms and the pattern of degeneration observed at the onset of Parkinson's disease and Alzheimer's disease. These reports reveal the essentiality of long-term studies of olfactory and cognitive functions in the post-COVID era and the experiments using animal models to dissect the neural basis of these complications. In this manuscript, we summarize the research reporting the potential correlation between neurological disorders and viral pandemic outbreaks with a historical perspective. Further, we discuss the studies providing evidence of neurodegeneration due to severe acute respiratory syndrome coronavirus 2 infection by focusing on viral Parkinsonism.
Collapse
Affiliation(s)
- Sanyukta Pandey
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Vibha Bapat
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Jancy Nixon Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
- Department of Life Sciences, Centre of Excellence in EpigeneticsShiv Nadar Institution of EminenceGautam Buddha NagarUttar PradeshIndia
| | - Nixon M. Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| |
Collapse
|
9
|
van der Knaap N, Ariës MJH, van der Horst ICC, Jansen JFA. On the merits and potential of advanced neuroimaging techniques in COVID-19: A scoping review. Neuroimage Clin 2024; 42:103589. [PMID: 38461701 PMCID: PMC10938171 DOI: 10.1016/j.nicl.2024.103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Many Coronavirus Disease 2019 (COVID-19) patients are suffering from long-term neuropsychological sequelae. These patients may benefit from a better understanding of the underlying neuropathophysiological mechanisms and identification of potential biomarkers and treatment targets. Structural clinical neuroimaging techniques have limited ability to visualize subtle cerebral abnormalities and to investigate brain function. This scoping review assesses the merits and potential of advanced neuroimaging techniques in COVID-19 using literature including advanced neuroimaging or postmortem analyses in adult COVID-19 patients published from the start of the pandemic until December 2023. Findings were summarized according to distinct categories of reported cerebral abnormalities revealed by different imaging techniques. Although no unified COVID-19-specific pattern could be subtracted, a broad range of cerebral abnormalities were revealed by advanced neuroimaging (likely attributable to hypoxic, vascular, and inflammatory pathology), even in absence of structural clinical imaging findings. These abnormalities are validated by postmortem examinations. This scoping review emphasizes the added value of advanced neuroimaging compared to structural clinical imaging and highlights implications for brain functioning and long-term consequences in COVID-19.
Collapse
Affiliation(s)
- Noa van der Knaap
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Marcel J H Ariës
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
10
|
Nakane S, Koike H, Hayashi T, Nakatsuji Y. Autoimmune Autonomic Neuropathy: From Pathogenesis to Diagnosis. Int J Mol Sci 2024; 25:2296. [PMID: 38396973 PMCID: PMC10889307 DOI: 10.3390/ijms25042296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Autoimmune autonomic ganglionopathy (AAG) is a disease of autonomic failure caused by ganglionic acetylcholine receptor (gAChR) autoantibodies. Although the detection of autoantibodies is important for distinguishing the disease from other neuropathies that present with autonomic dysfunction, other factors are important for accurate diagnosis. Here, we provide a comprehensive review of the clinical features of AAG, highlighting differences in clinical course, clinical presentation, and laboratory findings from other neuropathies presenting with autonomic symptoms. The first step in diagnosing AAG is careful history taking, which should reveal whether the mode of onset is acute or chronic, followed by an examination of the time course of disease progression, including the presentation of autonomic and extra-autonomic symptoms. AAG is a neuropathy that should be differentiated from other neuropathies when the patient presents with autonomic dysfunction. Immune-mediated neuropathies, such as acute autonomic sensory neuropathy, are sometimes difficult to differentiate, and therefore, differences in clinical and laboratory findings should be well understood. Other non-neuropathic conditions, such as postural orthostatic tachycardia syndrome, chronic fatigue syndrome, and long COVID, also present with symptoms similar to those of AAG. Although often challenging, efforts should be made to differentiate among the disease candidates.
Collapse
Affiliation(s)
- Shunya Nakane
- Department of Neurology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Haruki Koike
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tomohiro Hayashi
- Department of Neurology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
11
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
12
|
Tsikopoulos I, Antoniadis G, Konstantinidis C, Samarinas M. Post-COVID-19 Demyelinating Disease and Its Effect on the Lower Urinary Tract: A Rare Case of a 14-Year-Old Man. Cureus 2023; 15:e49022. [PMID: 38111461 PMCID: PMC10726090 DOI: 10.7759/cureus.49022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
The COVID-19 pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) has led to a wide range of manifestations, including urological issues. Patients with COVID-19 frequently experience complications, such as acute kidney injury (AKI) and thromboembolism. Neurological problems, including demyelination in the central and peripheral nervous systems, have also been reported in COVID-19 cases. This neurological damage can be attributed to the virus's neurotropic and neuro-invasive properties. This case study presents a 14-year-old patient who developed severe lower urinary tract symptoms following a COVID-19 infection, leading to a demyelinating disease affecting the lower urinary tract. The patient was managed successfully with specialized neuro-urological care, highlighting the importance of multidisciplinary collaboration in managing post-COVID-19 complications. Clinicians need to be vigilant about potential neurological manifestations in COVID-19 patients, including those affecting the urinary system, and patients should seek specialized medical attention for persistent symptoms.
Collapse
|
13
|
Taheri A, Bremmell KE, Joyce P, Prestidge CA. Battle of the milky way: Lymphatic targeted drug delivery for pathogen eradication. J Control Release 2023; 363:507-524. [PMID: 37797891 DOI: 10.1016/j.jconrel.2023.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Many viruses, bacteria, and parasites rely on the lymphatic system for survival, replication, and dissemination. While conventional anti-infectives can combat infection-causing agents in the bloodstream, they do not reach the lymphatic system to eradicate the pathogens harboured there. This can result in ineffective drug exposure and reduce treatment effectiveness. By developing effective lymphatic delivery strategies for antiviral, antibacterial, and antiparasitic drugs, their systemic pharmacokinetics may be improved, as would their ability to reach their target pathogens within the lymphatics, thereby improving clinical outcomes in a variety of acute and chronic infections with lymphatic involvement (e.g., acquired immunodeficiency syndrome, tuberculosis, and filariasis). Here, we discuss approaches to targeting anti-infective drugs to the intestinal and dermal lymphatics, aiming to eliminate pathogen reservoirs and interfere with their survival and reproduction inside the lymphatic system. These include optimized lipophilic prodrugs and drug delivery systems that promote lymphatic transport after oral and dermal drug intake. For intestinal lymphatic delivery via the chylomicron pathway, molecules should have logP values >5 and long-chain triglyceride solubilities >50 mg/g, and for dermal lymphatic delivery via interstitial lymphatic drainage, nanoparticle formulations with particle size between 10 and 100 nm are generally preferred. Insight from this review may promote new and improved therapeutic solutions for pathogen eradication and combating infective diseases, as lymphatic system involvement in pathogen dissemination and drug resistance has been neglected compared to other pathways leading to treatment failure.
Collapse
Affiliation(s)
- Ali Taheri
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
14
|
Miraglia del Giudice M, Klain A, Dinardo G, D’Addio E, Bencivenga CL, Fontanella C, Decimo F, Umano GR, Siciliano M, Carotenuto M, Indolfi C. Behavioral and Sleep Disorders in Children and Adolescents following COVID-19 Disease: A Case-Control Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1189. [PMID: 37508686 PMCID: PMC10378309 DOI: 10.3390/children10071189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Recent studies show that neuropsychiatric disorders are the most frequent sequelae of COVID-19 in children. PURPOSE Our work aimed to evaluate the impact of SARS-CoV-2 infection on behavior and sleep in children and adolescents. MATERIALS AND METHODS We enrolled 107 patients aged 1.5-18 years who contracted COVID-19 between one year and one month prior to data collection, referred to the University of Campania Luigi Vanvitelli in Italy. We asked their parents to complete two standardized questionnaires for the assessment of behavior (Child Behavior CheckList (CBCL)) and sleep (Sleep Disturbance Scale for Children (SLDS)). We analysed and compared the results with a control group (pre-COVID-19 pandemic). RESULTS In the COVID-19 group, the major results were found for sleep breathing disorders, sleep-wake transition disorders and disorders of initiating and maintaining sleep for the SDSC questionnaire, and internalizing scale, total scale and anxiety/depression for the CBCL questionnaire. The comparison of the CBCL results of the cases with the controls revealed statistically significant differences for the following items: internalizing scale, externalizing scale, somatic complaints, total score, thought problems [(p < 0.01)], anxious/depressed problems and withdrawn [(p < 0.001)]. CONCLUSIONS COVID-19 has impacted children's and adolescents' mental health. Adolescents were the most affected patient group for internalizing problems, including anxiety and depression.
