1
|
Shen K, Liu Y, Liu L, Khan AW, Normakhamatov N, Wang Z. Characterization, Optimization, and Scaling-up of Submerged Inonotus hispidus Mycelial Fermentation for Enhanced Biomass and Polysaccharide Production. Appl Biochem Biotechnol 2025; 197:1534-1555. [PMID: 39585555 DOI: 10.1007/s12010-024-05101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
This study was to establish an efficient strategy based on inoculum-morphology control for the submerged mycelial fermentation of an edible and medicinal fungus, Inonotus hispidus. Two major morphological forms of the mycelial inoculum were compared, dispersed mycelial fragments versus aggregated mycelial clumps. The dispersed one was more favorable for the fermentation, starting with a shorter lag period and attaining a higher biomass yield and more uniform mycelium pellets in shake flasks. The mycelial pellets taken from the shake flask culture on day 6 were fragmented at 26,000 rpm in a homogenizer, and a shear time of 3 min provided the optimal inoculum. The inoculum and culture conditions were further verified in 5-L stirred tank fermenters and then the fermentation was scaled-up in a 100-L stirred tank. With the optimized inoculum and process conditions plus a fed-batch operation, much higher productivities, including 22.23 g/L biomass, 3.31 g/L EPS, and 5.21 g/L IPS, were achieved in the 100-L fermenter than in the flask culture. A composition analysis showed that the I. hispidus mycelium produced by the fermentation was rich in protein, dietary fiber, and polysaccharides which may be beneficial to health. Overall, the results have shown that the inoculum characteristics including age, morphology, and state of aggregation have significant impact on the productivity of mycelial biomass and polysaccharides in a submerged mycelial fermentation of the I. hispidus fungus.
Collapse
Affiliation(s)
- Ke Shen
- School of Food Science & Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yuanshuai Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Liyan Liu
- School of Food Science & Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Abdul Waheed Khan
- School of Food Science & Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Nodirali Normakhamatov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Tashkent, 100015, Uzbekistan
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, 510640, China.
- Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Wang Y, Wu W, Wu X, Li W, Cui J, Long C. Transcriptome Analysis Revealed the Molecular Mechanism of Acetic Acid Increasing Monascus Pigment Production in Monascus ruber CICC41233. J Fungi (Basel) 2025; 11:49. [PMID: 39852468 PMCID: PMC11767103 DOI: 10.3390/jof11010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
The addition of acetic acid to Monascus ruber cultures is usually used to inhibit the growth of heterotrophic bacteria; however, we found that acetic acid also promotes the growth of M. ruber CICC41233, as well as the synthesis of Monascus pigments (MPs). Compared with no acetic acid or HCl addition, the diameter of M. ruber CICC41233 colonies increased significantly under acetic acid conditions. On the sixth day of fermentation, the yield of total pigments in M. ruber increased significantly by 9.97 times (compared with no acetic acid) and 13.9 times (compared with hydrochloric acid). The transcriptomics data showed that the differentially expressed genes between M. ruber with acetic acid and without acetic acid were mainly involved in starch and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, TCA cycle, and oxidative phosphorylation, and that these differentially expressed genes were not involved in amino acid metabolism. Gene expression analysis showed that the relative expression levels of MP synthesis genes (MpPKS5, MppA, MpFasB, MppB, MppD, and MppR2) were significantly up-regulated under acetic acid conditions. This study clarified the metabolic mechanism of acetic acid promoting the growth of M. ruber and the synthesis of MPs, which provided some theoretical guidance for the large-scale production of MPs in the industry in future.
Collapse
Affiliation(s)
- Yan Wang
- School of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.W.); (W.W.); (X.W.); (W.L.)
| | - Weiwei Wu
- School of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.W.); (W.W.); (X.W.); (W.L.)
| | - Xiaoshu Wu
- School of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.W.); (W.W.); (X.W.); (W.L.)
| | - Weiyu Li
- School of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.W.); (W.W.); (X.W.); (W.L.)
| | - Jingjing Cui
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Chuannan Long
- School of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.W.); (W.W.); (X.W.); (W.L.)
