1
|
Chávez-Delgado EL, Gastélum-Estrada A, Pérez-Carrillo E, Ramos-Parra PA, Estarrón-Espinosa M, Reza-Zaldívar EE, Hernández-Brenes C, Mora-Godínez S, de Los Santos BE, Guerrero-Analco JA, Monribot-Villanueva JL, Orozco-Sánchez NE, Jacobo-Velázquez DA. Bioactive properties of spearmint, orange peel, and baby sage oleoresins obtained by supercritical CO 2 extraction and their integration into dark chocolate. Food Chem 2025; 463:141306. [PMID: 39303416 DOI: 10.1016/j.foodchem.2024.141306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study investigated the potential health benefits of spearmint, orange peel, and baby sage oleoresins extracted using supercritical CO2 and subsequently emulsified. The oleoresins were incorporated into dark chocolate, and their impact on physicochemical properties was evaluated. Characterization revealed rich sources of phenolic compounds, carotenoids, and volatile compounds in these oleoresins. In vitro studies demonstrated anti-obesogenic, antioxidant, anti-inflammatory, and neuroprotective properties of the emulsified oleoresins. However, only physicochemical properties were determined for the formulations of dark chocolate with these emulsified oleoresins. Chocolate formulations fortified with these emulsions displayed a softer texture, lower water activity, and solid-like behavior. The findings suggest that these oleoresins could serve as nutraceutical agents for mitigating metabolic syndrome and associated pathologies. Incorporating them into chocolate matrices offers a practical approach to formulating functional foods. Further research is warranted to explore the preventive and therapeutic efficacy in an in vivo model.
Collapse
Affiliation(s)
- Emily Lorena Chávez-Delgado
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Alejandro Gastélum-Estrada
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Esther Pérez-Carrillo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Perla Azucena Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Mirna Estarrón-Espinosa
- Food Techology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad Zapopan, Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico
| | - Edwin Estefan Reza-Zaldívar
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Shirley Mora-Godínez
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Beatriz Estefanía de Los Santos
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - José Antonio Guerrero-Analco
- Red de estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | - Juan Luis Monribot-Villanueva
- Red de estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | | | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico.
| |
Collapse
|
2
|
Amin AA, Mahmoud KF, Salama MF, Longo V, Pozzo L, Seliem EI, Ibrahim MA. Characterization and stability evaluation of Egyptian propolis extract nano-capsules and their application. Sci Rep 2023; 13:16065. [PMID: 37752204 PMCID: PMC10522607 DOI: 10.1038/s41598-023-42025-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
The increasing demand for natural products and biotechnological activities from bees facilitate their widespread use in food preservation and beneficial effects on humans. This study aimed to prepare and characterize the nano-capsules of Qaluiobia (PQG) governorates propolis extracted with water, ethanol and supercritical fluid-carbon dioxide at 50 °C with co-solvent. Propolis bioavailability was analyzed and introduced to prepare crackers to extend their shelf life. Nano-encapsulation was examined using transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and antioxidant activity. Ethanol and supercritical fluid-carbon dioxide (SCF-CO2) at 50 °C with ethanol as co-solvent recorded higher yield, antioxidant activities, total phenolics and total flavonoids. SCF-CO2 extracts had a higher flavonoid concentration. It was revealed that propolis nano-capsules had high-temperature stability and cytotoxic effects against the three tested human cancer cell lines (i.e. PC3, MCF7 and HePG2). The higher overall acceptability of crackers fortified with PQG was achieved with SCF-CO2 at 50 °C and ethanol extract nano-capsules, i.e. 86.57% and 86.29% respectively. The higher ability to retain antioxidant activity reduces the increase of peroxide value (PV), preventing rancidity and increasing the shelf life of crackers during the storage period. Practical application: This study can provide a suitable method for extracting bioactive compounds from propolis, and improve the biological properties and activities by nano-encapsulation, also reveals the extent of its use as a natural antioxidant and anticancer and its application in bakery products as a functional food.