Collapse
Affiliation(s)
- Michele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (E.D.); (C.L.B.); (F.D.); (G.R.U.); (C.I.)
| | - Angela Klain
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (E.D.); (C.L.B.); (F.D.); (G.R.U.); (C.I.)
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (E.D.); (C.L.B.); (F.D.); (G.R.U.); (C.I.)
| | - Elisabetta D’Addio
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (E.D.); (C.L.B.); (F.D.); (G.R.U.); (C.I.)
| | - Chiara Lucia Bencivenga
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (E.D.); (C.L.B.); (F.D.); (G.R.U.); (C.I.)
| | - Cristina Fontanella
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Caserta, Italy; (C.F.); (M.S.); (M.C.)
| | - Fabio Decimo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (E.D.); (C.L.B.); (F.D.); (G.R.U.); (C.I.)
| | - Giuseppina Rosaria Umano
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (E.D.); (C.L.B.); (F.D.); (G.R.U.); (C.I.)
| | - Margherita Siciliano
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Caserta, Italy; (C.F.); (M.S.); (M.C.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Caserta, Italy; (C.F.); (M.S.); (M.C.)
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (E.D.); (C.L.B.); (F.D.); (G.R.U.); (C.I.)
| |
Collapse
|
15
|
Malko VA, Bisaga GN, Topuzova MP, Vlasenko AI, Shcherbakova OA, Mikheeva AG, Mikhailova AA, Lagutina DI, Karonova TL, Alekseeva TM. Analysis of new coronavirus infection and post-COVID-19 syndrome in patients with multiple sclerosis: a pilot study. THE SIBERIAN JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE 2023; 38:198-208. [DOI: 10.29001/2073-8552-2023-38-2-198-208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Actuality. Currently there are no long-term studies about the course of multiple sclerosis (MS) after coronavirus disease 2019 (COVID-19), in comparison with healthy volunteers who recovered from COVID-19 and patients with MS who didn’t have COVID-19.Aim: To study effect of COVID-19 on MS course.Material and Methods. We examined 39 patients with MS who recovered from COVID-19 (40.76 ± 11 years), 21 patients with MS who didn’t have COVID-19 (38.1 ± 12 years) and 33 healthy volunteers who recovered from COVID-19 (39.7 ± 10 years). We performed neurological examination and testing according to clinical and neuropsychological scales.Results. The majority of MS patients had a mild form of COVID-19 (22 people, 68.75%). Among the symptoms of COVID-19 in MS patients, headaches (12 people, 30.8% vs. 18 people, 54.5%) and chest pain (2 people, 5.1% vs. 9 people, 27.3%) were less common than in the control group of healthy volunteers. The duration of the disease, the age of onset, the average frequency of exacerbations, the use of disease modifying therapies, the result on clinical and neuropsychological scales did not show statistically significant differences between the two groups of patients with MS. The incidence of post-COVID syndrome in patients with MS was 79.48% and 88.44% in healthy volunteers. Among MS patients who had COVID-19, there were significantly more persons with a moderate decrease in the quality of life, higher fatigue scores compared to healthy volunteers, but less apathy compared to patients without COVID-19 with MS. The presence of vaccination reduced the risk of COVID-19 infection by 7.4 times in patients with MS.Conclusion. There was no significant effect of COVID-19 on patients with MS during short-term follow-up.
Collapse
Affiliation(s)
- V. A. Malko
- V.A. Almazov Federal National Medical Research Centre
| | - G. N. Bisaga
- V.A. Almazov Federal National Medical Research Centre
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bi Q, Gu H, Qu M, Li Z, Mu X, Zhang L. A case report of encephalitis induced by SARS-CoV-2 confirmed by etiology: first case in Qingdao, China. J Neurovirol 2023; 29:350-354. [PMID: 37184750 PMCID: PMC10184629 DOI: 10.1007/s13365-023-01141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
The neurological manifestations of SARS-CoV-2-infected patients are receiving increasing attention with the global spread of SARS-CoV-2. Here, we report the first case of SARS-CoV-2-induced encephalitis in Qingdao, China. We detected SARS-CoV-2 in nasopharyngeal swabs and cerebrospinal fluid from this 68-year-old female patient.
Collapse
Affiliation(s)
- Qingqing Bi
- Qingdao Central Hospital, Siliunan Road #127, Qingdao, 266042, China
| | - Huayong Gu
- Qingdao Central Hospital, Siliunan Road #127, Qingdao, 266042, China
| | - Mengyuan Qu
- Qingdao Central Hospital, Siliunan Road #127, Qingdao, 266042, China
| | - Zhiwen Li
- Qingdao Central Hospital, Siliunan Road #127, Qingdao, 266042, China
| | - Xiaofeng Mu
- Qingdao Central Hospital, Siliunan Road #127, Qingdao, 266042, China
| | - Lei Zhang
- Qingdao Central Hospital, Siliunan Road #127, Qingdao, 266042, China.
| |
Collapse
|
17
|
Pattanaik A, Bhandarkar B S, Lodha L, Marate S. SARS-CoV-2 and the nervous system: current perspectives. Arch Virol 2023; 168:171. [PMID: 37261613 PMCID: PMC10232347 DOI: 10.1007/s00705-023-05801-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/15/2023] [Indexed: 06/02/2023]
Abstract
SARS-CoV-2 infection frequently causes neurological impairment in both adults and children. Recent publications have described significant aspects of the viral pathophysiology associated with neurological dysfunction. In theory, neurological manifestations following SARS-CoV-2 infection may be caused directly by the effects of the virus infecting the brain or indirectly by the local and systemic immune responses against the virus. Neurological manifestations can occur during the acute phase as well as in the post-acute phase of the infection. In this review, we discuss recent literature describing the association of nervous system disorders with COVID-19.
Collapse
Affiliation(s)
- Amrita Pattanaik
- Manipal Institute of Virology, Manipal Academy of Higher Education (MAHE), PIN-576104, Manipal, Karnataka, India.
| | - Sushma Bhandarkar B
- Manipal Institute of Virology, Manipal Academy of Higher Education (MAHE), PIN-576104, Manipal, Karnataka, India
| | - Lonika Lodha
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), PIN-560029, Bengaluru, Karnataka, India
| | - Srilatha Marate
- Manipal Institute of Virology, Manipal Academy of Higher Education (MAHE), PIN-576104, Manipal, Karnataka, India
| |
Collapse
|
18
|
Falsaperla R, Gulisano C, Portale L, Maccarrone A, Ruggieri M. A critical appraisal of neurological evidence on paediatric COVID-19 patients. A systematic literature review. Heliyon 2023; 9:e15630. [PMID: 37124342 PMCID: PMC10112944 DOI: 10.1016/j.heliyon.2023.e15630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
Objective The aim of our study was to assess the close direct relationship between the development of neurological manifestations and SARS-CoV-2 infection in paediatric patients, by a systematic review of the literature. Methods PubMed and Google Scholar were searched for publications from the start of the pandemic up to 31 December 2022. We included articles that described nervous system manifestations in patients aged 0-18 years with RT-PCR nasopharyngeal swab positivity for SARS-CoV-2. Results The initial search produced 3456 records, of which 37, involving a total of 48 paediatric patients, were included in our systematic review. The neurological complications were heterogeneous, due at least in part to the different age groups considered. In the literature, encephalitis was the most common diagnosis (20.83%). Clinical presentation, diagnostic support, treatment and outcome were analysed both in the literature and in our experience. Conclusions Neurological impairment can occur with the first clinical presentation of COVID-19, even in previously healthy children and with mild forms of the disease. The clinical presentations are heterogeneous in the different age groups. In most patients the outcome is good and neurological manifestations subside after discharge.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy
| | - Chiara Gulisano
- DINOGMI, University of Genova, IRCCS Giannina Gaslini, Genova, Italy
| | - Laura Portale
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Amanda Maccarrone
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, AOU "Policlinico", PO "G. Rodolico", Via S. Sofia, 87, 95128, Catania, Italy
| |
Collapse
|
19
|
Low RN, Low RJ, Akrami A. A review of cytokine-based pathophysiology of Long COVID symptoms. Front Med (Lausanne) 2023; 10:1011936. [PMID: 37064029 PMCID: PMC10103649 DOI: 10.3389/fmed.2023.1011936] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2023] [Indexed: 04/03/2023] Open
Abstract
The Long COVID/Post Acute Sequelae of COVID-19 (PASC) group includes patients with initial mild-to-moderate symptoms during the acute phase of the illness, in whom recovery is prolonged, or new symptoms are developed over months. Here, we propose a description of the pathophysiology of the Long COVID presentation based on inflammatory cytokine cascades and the p38 MAP kinase signaling pathways that regulate cytokine production. In this model, the SARS-CoV-2 viral infection is hypothesized to trigger a dysregulated peripheral immune system activation with subsequent cytokine release. Chronic low-grade inflammation leads to dysregulated brain microglia with an exaggerated release of central cytokines, producing neuroinflammation. Immunothrombosis linked to chronic inflammation with microclot formation leads to decreased tissue perfusion and ischemia. Intermittent fatigue, Post Exertional Malaise (PEM), CNS symptoms with "brain fog," arthralgias, paresthesias, dysautonomia, and GI and ophthalmic problems can consequently arise as result of the elevated peripheral and central cytokines. There are abundant similarities between symptoms in Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). DNA polymorphisms and viral-induced epigenetic changes to cytokine gene expression may lead to chronic inflammation in Long COVID patients, predisposing some to develop autoimmunity, which may be the gateway to ME/CFS.
Collapse
Affiliation(s)
| | - Ryan J. Low
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Athena Akrami
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| |
Collapse
|
20
|
Hudson JS, McCarthy DJ, Alattar A, Mehdi Z, Lang MJ, Gardner PA, Zenonos GA, Friedlander RM, Gross BA. Increased prevalence of blister aneurysm formation during the COVID-19 pandemic. Clin Neurol Neurosurg 2023; 226:107613. [PMID: 36753862 PMCID: PMC9896839 DOI: 10.1016/j.clineuro.2023.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intracranial blister aneurysms are a rare and an historically difficult to treat subset of aneurysms. They are distinct from typical saccular aneurysms with different pathophysiology and treatment options. METHODS A prospectively maintained database of subarachnoid hemorrhage patients was queried for those presenting prior to the pandemic (2017-2019), and those presenting during the height of the pandemic in our locality (2021). Aneurysm characteristics and patient demographics associated with rupture risk/formation were collected. RESULTS 334 aneurysmal subarachnoid hemorrhage patients were reviewed. 86 of these patients presented in 2021, with a statistically significant increase in the proportion of ruptured ICA blister aneurysms as compared to 2017-2019 (7/86, 8% vs 5/248, p = .02). Mean patient age, presenting grade, other aneurysm location proportions, aneurysm size, and incidence of delayed cerebral ischemia were not different between the groups. CONCLUSIONS Patients presenting with SAH during the height of the SARS-CoV-2 pandemic in 2021 were more likely to have ICA blister type aneurysms.
Collapse
Affiliation(s)
- Joseph S Hudson
- University of Pittsburgh Medical Center, Department of Neurosurgery, 200 Lothrop Street, Pittsburgh, 15213 PA, USA.
| | - David J McCarthy
- University of Pittsburgh Medical Center, Department of Neurosurgery, 200 Lothrop Street, Pittsburgh, 15213 PA, USA
| | - Ali Alattar
- University of Pittsburgh Medical Center, Department of Neurosurgery, 200 Lothrop Street, Pittsburgh, 15213 PA, USA
| | - Zain Mehdi
- University of Iowa Carver College of Medicine, 375 Newton Rd, Iowa City, 52242 IA, USA
| | - Michael J Lang
- University of Pittsburgh Medical Center, Department of Neurosurgery, 200 Lothrop Street, Pittsburgh, 15213 PA, USA
| | - Paul A Gardner
- University of Pittsburgh Medical Center, Department of Neurosurgery, 200 Lothrop Street, Pittsburgh, 15213 PA, USA
| | - Georgios A Zenonos
- University of Pittsburgh Medical Center, Department of Neurosurgery, 200 Lothrop Street, Pittsburgh, 15213 PA, USA
| | - Robert M Friedlander
- University of Pittsburgh Medical Center, Department of Neurosurgery, 200 Lothrop Street, Pittsburgh, 15213 PA, USA
| | - Bradley A Gross
- University of Pittsburgh Medical Center, Department of Neurosurgery, 200 Lothrop Street, Pittsburgh, 15213 PA, USA
| |
Collapse
|
21
|
Jammoul M, Naddour J, Madi A, Reslan MA, Hatoum F, Zeineddine J, Abou-Kheir W, Lawand N. Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Auton Neurosci 2023; 245:103071. [PMID: 36580747 PMCID: PMC9789535 DOI: 10.1016/j.autneu.2022.103071] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Patients with long COVID suffer from many neurological manifestations that persist for 3 months following infection by SARS-CoV-2. Autonomic dysfunction (AD) or dysautonomia is one complication of long COVID that causes patients to experience fatigue, dizziness, syncope, dyspnea, orthostatic intolerance, nausea, vomiting, and heart palpitations. The pathophysiology behind AD onset post-COVID is largely unknown. As such, this review aims to highlight the potential mechanisms by which AD occurs in patients with long COVID. The first proposed mechanism includes the direct invasion of the hypothalamus or the medulla by SARS-CoV-2. Entry to these autonomic centers may occur through the neuronal or hematogenous routes. However, evidence so far indicates that neurological manifestations such as AD are caused indirectly. Another mechanism is autoimmunity whereby autoantibodies against different receptors and glycoproteins expressed on cellular membranes are produced. Additionally, persistent inflammation and hypoxia can work separately or together to promote sympathetic overactivation in a bidirectional interaction. Renin-angiotensin system imbalance can also drive AD in long COVID through the downregulation of relevant receptors and formation of autoantibodies. Understanding the pathophysiology of AD post-COVID-19 may help provide early diagnosis and better therapy for patients.
Collapse
Affiliation(s)
- Maya Jammoul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Judith Naddour
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Amir Madi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Hatoum
- Faculty of Medicine, American University of Beirut, Lebanon
| | | | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; Department of Neurology, Faculty of Medicine, American University of Beirut, Lebanon.
| |
Collapse
|
22
|
Balasubramanian N, James TD, Selvakumar GP, Reinhardt J, Marcinkiewcz CA. Repeated ethanol exposure and withdrawal alters angiotensin-converting enzyme 2 expression in discrete brain regions: Implications for SARS-CoV-2 neuroinvasion. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:219-239. [PMID: 36529893 PMCID: PMC9878009 DOI: 10.1111/acer.15000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND People with alcohol use disorder (AUD) may be at higher risk for COVID-19. Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are required for cellular entry by SARS-CoV-2, but information on their expression in specific brain regions after alcohol exposure is limited. We sought to clarify how chronic alcohol exposure affects ACE2 expression in monoaminergic brainstem circuits and other putative SARS-CoV-2 entry points. METHODS Brains were examined for ACE2 using immunofluorescence after 4 weeks of chronic intermittent ethanol (CIE) vapor inhalation. We also examined TMPRSS2, Cathepsin L, and ADAM17 by Western blot and RAS pathway mediators and pro-inflammatory markers via RT-qPCR. RESULTS ACE2 was increased in most brain regions following CIE including the olfactory bulb (OB), hypothalamus (HT), raphe magnus (RMG), raphe obscurus (ROB), locus coeruleus (LC), and periaqueductal gray (PAG). We also observed increased colocalization of ACE2 with monoaminergic neurons in brainstem nuclei. Moreover, soluble ACE2 (sACE2) was elevated in OB, HT, and LC. The increase in sACE2 in OB and HT was accompanied by upregulation of ADAM17, an ACE2 sheddase, while TMPRSS2 increased in HT and LC. Cathepsin L, an endosomal receptor involved in viral entry, was also increased in OB. Alcohol can increase Angiotensin II, which triggers a pro-inflammatory response that may upregulate ACE2 via activation of RAS pathway receptors AT1R/AT2R. ACE2 then metabolizes Angiotensin II to Angiotensin (1-7) and provokes an anti-inflammatory response via MAS1. Accordingly, we report that AT1R/AT2R mRNA decreased in OB and increased in the LC, while MAS1 mRNA increased in both OB and LC. Other mRNAs for pro-inflammatory markers were also dysregulated in OB, HT, raphe, and LC. CONCLUSIONS Our results suggest that alcohol triggers a compensatory upregulation of ACE2 in the brain due to disturbed RAS and may increase the risk or severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | | | - Jessica Reinhardt
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
23
|
Grigore I, Miron I, Gavrilovici C, Lupu VV, Antal DC, Schreiner TG, Prazaru C, Lupu A, Dragan F, Grigore E. SARS-CoV-2 Possible Etiology of Cerebral Venous Thrombosis in a Teenager: Case Report and Review of Literature. Viruses 2023; 15:v15020405. [PMID: 36851619 PMCID: PMC9965073 DOI: 10.3390/v15020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Cerebral venous thrombosis in pediatric patient has a varied etiology. The authors present the case of a teenager who, since the debut of SARS-CoV-2 infection, has accused intermittent right side hemicrania, which has become persistent in association with nausea and vomiting since the 5th day of quarantine. She was hospitalized in the 9th day since the debut. Neuroimaging revealed extended venous cerebral thrombosis affecting the right sigmoid sinus, the transverse sinus bilaterally, the confluence of the transverse sinuses and the right internal jugular vein. The evolution was favorable under anticoagulant and symptomatic treatment. Laboratory tests excluded other etiological causes for the cerebral venous thrombosis, thus the authors consider that cerebral thrombosis is a possible complication of SARS-CoV-2 infection in teenagers.