Collapse
Affiliation(s)
- Azza A Amin
- Department of Food Technology, National Research Centre (NRC), Dokki, 12622, Egypt
| | - Khaled F Mahmoud
- Department of Food Technology, National Research Centre (NRC), Dokki, 12622, Egypt.
| | - Manal F Salama
- Department of Food Technology, National Research Centre (NRC), Dokki, 12622, Egypt
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (IBBA-CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Luisa Pozzo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (IBBA-CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Effat I Seliem
- Department of Food Technology, National Research Centre (NRC), Dokki, 12622, Egypt
| | - Mona A Ibrahim
- Department of Food Technology, National Research Centre (NRC), Dokki, 12622, Egypt
| |
Collapse
|
3
|
Kour S, Sharma N, N B, Kumar P, Soodan JS, Santos MVD, Son YO. Advances in Diagnostic Approaches and Therapeutic Management in Bovine Mastitis. Vet Sci 2023; 10:449. [PMID: 37505854 PMCID: PMC10384116 DOI: 10.3390/vetsci10070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Mastitis causes huge economic losses to dairy farmers worldwide, which largely negatively affects the quality and quantity of milk. Mastitis decreases overall milk production, degrades milk quality, increases milk losses because of milk being discarded, and increases overall production costs due to higher treatment and labour costs and premature culling. This review article discusses mastitis with respect to its clinical epidemiology, the pathogens involved, economic losses, and basic and advanced diagnostic tools that have been used in recent times to diagnose mastitis effectively. There is an increasing focus on the application of novel therapeutic approaches as an alternative to conventional antibiotic therapy because of the decreasing effectiveness of antibiotics, emergence of antibiotic-resistant bacteria, issue of antibiotic residues in the food chain, food safety issues, and environmental impacts. This article also discussed nanoparticles'/chitosan's roles in antibiotic-resistant strains and ethno-veterinary practices for mastitis treatment in dairy cattle.
Collapse
Affiliation(s)
- Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Balaji N
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Jasvinder Singh Soodan
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Marcos Veiga Dos Santos
- Department of Animal Sciences, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 690756, Republic of Korea
| |
Collapse
|
4
|
Li F, Muhmood A, Tavakoli S, Park S, Kong L, Zhu H, Wei Y, Wei Y. Subcritical low temperature extraction of bioactive ingredients from foods and food by-products and its applications in the agro-food industry. Crit Rev Food Sci Nutr 2023; 64:8218-8230. [PMID: 37039080 DOI: 10.1080/10408398.2023.2198009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Bioactive ingredients are part of the food chain and are responsible for numerous health benefits. Subcritical low temperature extraction has been employed to acquire bioactive ingredients because of its excellent properties, such as energy conservation, low temperature, elimination of residual solvent, and high extraction yield and quality. This review aims to provide a clear picture of the basics of subcritical-temperature extraction, its bioactive ingredient extraction efficiency, and possible applications in the agro-food industry. This review suggested that the extraction temperature, time, co-solvents, solid-fluid ratio, and pressure impacted the extraction efficiency of bioactive ingredients from foods and food by-products. Subcritical solvents are appropriate for extracting low polar ingredients, while the inclusion of co-solvents could extract medium and high polar substances. Bioactive ingredients from foods and food by-products can be used as antioxidants, colorants, and nutritional supplements. Additionally, this technology could remove pesticide residues in tea, concentrate edible proteins, and reduce cigarette tar. A new trend toward using subcritical low temperature extraction in extracting bioactive ingredients will acquire momentum.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science, Qingdao University, Qingdao, China
| | - Atif Muhmood
- Institure of Soil Chemistry & Environmental Sciences, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Samad Tavakoli
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Solju Park
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lingyao Kong
- College of Life Science, Qingdao University, Qingdao, China
| | - Hongguang Zhu
- College of Life Science, Qingdao University, Qingdao, China
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
5
|
Medicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Mentha spicata. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7990508. [PMID: 35463088 PMCID: PMC9019422 DOI: 10.1155/2022/7990508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/03/2022] [Indexed: 12/28/2022]
Abstract
Mentha spicata, also called Mentha viridis, is a medicinal plant of the Lamiaceae family characterized by its potency to synthesize and secret secondary metabolites, essentially essential oils. Different populations use the aerial parts of this plant for tea preparation, and this tisane has shown several effects, according to ethnopharmacological surveys carried out in different areas around the world. These effects are attributed to different compounds of M. spicata, in which their biological effects were recently proved experimentally. Pharmacological properties of M. spicata extracts and essential oils were investigated for different health benefits such as antioxidant, anticancer, antiparasitic, antimicrobial, and antidiabetic effects. In vitro and in vivo studies showed positives effects that could be certainly related to different bioactive compounds identified in M. spicata. Indeed, volatile compounds seem to be efficient in inhibiting different microbial agents such as bacteria, fungi, and parasites through several mechanisms. Moreover, M. spicata exhibited, according to some studies, promising antioxidant, antidiabetic, anti-inflammatory, and anticancer effects, which show its potential to be used as a source for identifying natural drugs against cellular oxidative stress and its related diseases. Importantly, toxicological investigations of M. spicata show the safety of this species at different doses and several periods of use which justify its use in traditional medicines as tisane with tea. Here, we report, explore, and highlight the data published on M. spicata concerning its botanical description and geographical distribution, its phytochemical compounds, its pharmacological properties, and its toxicological investigations of M. spicata.
Collapse
|
6
|
Postawa K, Klimek K, Kapłan M, Wrzesińska‐Jędrusiak E, Kułażyński M. Application of ozonation as a clean method of herbs freshness prolongation: Experiment and model construction. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Karol Postawa
- Faculty of Chemistry Wrocław University of Science and Technology Wrocław Poland
| | - Kamila Klimek
- Department of Applied Mathematics and Informatics University of Life Sciences in Lublin Lublin Poland
| | - Magdalena Kapłan
- Institute of Horticulture Production, University of Life Sciences in Lublin Lublin Poland
| | | | - Marek Kułażyński
- Faculty of Chemistry Wrocław University of Science and Technology Wrocław Poland
| |
Collapse
|
7
|
Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants (Basel) 2021; 10:1465. [PMID: 34573097 PMCID: PMC8466011 DOI: 10.3390/antiox10091465] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant extracts are rich in various bioactive compounds exerting antioxidants effects, such as phenolics, catechins, flavonoids, quercetin, anthocyanin, tocopherol, rutin, chlorogenic acid, lycopene, caffeic acid, ferulic acid, p-coumaric acid, vitamin C, protocatechuic acid, vitamin E, carotenoids, β-carotene, myricetin, kaempferol, carnosine, zeaxanthin, sesamol, rosmarinic acid, carnosic acid, and carnosol. The extraction processing protocols such as solvent, time, temperature, and plant powder should be optimized to obtain the optimum yield with the maximum concentration of active ingredients. The application of novel green extraction technologies has improved extraction yields with a high concentration of active compounds, heat-labile compounds at a lower environmental cost, in a short duration, and with efficient utilization of the solvent. The application of various combinations of extraction technologies has proved to exert a synergistic effect or to act as an adjunct. There is a need for proper identification, segregation, and purification of the active ingredients in plant extracts for their efficient utilization in the meat industry, as natural antioxidants. The present review has critically analyzed the conventional and green extraction technologies in extracting bioactive compounds from plant biomass and their utilization in meat as natural antioxidants.
Collapse
Affiliation(s)
- Alzaidi Mohammed Awad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
| | - Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia;
| | - Shokri Jusoh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| | - Muhamad Faris Ab Aziz
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| | - Awis Qurni Sazili
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| |
Collapse
|
8
|
Bezerra FWF, Salazar MDLAR, Freitas LC, de Oliveira MS, dos Santos IRC, Dias MNC, Gomes-Leal W, Andrade EHDA, Ferreira GC, Carvalho RND. Chemical composition, antioxidant activity, anti-inflammatory and neuroprotective effect of Croton matourensis Aubl. Leaves extracts obtained by supercritical CO2. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Chemical Composition and Bioactivity of Essential Oil of Ten Labiatae Species. Molecules 2020; 25:molecules25204862. [PMID: 33096843 PMCID: PMC7587947 DOI: 10.3390/molecules25204862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022] Open
Abstract
Using antibiotics as feed additives have been successively banned worldwide from 1986; therefore, it is an urgent task to finding safe and effective alternatives. As natural products of plant origin, essential oils (EOs) are an outstanding option due to their reported bioactivity. In this research, ten EOs of Labiatae species were extracted by steam distillation and its chemical constituents were identified by gas chromatography-mass spectrometry (GC-MS). A total of 123 chemical compounds, including alkenes, phenols, aldehydes and ketones, were identified. The results of antioxidant activity carried out through DPPH free radical scavenging (DPPH) and ferric reducing antioxidant power (FRAP), showing that EOs of Ocimum basilicum Linn. (ObEO), Thymus mongolicus Ronn. (TmEO), Origanum vulgare Linn. (OvEO) and Mosla chinensis Maxim. (McEO) have strong antioxidant activities. Their 50%-inhibitory concentration (IC50) value was <1.00, 1.42, 1.47 and 1.92 μg/mL, respectively; and their FRAP value was 1536.67 ± 24.22, 271.84 ± 4.93, 633.71 ± 13.14 and 480.66 ± 29.90, respectively. The results of filter paper diffusion showing that McEO, OvEO and TmEO inhibition zone diameter (IZD) are all over 30 mm. The results of two-fold dilution method showed that McEO, OvEO and TmEO have strong antibacterial activities against Staphylococcus aureus (S. aureus) and their minimal inhibitory concentrations (MIC) value was 1 μL/mL, 2 μL/mL, and 2 μL/mL, respectively. In conclusion, the results in this work demonstrate the possibility for development and application of EOs as potential feed additives.