Collapse
Affiliation(s)
- Ioana Grigore
- “St. Mary” Children Emergency Hospital, 700309 Iasi, Romania
| | - Ingrith Miron
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina Gavrilovici
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (V.V.L.); (A.L.)
| | - Dorin Cristian Antal
- Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Catalin Prazaru
- “St. Mary” Children Emergency Hospital, 700309 Iasi, Romania
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (V.V.L.); (A.L.)
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ecaterina Grigore
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
24
|
Yang Z, Ma Y, Bi W, Tang J. Exploring the research landscape of COVID-19-induced olfactory dysfunction: A bibliometric study. Front Neurosci 2023; 17:1164901. [PMID: 37034158 PMCID: PMC10079987 DOI: 10.3389/fnins.2023.1164901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Since the outbreak of COVID-19, olfactory dysfunction (OD) has become an important and persistent legacy problem that seriously affects the quality of life. The purpose of this paper is to quantitatively analyze and visualize the current research status and development trend of COVID-19 related OD by using VOSviewer software. Based on the Web of Science database, a total of 1,592 relevant documents were retrieved in January 2023, with publication time spanning from 2020 to 2023. The bibliometric analysis revealed that the most influential research results in the field of COVID-19 related OD were concentrated in journals of related disciplines such as otorhinolaryngology, medicine, general and internal, virology, neurosciences, etc. The knowledge base of the research is mainly formed in two fields: COVID-19 clinical research and OD specialized research. The research hotspots are mainly concentrated in six directions: COVID-19, long COVID, smell, anosmia, OD, and recovery. Based on the results of the bibliometric analysis, the temporal trends of COVID-19 related OD studies were visually revealed, and relevant suggestions for future research were proposed.
Collapse
Affiliation(s)
- Zhirong Yang
- Library of Zhuhai Campus, Jinan University, Zhuhai, China
| | - Yukun Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Wei Bi
| | - Jingqian Tang
- Department of Subject Service and Consultation, Jinan University Library, Guangzhou, China
- Intellectual Property Information Service Center, Jinan University, Guangzhou, China
- Jingqian Tang
| |
Collapse
|
25
|
Monllor P, Kumar P, Lloret MÁ, Ftara A, Leon JL, Lopez B, Cervera-Ferri A, Lloret A. Multifactorial Causation of Alzheimer's Disease Due to COVID-19. J Alzheimers Dis 2023; 96:1399-1409. [PMID: 38007649 DOI: 10.3233/jad-230396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
There are several implications of the surge in the incidence of pandemics and epidemics in the last decades. COVID-19 being the most remarkable one, showed the vulnerability of patients with neurodegenerative diseases like Alzheimer's disease (AD). This review studies the pathological interlinks and triggering factors between the two illnesses and proposes a multifactorial pathway of AD causation due to COVID-19. The article evaluates and describes all the postulated hypotheses which explain the etiology and possible pathogenesis of the disease in four domains: Inflammation & Neurobiochemical interactions, Oxidative Stress, Genetic Factors, and Social Isolation. We believe that a probable hypothesis of an underlying cause of AD after COVID-19 infection could be the interplay of all these factors.
Collapse
Affiliation(s)
- Paloma Monllor
- Department of Physiology, Faculty of Medicine, University of Valencia, INCLIVA, CIBERFES, Spain
- Internal Medicine Department, University Hospital of La Plana, Vila-Real, Spain
| | - Pratyush Kumar
- MS4, Dr. Baba Saheb Ambedkar Medical College and Hospital, Rohini, New Delhi, India
| | - Mari-Ángeles Lloret
- Department of Clinical Neurophysiology, University Clinic Hospital of Valencia, Valencia, Spain
| | - Artemis Ftara
- Department of Physiology, Faculty of Medicine, University of Valencia, INCLIVA, CIBERFES, Spain
| | - Jose-Luis Leon
- Ascires Biomedical Group, Department of Neuroradiology, Valencia, Spain
| | - Begoña Lopez
- Department of Neurology, University Clinic Hospital of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, INCLIVA, CIBERFES, Spain
| |
Collapse
|
26
|
Koberskaya NN, Roshchin FA. Alzheimer's disease and COVID-19. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2022. [DOI: 10.14412/2074-2711-2022-6-89-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- N. N. Koberskaya
- Department of Nervous System Diseases and Neurosurgery, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia; Russian Clinical and Research Center of Gerontology, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - F. A. Roshchin
- Department of Nervous System Diseases and Neurosurgery, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| |
Collapse
|
27
|
Almishaal AA. Comparative Study of Audiovestibular Symptoms between Early and Late Variants of COVID-19. Audiol Res 2022; 12:680-695. [PMID: 36546906 PMCID: PMC9774134 DOI: 10.3390/audiolres12060065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Audiovestibular symptoms during the acute phase of the corona virus disease 2019 (COVID-19), have been reported for earlier waves of the pandemic, while no studies investigated nor compared audiovestibular manifestations during subsequent waves of COVID-19. In the current study, we aimed to compare the occurrence of audiovestibular symptoms associated with COVID-19 between the alpha/beta, delta, and omicron variants. An online questionnaire was distributed to individuals with confirmed test results for COVID-19. We asked participants to report whether they experienced audiovestibular symptoms during the acute phase of the disease. The study included 939 participants; 120 un-infected controls and infected participants during alpha/beta (n = 301), delta (n = 102), and omicron (n = 416) predominance periods. Self-reported audiovestibular symptoms were found to be statistically significantly different between un-infected controls and COVID-19 infected individuals in all analyzed variants. Furthermore, our results showed no significant differences in audiovestibular symptoms among individuals infected during alpha/beta, delta, and omicron waves. Although individuals infected during the delta variant predominance period reported higher percentages of audiovestibular symptoms (ranging from 11.8% to 26.5% for auditory symptoms and from 12.7% to 34.3% for vestibular symptoms) than for the alpha/beta (ranging from 6.3% to 18.9% for auditory symptoms and 8.3% to 29.9% for vestibular symptoms) and omicron (ranging from 9.6% to 21.2% for auditory and 12.5 to 29.1% for vestibular symptoms) variants, this did not achieve statistical significance. With regards to auditory symptoms, the most commonly reported symptoms were aural fullness followed by hearing loss and tinnitus. With regards to vestibular symptoms, dizziness was the most commonly reported symptom followed by vertigo and unsteadiness. Logistic regression revealed that experiencing auditory symptoms were associated with other neurological symptoms, back and joint pain, and chest pain as COVID-19 symptoms. Vestibular symptoms were associated with anemia, gender, fatigue, headache, and breathing difficulties. In conclusion, our study shows that audiovestibular symptoms are common during the acute phase of early and late COVID-19 variants with no significant differences between them.
Collapse
Affiliation(s)
- Ali A Almishaal
- Department of Speech-Language Pathology and Audiology, College of Applied Medical Sciences, University of Hail, Hail 55476, Saudi Arabia
| |
Collapse
|
28
|
Anti-MOG Positive Bilateral Optic Neuritis and Brainstem Encephalitis Secondary to COVID-19 Infection: A Case Report. Neurol Int 2022; 14:991-996. [PMID: 36548183 PMCID: PMC9782579 DOI: 10.3390/neurolint14040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Introduction: There have been numerous reports on the neuroinvasive competence of SARS-CoV-2. Here, we present a case with anti-MOG positive bilateral optic neuritis and brainstem encephalitis secondary to COVID-19 infection. Additionally, we present a review of the current literature regarding the manifestation of anti-MOG positive optic neuritis as well as anti-MOG positive encephalitis after COVID-19 infection. (2) Case Report: A 59-year-old female patient, with a recent history of COVID-19 infection, presented a progressive reduction of visual acuity and bilateral retrobulbar pain for the last 20 days. An ophthalmological examination revealed a decreased visual acuity (counting fingers) and a bilateral papilledema. An MRI scan of the brain revealed a mild thickening of the bilateral optic nerves and high-intensity lesions in the medial and right lateral pons. A high titer of IgG and IgM antibodies against SARS-CoV-2 in serum and antibodies against myelin oligodendrocyte glycoprotein (anti-MOG) in serum and CSF were revealed. The diagnosis of anti-MOG brainstem encephalitis and optic neuritis was set. (3) Conclusions: The history of COVID-19 infection should raise awareness about these autoimmune and infection-triggered diseases, such as anti-MOG antibody disease.
Collapse
|
29
|
Dabagh-Gorjani F, Fatehchehr MA. COVID-19 and neurological complications: A review. HEALTHCARE IN LOW-RESOURCE SETTINGS 2022; 10. [DOI: 10.4081/hls.2022.10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Infections with viruses have detrimental effects on neurological functions, and even cause severe neurological damage. There is mounting evidence that coronaviruses (CoV) as well as SARS-CoV-2 exhibit neurotropic abilities and might cause neurological problems. Neuroinvasive viruses are not fully understood, which makes it important to investigate their impact on the nervous system. In this paper, we review research into neurological complications associated with CoV.
Collapse
|
30
|
Neurological disorders of COVID-19: insights to applications of natural products from plants and microorganisms. Arch Pharm Res 2022; 45:909-937. [PMCID: PMC9702705 DOI: 10.1007/s12272-022-01420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
In addition to the typical respiratory manifestations, various disorders including involvement of the nerve system have been detected in COVID-19 ranging from 22 to 36%. Although growing records are focusing on neurological aspects of COVID-19, the pathophysiological mechanisms and related therapeutic methods remain obscure. Considering the increased concerns of SARS-CoV-2 potential for more serious neuroinvasion conditions, the present review attempts to focus on the neuroprotective effects of natural compounds as the principle source of therapeutics inhibiting multiple steps of the SARS-CoV-2 infection cycle. The great majority of the natural products with anti-SARS-CoV-2 activity mainly inhibit the attachment, entry and gene expression rather than the replication, assembly, or release. Although microbial-derived natural products comprise 38.5% of the known natural products with neuroprotective effects following viral infection, the neuroprotective potential of the majority of microorganisms is still undiscovered. Among natural products, chrysin, huperzine A, ginsenoside Rg1, pterostilbene, and terrein have shown potent in vitro neuroprotective activity and can be promising for new or repurpose drugs for neurological complications of SARS-CoV-2.
Collapse
|
31
|
Hsu PC, Shahed-Al-Mahmud M. SARS-CoV-2 mediated neurological disorders in COVID-19: Measuring the pathophysiology and immune response. Life Sci 2022; 308:120981. [PMID: 36150465 PMCID: PMC9490490 DOI: 10.1016/j.lfs.2022.120981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
The emergence of beta-coronavirus SARS-CoV-2 gets entry into its host cells by recognizing angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRESS2) receptors, which are responsible for coronavirus diseases-2019 (COVID-19). Global communities have been affected by COVID-19, especially caused the neurological complications and other critical medical issues. COVID-19 associated complications appear in aged people with underlying neurological states, especially in Parkinson's disease (PD) and Alzheimer's disease (AD). ACE2 receptors abundantly expressed in dopamine neurons may worsen the motor symptoms in PD and upregulates in SARS-CoV-2 infected aged patients' brain with AD. Immune-mediated cytokines released in SARS-CoV-2 infection lead to an indirect immune response that damages the central nervous system. Extreme cytokines release (cytokine storm) occurs due to aberrant immune pathways, and activation in microglial propagates CNS damage in COVID-19 patients. Here, we have explored the pathophysiology, immune responses, and long-term neurological impact on PD and AD patients with COVID-19. It is also a crucial step to understanding COVID-19 pathogenesis to reduce fatal outcomes of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pi-Ching Hsu
- Workplace Heath Promotion Center, Changhua Christian Hospital, Changhua, Taiwan
| | | |
Collapse
|
32
|
Hazra S, Chaudhuri AG, Tiwary BK, Chakrabarti N. Integrated network-based multiple computational analyses for identification of co-expressed candidate genes associated with neurological manifestations of COVID-19. Sci Rep 2022; 12:17141. [PMID: 36229517 PMCID: PMC9558001 DOI: 10.1038/s41598-022-21109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023] Open
Abstract
'Tripartite network' (TN) and 'combined gene network' (CGN) were constructed and their hub-bottleneck and driver nodes (44 genes) were evaluated as 'target genes' (TG) to identify 21 'candidate genes' (CG) and their relationship with neurological manifestations of COVID-19. TN was developed using neurological symptoms of COVID-19 found in literature. Under query genes (TG of TN), co-expressed genes were identified using pair-wise mutual information to genes available in RNA-Seq autopsy data of frontal cortex of COVID-19 victims. CGN was constructed with genes selected from TN and co-expressed in COVID-19. TG and their connecting genes of respective networks underwent functional analyses through findings of their enrichment terms and pair-wise 'semantic similarity scores' (SSS). A new integrated 'weighted harmonic mean score' was formulated assimilating values of SSS and STRING-based 'combined score' of the selected TG-pairs, which provided CG-pairs with properties of CGs as co-expressed and 'indispensable nodes' in CGN. Finally, six pairs sharing seven 'prevalent CGs' (ADAM10, ADAM17, AKT1, CTNNB1, ESR1, PIK3CA, FGFR1) showed linkages with the phenotypes (a) directly under neurodegeneration, neurodevelopmental diseases, tumour/cancer and cellular signalling, and (b) indirectly through other CGs under behavioural/cognitive and motor dysfunctions. The pathophysiology of 'prevalent CGs' has been discussed to interpret neurological phenotypes of COVID-19.
Collapse
Affiliation(s)
- Suvojit Hazra
- CPEPA-UGC Centre for "Electro-Physiological and Neuro-Imaging Studies Including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Basant K Tiwary
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India.
| | - Nilkanta Chakrabarti
- CPEPA-UGC Centre for "Electro-Physiological and Neuro-Imaging Studies Including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India.
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
33
|
Chen Y, Yang W, Chen F, Cui L. COVID-19 and cognitive impairment: neuroinvasive and blood‒brain barrier dysfunction. J Neuroinflammation 2022; 19:222. [PMID: 36071466 PMCID: PMC9450840 DOI: 10.1186/s12974-022-02579-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global pandemic. Although COVID-19 was initially described as a respiratory disease, there is growing evidence that SARS-CoV-2 is able to invade the brains of COVID-19 patients and cause cognitive impairment. It has been reported that SARS-CoV-2 may have invasive effects on a variety of cranial nerves, including the olfactory, trigeminal, optic, and vagus nerves, and may spread to other brain regions via infected nerve endings, retrograde transport, and transsynaptic transmission. In addition, the blood-brain barrier (BBB), composed of neurovascular units (NVUs) lining the brain microvasculature, acts as a physical barrier between nerve cells and circulating cells of the immune system and is able to regulate the transfer of substances between the blood and brain parenchyma. Therefore, the BBB may be an important structure for the direct and indirect interaction of SARS-CoV-2 with the brain via the blood circulation. In this review, we assessed the potential involvement of neuroinvasion under the SARS-CoV-2 infection, and the potential impact of BBB disorder under SARS-CoV-2 infection on cognitive impairment.
Collapse
Affiliation(s)
- Yanting Chen
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Wenren Yang
- Department of Trauma Center, Hengyang Medical School, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China
| | - Feng Chen
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Lili Cui
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China.
| |
Collapse
|
34
|
AlHendawi T, Jouhar L, Altaraqji S, Baker L, Ahmed M, Shaban A. Encephalitis and transverse myelitis associated with Covid-19 infection, a case report. BRAIN DISORDERS 2022; 7:100046. [PMID: 35937910 PMCID: PMC9339155 DOI: 10.1016/j.dscb.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Lamia Jouhar
- Pediatric Department, Hamad Medical Corporation, Qatar
| | - Sondos Altaraqji
- Pediatric Neurology Department, Hamad Medical Corporation, Qatar
| | - Laila Baker
- Pediatric Neurology Department, Hamad Medical Corporation, Qatar
| | - Mayada Ahmed
- Radiology Department, Hamad Medical Corporation, Qatar
| | - Ahmad Shaban
- Radiology Department, Hamad Medical Corporation, Qatar
| |
Collapse
|
35
|
Baksh A, Hadid A, Jaiganesh T. COVID-19 Encephalopathy Presenting As New-Onset Seizure: A Case Report. Cureus 2022; 14:e28204. [PMID: 36158377 PMCID: PMC9484586 DOI: 10.7759/cureus.28204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2022] [Indexed: 01/08/2023] Open
Abstract
Since its outbreak, it's been well-documented that coronavirus disease 2019 (COVID-19) can present with wide variety of neurological manifestations in absence of the usual respiratory symptoms. We report one such severe neurological manifestation of SARS-CoV-2 infection. To our knowledge, this is the first reported case of COVID-19 encephalopathy with CSF and MRI findings in the United Arab Emirates. We present a case of a 52-year-old female who presented with complaints of altered mentation, anosmia, headache, dizziness, weakness, lethargy, and vomiting. While in the emergency department she developed two generalized tonic-clonic seizure episodes, a more pronounced delirium, and tachypnea which required intubation. She was then admitted to the intensive care unit (ICU). She was COVID-19 positive and subsequent MRI revealed encephalopathy. She was discharged from ICU and was under long-term care at the time of case documentation.