Collapse
|
10
|
Influence of the essential oil of Mentha spicata cv. Henanshixiang on sunflower oil during the deep-frying of Chinese Maye. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Wang T, Shen Q, Feng W, Wang C, Yang F. Aqueous ethyl acetate as a novel solvent for the degreasing of black soldier fly (Hermetia illucens L.) larvae: degreasing rate, nutritional value evaluation of the degreased meal, and thermal properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1204-1212. [PMID: 31696521 DOI: 10.1002/jsfa.10131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The aim of this study was to select appropriate low-toxicity degreasing solvents to degrease black soldier fly (BSF, Hermetia illucens L.) larvae to prepare high-quality protein. Aqueous ethyl acetate was chosen as the solvent to extract BSF protein, and traditional solvents, such as petroleum ether, n-hexane, and isopropanol, were chosen as controls. RESULTS The meal degreased by aqueous ethyl acetate (the volume ratio of ethyl acetate to water is 90 to 10, EA + W10) shows a high degreasing rate (29.04%), crude protein content (562.3 g kg-1 ), essential amino acid index (EAAI, 95.57), and digestible indispensable amino acid score (DIAAS, 85). The digestibility of the degreased meal samples in the simulated in vitro intestine can reach 76.52%. Thermodynamic analysis and the apparent morphology of the protein fragments showed that the meal degreased by EA + W10 exhibited thermodynamic stability, which suggests that using aqueous ethyl acetate as the degreasing solvent did not affect the nutritional value of the degreased meal. CONCLUSION The results suggest that aqueous ethyl acetate (EA + W10) can be used as a novel solvent in the degreasing of BSF larvae meal to prepare high-quality protein with high EAAI and DIAAS and good digestibility. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tielin Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
- Key Laboratory of Novel and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan, China
| | - Qiao Shen
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Weiliang Feng
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
- Key Laboratory of Novel and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan, China
| | - Cunwen Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
- Key Laboratory of Novel and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan, China
| | - Fang Yang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
- Key Laboratory of Novel and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan, China
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
12
|
Klein EJ, Náthia-Neves G, Vardanega R, Meireles MAA, da Silva EA, Vieira MGA. Supercritical CO2 extraction of α-/β-amyrin from uvaia (Eugenia pyriformis Cambess.): Effects of pressure and co-solvent addition. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Matailo A, Bec N, Calva J, Ramírez J, Andrade JM, Larroque C, Vidari G, Armijos C. Selective BuChE inhibitory activity, chemical composition, and enantiomer content of the volatile oil from the Ecuadorian plant Clinopodium brownei. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
|
15
|
Optical Analysis of the Oils Obtained from Acrocomia aculeata (Jacq.) Lodd: Mapping Absorption-Emission Profiles in an Induced Oxidation Process. PHOTONICS 2017. [DOI: 10.3390/photonics4010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Shrigod NM, Swami Hulle NR, Prasad RV. Supercritical fluid extraction of essential oil from mint leaves (mentha spicata
): Process optimization and its quality evaluation. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12488] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nehul M. Shrigod
- College of Food Processing Technology and Bio-Energy; Anand Agricultural University; Anand Gujarat 388110 India
| | - Nishant R. Swami Hulle
- College of Food Processing Technology and Bio-Energy; Anand Agricultural University; Anand Gujarat 388110 India
| | - R. V. Prasad
- College of Food Processing Technology and Bio-Energy; Anand Agricultural University; Anand Gujarat 388110 India
| |
Collapse
|
17
|
Oliveira IP, Souza AF, Lescano CH, Caires ARL, Muzzi RM. Thermal Oxidation Analysis of Forage Turnip (Raphanus sativus L. var. oleiferus Metzg.) Oil. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2606-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Mezzomo N, Tenfen L, Farias MS, Friedrich MT, Pedrosa RC, Ferreira SRS. Evidence of anti-obesity and mixed hypolipidemic effects of extracts from pink shrimp (Penaeus brasiliensis and Penaeus paulensis) processing residue. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2014.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
|
20
|
Shi R, Zhang Q, Vriesekoop F, Yuan Q, Liang H. Preparation of organogel with tea polyphenols complex for enhancing the antioxidation properties of edible oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8379-8384. [PMID: 25089366 DOI: 10.1021/jf501512y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Food-grade organogels are semisolid systems with immobilized liquid edible oil in a three-dimensional network of self-assembled gelators, and they are supposed to have a broad range of potential applications in food industries. In this work, an edible organogel with tea polyphenols was developed, which possesses a highly effective antioxidative function. To enhance the dispersibility of the tea polyphenols in the oil phase, a solid lipid-surfactant-tea polyphenols complex (organogel complex) was first prepared according to a novel method. Then, a food-grade organogel was prepared by mixing this organogel complex with fresh peanut oil. Compared with adding free tea polyphenols, the organogel complex could be more homogeneously distributed in the prepared organogel system, especially under heating condition. Furthermore, the organogel loading of tea polyphenols performed a 2.5-fold higher antioxidation compared with other chemically synthesized antioxidants (butylated hydroxytoluene and propyl gallate) by evaluating the peroxide value of the fresh peanut oil based organogel in accelerated oxidation conditions.