Collapse
|
36
|
Omidian N, Mohammadi P, Sadeghalvad M, Mohammadi-Motlagh HR. Cerebral microvascular complications associated with SARS-CoV-2 infection: How did it occur and how should it be treated? Biomed Pharmacother 2022; 154:113534. [PMID: 35994816 PMCID: PMC9381434 DOI: 10.1016/j.biopha.2022.113534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/08/2023] Open
Abstract
Cerebral microvascular disease has been reported as a central feature of the neurological disorders in patients with SARS-CoV-2 infection that may be associated with an increased risk of ischemic stroke. The main pathomechanism in the development of cerebrovascular injury due to SARS-CoV-2 infection can be a consequence of endothelial cell dysfunction as a structural part of the blood-brain barrier (BBB), which may be accompanied by increased inflammatory response and thrombocytopenia along with blood coagulation disorders. In this review, we described the properties of the BBB, the neurotropism behavior of SARS-CoV-2, and the possible mechanisms of damage to the CNS microvascular upon SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Neda Omidian
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Sadeghalvad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
37
|
Serrano GE, Walker JE, Tremblay C, Piras IS, Huentelman MJ, Belden CM, Goldfarb D, Shprecher D, Atri A, Adler CH, Shill HA, Driver-Dunckley E, Mehta SH, Caselli R, Woodruff BK, Haarer CF, Ruhlen T, Torres M, Nguyen S, Schmitt D, Rapscak SZ, Bime C, Peters JL, Alevritis E, Arce RA, Glass MJ, Vargas D, Sue LI, Intorcia AJ, Nelson CM, Oliver J, Russell A, Suszczewicz KE, Borja CI, Cline MP, Hemmingsen SJ, Qiji S, Hobgood HM, Mizgerd JP, Sahoo MK, Zhang H, Solis D, Montine TJ, Berry GJ, Reiman EM, Röltgen K, Boyd SD, Pinsky BA, Zehnder JL, Talbot P, Desforges M, DeTure M, Dickson DW, Beach TG. SARS-CoV-2 Brain Regional Detection, Histopathology, Gene Expression, and Immunomodulatory Changes in Decedents with COVID-19. J Neuropathol Exp Neurol 2022; 81:666-695. [PMID: 35818336 PMCID: PMC9278252 DOI: 10.1093/jnen/nlac056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brains of 42 COVID-19 decedents and 107 non-COVID-19 controls were studied. RT-PCR screening of 16 regions from 20 COVID-19 autopsies found SARS-CoV-2 E gene viral sequences in 7 regions (2.5% of 320 samples), concentrated in 4/20 subjects (20%). Additional screening of olfactory bulb (OB), amygdala (AMY) and entorhinal area for E, N1, N2, RNA-dependent RNA polymerase, and S gene sequences detected one or more of these in OB in 8/21 subjects (38%). It is uncertain whether these RNA sequences represent viable virus. Significant histopathology was limited to 2/42 cases (4.8%), one with a large acute cerebral infarct and one with hemorrhagic encephalitis. Case-control RNAseq in OB and AMY found more than 5000 and 700 differentially expressed genes, respectively, unrelated to RT-PCR results; these involved immune response, neuronal constituents, and olfactory/taste receptor genes. Olfactory marker protein-1 reduction indicated COVID-19-related loss of OB olfactory mucosa afferents. Iba-1-immunoreactive microglia had reduced area fractions in cerebellar cortex and AMY, and cytokine arrays showed generalized downregulation in AMY and upregulation in blood serum in COVID-19 cases. Although OB is a major brain portal for SARS-CoV-2, COVID-19 brain changes are more likely due to blood-borne immune mediators and trans-synaptic gene expression changes arising from OB deafferentation.
Collapse
Affiliation(s)
- Geidy E Serrano
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Jessica E Walker
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Cécilia Tremblay
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Danielle Goldfarb
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - David Shprecher
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alireza Atri
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles H Adler
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Holly A Shill
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Shyamal H Mehta
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Richard Caselli
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Bryan K Woodruff
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | | | - Thomas Ruhlen
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Maria Torres
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Steve Nguyen
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Dasan Schmitt
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | | | | | | | | | - Richard A Arce
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Michael J Glass
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Daisy Vargas
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Lucia I Sue
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Courtney M Nelson
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Javon Oliver
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Aryck Russell
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA (AR)
| | | | - Claryssa I Borja
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Madison P Cline
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Sanaria Qiji
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Holly M Hobgood
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Haiyu Zhang
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Gerald J Berry
- Department of Pathology, Stanford University, Stanford, California, USA
| | | | - Katharina Röltgen
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University, Stanford, California, USA
- Division of Infectious Disease & Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - James L Zehnder
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Pierre Talbot
- Laboratory of Neuroimmunology, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Marc Desforges
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville, Florida, USA
- Laboratory of Virology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Michael DeTure
- Département de microbiologie, infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Dennis W Dickson
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Thomas G Beach
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
38
|
Mohammadian M, Golchoobian R. Potential autonomic nervous system dysfunction in COVID-19 patients detected by heart rate variability is a sign of SARS-CoV-2 neurotropic features. Mol Biol Rep 2022; 49:8131-8137. [PMID: 35810238 DOI: 10.1007/s11033-022-07486-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
Increasing evidence strongly support that the newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to the development of COVID-19-associated central nervous system (CNS) manifestations. The presence of SARS-CoV-2 viral protein in the brainstem, which includes cardiovascular control centers, has been documented previously. Given the changes in autonomic nervous system function evaluated by heart rate variability (HRV) metrics, which are observed even prior to clinical signs, the potential effect of SARS-CoV-2 on the autonomic nervous system (ANS) center is likely. The integral parts of the brain renin-angiotensin system, as ACE2 enzyme, are highly expressed in the brainstem, which may also be involved in baroreflex sensitivity, playing an important role in HRV. SARS-CoV-2 may bind to ACE2 in order to enter the host brainstem cell and change baroreflex sensitivity due to the altered ratio of the concentration of angiotensin II (Ag II) to angiotensin (1-7). In this article, we discussed the information on the possibility that the SARS-CoV-2 viral particle by disrupting the homeostasis of the brain renin-angiotensin system even without brainstem neuropathological changes, may affect the function of the ANS center in the brainstem. SARS-CoV-2 could influence ANS function before affecting the immune system. It is possible that the altered HRV parameters imply the potential neurotropic characteristics of SARS-CoV-2. Therefore, this potential feature should be taken into account in diagnostic and therapeutic approaches for COVID-19 patients.
Collapse
Affiliation(s)
- Maryame Mohammadian
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ravieh Golchoobian
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
39
|
Mouliou DS, Dardiotis E. Temelimab for MS and SARS-CoV-2: Could it be a double-edged blessing? Mult Scler Relat Disord 2022; 64:103938. [PMID: 35717898 PMCID: PMC9169463 DOI: 10.1016/j.msard.2022.103938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/22/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Dimitra S Mouliou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa 41100, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa 41100, Greece
| |
Collapse
|
40
|
Hamdy NM, Shaker FH, Zhan X, Basalious EB. Tangled quest of post-COVID-19 infection-caused neuropathology and what 3P nano-bio-medicine can solve? EPMA J 2022; 13:261-284. [PMID: 35668839 PMCID: PMC9160520 DOI: 10.1007/s13167-022-00285-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
COVID-19-caused neurological problems are the important post-CoV-2 infection complications, which are recorded in ~ 40% of critically ill COVID-19 patients. Neurodegeneration (ND) is one of the most serious complications. It is necessary to understand its molecular mechanism(s), define research gaps to direct research to, hopefully, design new treatment modalities, for predictive diagnosis, patient stratification, targeted prevention, prognostic assessment, and personalized medical services for this type of complication. Individualized nano-bio-medicine combines nano-medicine (NM) with clinical and molecular biomarkers based on omics data to improve during- and post-illness management or post-infection prognosis, in addition to personalized dosage profiling and drug selection for maximum treatment efficacy, safety with least side-effects. This review will enumerate proteins, receptors, and enzymes involved in CoV-2 entrance into the central nervous system (CNS) via the blood–brain barrier (BBB), and list the repercussions after that entry, ranging from neuroinflammation to neurological symptoms disruption mechanism. Moreover, molecular mechanisms that mediate the host effect or viral detrimental effect on the host are discussed here, including autophagy, non-coding RNAs, inflammasome, and other molecular mechanisms of CoV-2 infection neuro-affection that are defined here as hallmarks of neuropathology related to COVID-19 infection. Thus, a couple of questions are raised; for example, “What are the hallmarks of neurodegeneration during COVID-19 infection?” and “Are epigenetics promising solution against post-COVID-19 neurodegeneration?” In addition, nano-formulas might be a better novel treatment for COVID-19 neurological complications, which raises one more question, “What are the challenges of nano-bio-based nanocarriers pre- or post-COVID-19 infection?” especially in the light of omics-based changes/challenges, research, and clinical practice in the framework of predictive preventive personalized medicine (PPPM / 3P medicine).