Collapse
Affiliation(s)
- Rong Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
de Melo M, Silvestre A, Silva C. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.04.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Capuzzo A, Maffei ME, Occhipinti A. Supercritical fluid extraction of plant flavors and fragrances. Molecules 2013; 18:7194-238. [PMID: 23783457 PMCID: PMC6270407 DOI: 10.3390/molecules18067194] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/16/2022] Open
Abstract
Supercritical fluid extraction (SFE) of plant material with solvents like CO₂, propane, butane, or ethylene is a topic of growing interest. SFE allows the processing of plant material at low temperatures, hence limiting thermal degradation, and avoids the use of toxic solvents. Although today SFE is mainly used for decaffeination of coffee and tea as well as production of hop extracts on a large scale, there is also a growing interest in this extraction method for other industrial applications operating at different scales. In this review we update the literature data on SFE technology, with particular reference to flavors and fragrance, by comparing traditional extraction techniques of some industrial medicinal and aromatic crops with SFE. Moreover, we describe the biological activity of SFE extracts by describing their insecticidal, acaricidal, antimycotic, antimicrobial, cytotoxic and antioxidant properties. Finally, we discuss the process modelling, mass-transfer mechanisms, kinetics parameters and thermodynamic by giving an overview of SFE potential in the flavors and fragrances arena.
Collapse
Affiliation(s)
- Andrea Capuzzo
- Department of Life Sciences and Systems Biology, University of Turin, Innovation Centre, Via Quarello 15/A, 10135 Turin, Italy; E-Mails: (A.C.); (M.E.M.)
- Biosfered S.r.l., Academic Spin Off of the University of Turin, Innovation Centre, Via Quarello 15/A, 10135 Turin, Italy
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Innovation Centre, Via Quarello 15/A, 10135 Turin, Italy; E-Mails: (A.C.); (M.E.M.)
- Biosfered S.r.l., Academic Spin Off of the University of Turin, Innovation Centre, Via Quarello 15/A, 10135 Turin, Italy
| | - Andrea Occhipinti
- Department of Life Sciences and Systems Biology, University of Turin, Innovation Centre, Via Quarello 15/A, 10135 Turin, Italy; E-Mails: (A.C.); (M.E.M.)
- Biosfered S.r.l., Academic Spin Off of the University of Turin, Innovation Centre, Via Quarello 15/A, 10135 Turin, Italy
| |
Collapse
|
23
|
|
24
|
Pink shrimp (P. brasiliensis and P. paulensis) residue: Supercritical fluid extraction of carotenoid fraction. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2012.11.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Mezzomo N, Oliveira DA, Ferreira SRS. Antioxidant Potential of Extracts from Processing Residues from Brazilian Food Industries. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/fns.2013.48a026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Chunyan W, Valiyaveettil S. Correlation of biocapping agents with cytotoxic effects of silver nanoparticles on human tumor cells. RSC Adv 2013. [DOI: 10.1039/c3ra41346b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
27
|
Rodríguez-Rojo S, Visentin A, Maestri D, Cocero M. Assisted extraction of rosemary antioxidants with green solvents. J FOOD ENG 2012. [DOI: 10.1016/j.jfoodeng.2011.09.029] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Optimization of Edible Oil Extraction from Ofada Rice Bran Using Response Surface Methodology. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0456-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|