Collapse
Affiliation(s)
- Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo Egypt
| | - Fatma H Shaker
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo Egypt
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China.,Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China.,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People's Republic of China
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr AlAiny, Cairo, 11562 Egypt
| |
Collapse
|
41
|
Baazaoui N, Iqbal K. COVID-19 and Neurodegenerative Diseases: Prion-Like Spread and Long-Term Consequences. J Alzheimers Dis 2022; 88:399-416. [DOI: 10.3233/jad-220105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
COVID-19 emerged as a global pandemic starting from Wuhan in China and spread at a lightning speed to the rest of the world. One of the potential long-term outcomes that we speculate is the development of neurodegenerative diseases as a long-term consequence of SARS-CoV-2 especially in people that have developed severe neurological symptoms. Severe inflammatory reactions and aging are two very strong common links between neurodegenerative diseases and COVID-19. Thus, patients that have very high viral load may be at high risk of developing long-term adverse neurological consequences such as dementia. We hypothesize that people with neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and aged people are at higher risk of getting the COVID-19 than normal adults. The basis of this hypothesis is the fact that SARS-CoV-2 uses as a receptor angiotensin-converting enzyme 2 to enter the host cell and that this interaction is calcium-dependent. This could then suggest a direct relationship between neurodegenerative diseases, ACE-2 expression, and the susceptibility to COVID-19. The analysis of the available literature showed that COVID-19 virus is neurotropic and was found in the brains of patients infected with this virus. Furthermore, that the risk of having the infection increases with dementia and that infected people with severe symptoms could develop dementia as a long-term consequence. Dementia could be developed following the acceleration of the spread of prion-like proteins. In the present review we discuss current reports concerning the prevalence of COVID-19 in dementia patients, the individuals that are at high risk of suffering from dementia and the potential acceleration of prion-like proteins spread following SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
42
|
Fuller L, Moehle J, Hardin A. Suspected Recurrence of Cranial Neuralgia Following Infection With SARS-CoV-2: A Case Report. Integr Med (Encinitas) 2022; 21:42-46. [PMID: 35702490 PMCID: PMC9173853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is understood that patients infected with the COVID-19 virus can present with headache as an initial symptom, but it is unclear if those with a history of cranial neuralgias may have a different initial COVID-19 presentation, or if infections from SARS-CoV-2 virus may cause a recurrence of previous cranial neuralgias. In this review, we report a case of cranial neuralgia recurrence that was preceded by a SARS-CoV-2 exposure. There is currently a lack of literature describing COVID-19 patients with a recurrence of a previous cranial neuralgia, and this case draws attention to potential reactivation of cranial neuralgia symptoms in COVID-19 patients, highlights key components of the pathophysiology of cranial neuralgias, and underscores the potential need to identify previous history of cranial neuralgia to more appropriately navigate management and treatment of neuralgia causing head pain as a consequence of COVID-19 infection.
Collapse
Affiliation(s)
| | - Jillian Moehle
- Resident Physician; Institute of Complementary Medicine, Seattle, Washington
| | - Angela Hardin
- Chief Resident Physician, at National University of Natural Medicine, Portland, Oregon
- Corresponding author: Angela Hardin, ND E-mail address:
| |
Collapse
|
43
|
Neuropsychological Outcomes in Adult Patients and Survivors of COVID-19. Pathogens 2022; 11:pathogens11040465. [PMID: 35456140 PMCID: PMC9025655 DOI: 10.3390/pathogens11040465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to affect central nervous system functions through various indirect, and possibly direct, mechanisms. We are only now beginning to understand the possible effects of the virus on human cognition. This review summarizes extant yet limited literature on clinical neuropsychological findings in adult coronavirus disease 2019 (COVID-19) patients and survivors. Neuropsychological outcomes were often in the form of cognitive screen results, although various studies administered comprehensive batteries. With respect to screens, the Montreal Cognitive Assessment appeared relatively sensitive to cognitive dysfunction associated with COVID-19. Patients and survivors presented with weaknesses on screens and comprehensive batteries, although the pattern of these weaknesses was not specific to etiology. Broadly, weaknesses were suggestive of executive dysfunction, although more than one study did not detect significant impairment. Weaknesses should be interpreted cautiously due to potential confounds/contributing factors (weaknesses may partly reflect psychiatric sequelae; weaknesses may be over-interpreted due to inadequate assessment of premorbid functioning). Studies reported different approaches in defining impairment, likely contributing to variable findings. The current review discusses ongoing efforts to harmonize approaches to evaluating neuropsychological functioning globally, as well as emphasizes taking a comprehensive approach towards understanding how the disease affects cognition.
Collapse
|
44
|
Cortes-Altamirano JL, Yáñes-Pizaña A, Reyes-Long S, Angélica GM, Bandala C, Bonilla-Jaime H, Alfaro-Rodríguez A. Potential Neuroprotective Effect of Cannabinoids in Covid-19 Patients. Curr Top Med Chem 2022; 22:1326-1345. [PMID: 35382723 DOI: 10.2174/1568026622666220405143003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established, however, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease, and indirect mechanisms of inflammatory / autoimmune origin. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potential promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review we address the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a decrease in viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.
Collapse
Affiliation(s)
- José Luis Cortes-Altamirano
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Estado de Mexico, 55210, Mexico
| | - Ariadna Yáñes-Pizaña
- Escuela de Ciencias de la Salud, Medicina Veterinaria y Zootecnia, Universidad del Valle de Mexico, Mexico City, 04910, México.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Samuel Reyes-Long
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 07738, México
| | - González-Maciel Angélica
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la reproducción, Universidad Autónoma Metropolitana, Mexico City, 09340, Mexico
| | - Alfonso Alfaro-Rodríguez
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico
| |
Collapse
|
45
|
Balasubramanian N, James TD, Pushpavathi SG, Marcinkiewcz CA. Repeated ethanol exposure and withdrawal alters ACE2 expression in discrete brain regions: Implications for SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.29.486282. [PMID: 35378747 PMCID: PMC8978936 DOI: 10.1101/2022.03.29.486282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Emerging evidence suggests that people with alcohol use disorders are at higher risk for SARS-CoV-2. SARS-CoV-2 engages angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) receptors for cellular entry. While ACE2 and TMPRSS2 genes are upregulated in the cortex of alcohol-dependent individuals, information on expression in specific brain regions and neural populations implicated in SARS-CoV-2 neuroinvasion, particularly monoaminergic neurons, is limited. We sought to clarify how chronic alcohol exposure affects ACE2 and TMPRSS2 expression in monoaminergic brainstem circuits and other putative SARS-CoV-2 entry points. C57BL/6J mice were exposed to chronic intermittent ethanol (CIE) vapor for 4 weeks and brains were examined using immunofluorescence. We observed increased ACE2 levels in the olfactory bulb and hypothalamus following CIE, which are known to mediate SARS-CoV-2 neuroinvasion. Total ACE2 immunoreactivity was also elevated in the raphe magnus (RMG), raphe obscurus (ROB), and locus coeruleus (LC), while in the dorsal raphe nucleus (DRN), ROB, and LC we observed increased colocalization of ACE2 with monoaminergic neurons. ACE2 also increased in the periaqueductal gray (PAG) and decreased in the amygdala. Whereas ACE2 was detected in most brain regions, TMPRSS2 was only detected in the olfactory bulb and DRN but was not significantly altered after CIE. Our results suggest that previous alcohol exposure may increase the risk of SARS-CoV-2 neuroinvasion and render brain circuits involved in cardiovascular and respiratory function as well as emotional processing more vulnerable to infection, making adverse outcomes more likely. Additional studies are needed to define a direct link between alcohol use and COVID-19 infection.
Collapse
Affiliation(s)
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA-52242, USA
| | | | | |
Collapse
|
46
|
Ziuzia-Januszewska L, Januszewski M. Pathogenesis of Olfactory Disorders in COVID-19. Brain Sci 2022; 12:brainsci12040449. [PMID: 35447981 PMCID: PMC9029941 DOI: 10.3390/brainsci12040449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Since the outbreak of the SARS-CoV-2 pandemic, olfactory disorders have been reported as a frequent symptom of COVID-19; however, its pathogenesis is still debated. The aim of this review is to summarize the current understanding of the pathogenesis of smell impairment in the course of COVID-19 and to highlight potential avenues for future research on this issue. Several theories have been proposed to explain the pathogenesis of COVID-19-related anosmia, including nasal obstruction and rhinorrhea, oedema of the olfactory cleft mucosa, olfactory epithelial damage either within the olfactory receptor cells or the supporting non-neural cells (either direct or immune-mediated), damage to the olfactory bulb, and impairment of the central olfactory pathways. Although the pathogenesis of COVID-19-related anosmia is still not fully elucidated, it appears to be mainly due to sensorineural damage, with infection of the olfactory epithelium support cells via the ACE1 receptor and disruption of the OE caused by immense inflammatory reaction, and possibly with direct olfactory sensory neurons infection mediated by the NRP-1 receptor. Involvement of the higher olfactory pathways and a conductive component of olfactory disorders, as well as genetic factors, may also be considered.
Collapse
Affiliation(s)
- Laura Ziuzia-Januszewska
- Department of Otolaryngology, Central Clinical Hospital, Ministry of Interior and Administration, 02-507 Warsaw, Poland
- Correspondence: or ; Tel.: +48-477221182
| | - Marcin Januszewski
- Department of Obstetrics and Gynecology, Central Clinical Hospital, Ministry of Interior and Administration, 02-507 Warsaw, Poland;
| |
Collapse
|
47
|
Lima M, Aloizou AM, Siokas V, Bakirtzis C, Liampas I, Tsouris Z, Bogdanos DP, Baloyannis SJ, Dardiotis E. Coronaviruses and their relationship with multiple sclerosis: is the prevalence of multiple sclerosis going to increase after the Covid-19 pandemia? Rev Neurosci 2022; 33:703-720. [PMID: 35258237 DOI: 10.1515/revneuro-2021-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to examine whether there is a possible (etiological/triggering) relationship between infection with various Coronaviruses, including Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2), the virus responsible for the Coronavirus disease-19 (Covid-19) pandemia, and Multiple Sclerosis (MS), and whether an increase of the prevalence of MS after the current Covid-19 pandemia should be expected, examining new and preexisting data. Although the exact pathogenesis of MS remains unknown, environmental agents seem to greatly influence the onset of the disease, with viruses being the most popular candidate. Existing data support this possible etiological relationship between viruses and MS, and experimental studies show that Coronaviruses can actually induce an MS-like demyelinating disease in animal models. Findings in MS patients could also be compatible with this coronaviral MS hypothesis. More importantly, current data from the Covid-19 pandemia show that SARS-CoV-2 can trigger autoimmunity and possibly induce autoimmune diseases, in the Central Nervous System as well, strengthening the viral hypothesis of MS. If we accept that Coronaviruses can induce MS, it is reasonable to expect an increase in the prevalence of MS after the Covid-19 pandemia. This knowledge is of great importance in order to protect the aging groups that are more vulnerable against autoimmune diseases and MS specifically, and to establish proper vaccination and health policies.
Collapse
Affiliation(s)
- Maria Lima
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, Multiple Sclerosis Center, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Ioannis Liampas
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 40500 Viopolis, Larissa, Greece
| | - Stavros J Baloyannis
- Research Institute for Alzheimer's disease, Aristotle University of Thessaloniki, 57200 Iraklio Lagkada, Thessaloniki, Greece.,1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| |
Collapse
|
48
|
Sixto-López Y, Correa-Basurto J. HDAC inhibition as neuroprotection in COVID-19 infection. Curr Top Med Chem 2022; 22:1369-1378. [PMID: 35240959 DOI: 10.2174/1568026622666220303113445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
The SARS-CoV-2 virus is responsible of COVID-19 affecting millions of humans around the world. COVID-19 shows diverse clinical symptoms (fever, cough, fatigue, diarrhea, body aches, headaches, anosmia and hyposmia). Approximately 30% of the patients with COVID-19 showed neurological symptoms, these going from mild to severe manifestations including headache, dizziness, impaired consciousness, encephalopathy, anosmia, hypogeusia, hyposmia, psychology and psychiatry among others. The neurotropism of SARS-CoV-2 virus explains its neuroinvasion provoking neurological damage as acute demyelination, neuroinflammation etc. At molecular level, the COVID-19 patients had higher levels of cytokines and chemokines known as cytokines storms which disrupt the blood brain barrier allowing the entrance of monocytes and lymphocytes causing neuroinflammation, neurodegeneration and demyelination. In addition, ischemic, hemorrhagic strokes, seizures and encephalopathy have been observed due to the proinflammatory cytokines. In this sense, to avoid or decrease neurological damage due to SARS-CoV-2 infection, an early neuroprotective management should be adopted. Several approaches can be used; one of them includes the use of HDAC inhibitors (HDACi) due to their neuroprotective effects. Also, the HDACi down regulates the pro-inflammatory cytokines (IL-6 and TNF- decreasing the neurotoxicity. HDACi can also avoid and prevent the entrance of the virus into the Central nervous System (CNS) as well as decrease the virus replication by downregulating the virus receptors. Here we review the mechanisms that could explain how the SARS-CoV-2 virus could reach the CNS, induce the neurological damage and symptoms, as well as the possibility to use HDACi as neuroprotective therapy.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, Mexico City, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, Mexico City, Mexico
| |
Collapse
|
49
|
Mahboubi Mehrabani M, Karvandi MS, Maafi P, Doroudian M. Neurological complications associated with Covid-19; molecular mechanisms and therapeutic approaches. Rev Med Virol 2022; 32:e2334. [PMID: 35138001 PMCID: PMC9111040 DOI: 10.1002/rmv.2334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
With the progression of investigations on the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), neurological complications have emerged as a critical aspect of the ongoing coronavirus disease 2019 (Covid‐19) pandemic. Besides the well‐known respiratory symptoms, many neurological manifestations such as anosmia/ageusia, headaches, dizziness, seizures, and strokes have been documented in hospitalised patients. The neurotropism background of coronaviruses has led to speculation that the neurological complications are caused by the direct invasion of SARS‐CoV‐2 into the nervous system. This invasion is proposed to occur through the infection of peripheral nerves or via systemic blood circulation, termed neuronal and haematogenous routes of invasion, respectively. On the other hand, aberrant immune responses and respiratory insufficiency associated with Covid‐19 are suggested to affect the nervous system indirectly. Deleterious roles of cytokine storm and hypoxic conditions in blood‐brain barrier disruption, coagulation abnormalities, and autoimmune neuropathies are well investigated in coronavirus infections, as well as Covid‐19. Here, we review the latest discoveries focussing on possible molecular mechanisms of direct and indirect impacts of SARS‐CoV‐2 on the nervous system and try to elucidate the link between some potential therapeutic strategies and the molecular pathways.
Collapse
Affiliation(s)
- Mohammad Mahboubi Mehrabani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Sobhan Karvandi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Pedram Maafi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
50
|
Abstract
Coronavirus disease (COVID-19) arising from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection has caused a worldwide pandemic, mainly owing to its highly virulent nature stemming from a very strong and highly efficacious binding to the angiotensin converting enzyme-2 (ACE2) receptor. As the pandemic developed, increasing numbers of COVID-19 patients with neurological manifestations were reported, strongly suggesting a causal relationship. Indeed, direct invasion of SARS-CoV-2 viral particles into the brain can occur through the cribriform plate via olfactory nerves, passage through a damaged blood-brain-barrier, or via haematogenic infiltration of infected leukocytes. Neurological complications range from potentially fatal encephalopathy and stroke, to the onset of headaches and dizziness, which despite their apparent innocuous presentation may still imply a more sinister pathology. Here, we summarize the most recent knowledge on the neurological presentations typically being associated with COVID-19, whilst providing potential pathophysiological mechanisms. The latter are centered upon hypoxic brain injury, generation of a cytokine storm with attendant immune-mediated damage, and a prothrombotic state. A better understanding of both the neuroinvasive properties of SARS-CoV-2 and the neurological complications of COVID-19 will be important to improve patient outcomes.
Collapse
Affiliation(s)
- Matteo Galea
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Michaela Agius
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|