- Analysis and Testing Center, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
3
|
Li P, Zhou Y, Wu Y, Jiang X, Wang X, Shi X, Wang W. The effects of environmental factors on the synthesis of water-soluble Monascus red pigments via submerged fermentation: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7754-7764. [PMID: 38591364 DOI: 10.1002/jsfa.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
Monascus pigments (MPs) have been used as natural food pigments for many years. There is a high demand for Monascus red pigments (MRPs) to enhance color and for antibacterial and cancer prevention therapies in food and medicine. Most MRPs are not water soluble, and the yield of water-soluble MRPs is naturally low. On the other hand, water-soluble MRP is more cost effective for application in industrial mass production. Therefore, it is important to improve the yield of water-soluble MRPs. Environmental factors have a significant influence on the synthesis of water-soluble MRPs, which is crucial for the development of industrial production of water-soluble MRPs. This review introduces the biosynthetic pathways of water-soluble MRPs and summarizes the effects of environmental factors on the yield of water-soluble MRPs. Acetyl coenzyme A (acetyl-CoA) is a precursor for MPs synthesis. Carbon and nitrogen sources and the carbon/nitrogen ratio can impact MP production by regulating the metabolic pathway of acetyl-CoA. Optimization of fermentation conditions to change the morphology of Monascus can stimulate the synthesis of MPs. The appropriate choice of nitrogen sources and pH values can promote the synthesis of MRPs from MPs. Additives such as metal ions and non-ionic surfactants can affect the fluidity of Monascus cell membrane and promote the transformation of MRPs into water-soluble MRPs. This review will lay the foundation for the industrial production of water-soluble MRPs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Yin Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Yingying Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Xiao Jiang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Xuan Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Xinyun Shi
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Weiping Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| |
Collapse
|
4
|
Wei M, Zhu J, Gao H, Yao H, Zhai C, Nie Y. An efficient method for improving the stability of Monascus pigments using ionic gelation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6190-6197. [PMID: 37139630 DOI: 10.1002/jsfa.12685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Monascus pigments (Mps) are easily impacted by heating, pH and light, resulting in degradation. In this study, Mps were encapsulated by the ionic gelation method with sodium alginate (SA) and sodium caseinate (SC), as well as CaCl2 as a crosslinker. The encapsulated Mps SA/SC in four proportions (SA/SC: 1/4, 2/3, 3/2, 4/1, w/w). Then, the encapsulation efficiency and particle size of the SA/SC-Mps system were evaluated to obtain the optimal embedding conditions. Finally, the effects of heating, pH, light and storage on the stability of non-capsulated Mps and encapsulated Mps were assessed. RESULTS SA/SC = 2/3 (AC2) had higher encapsulation efficiency (74.30%) of Mps and relatively small particle size (2.02 mm). The AC2 gel beads were chosen for further investigating the stability of encapsulated Mps to heating, pH, light and storage. Heat stability experiments showed that the degradation of Mps followed first-order kinetics, and the encapsulated Mps had lower degradation rates than non-capsulated Mps. Encapsulation could reduce the effect of pH on Mps. The effects of ultraviolet light on the stability of Mps were considered, and showed that the retention efficiency of encapsulated Mps was 22.01% higher than that of non-capsulated Mps on the seventh day. Finally, storage stability was also evaluated under dark refrigerated conditions for 30 days, and the results indicated that encapsulation could reduce the degradation of Mps. CONCLUSION This study has proved that AC2 gel beads can improve the stability of Mps. Thus, the ionic gelation method is a promising encapsulation method to improve the stability of Mps. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengru Wei
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
| | - Jingjing Zhu
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
| | - Hongshuai Gao
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Huanhuan Yao
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
| | - Cuiping Zhai
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Li S, Yan P, Mu B, Kang Y, Wang A. Preparation of Hybrid Nanopigments with Excellent Environmental Stability, Antibacterial and Antioxidant Properties Based on Monascus Red and Sepiolite by One-Step Grinding Process. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111792. [PMID: 37299695 DOI: 10.3390/nano13111792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This study is focused on the preparation, characterization, and multifunctional properties of intelligent hybrid nanopigments. The hybrid nanopigments with excellent environmental stability and antibacterial and antioxidant properties were fabricated based on natural Monascus red, surfactant, and sepiolite via a facile one-step grinding process. The density functional theory calculations demonstrated that the surfactants loaded on sepiolite were in favor of enhancing the electrostatic, coordination, and hydrogen bonding interactions between Monascus red and sepiolite. Thus, the obtained hybrid nanopigments exhibited excellent antibacterial and antioxidant properties, with an inhibition effect on Gram-positive bacteria that was superior to that of Gram-negative bacteria. In addition, the scavenging activity on DPPH and hydroxyl free radicals as well as the reducing power of hybrid nanopigments were higher than those of hybrid nanopigments prepared without the addition of the surfactant. Inspired by nature, gas-sensitive reversible alochroic superamphiphobic coatings with excellent thermal and chemical stability were successfully designed by combining hybrid nanopigments and fluorinated polysiloxane. Therefore, intelligent multifunctional hybrid nanopigments have great application foreground in related fields.
Collapse
Affiliation(s)
- Shue Li
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penji Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu Province, Hexi University, Zhangye 734000, China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yuru Kang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Huang Q, Miyaki N, Li Z, Takahashi Y, Ishizuka S, Hayakawa T, Wakamatsu JI, Kumura H. Supplementary effect of whey components on the monascin productivity of Monascus sp. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4234-4241. [PMID: 36732039 DOI: 10.1002/jsfa.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Monascus sp. has been used in fermented foods for centuries. It can synthesize yellow, red, and orange pigments as secondary metabolites. Here, we focused on yellow pigment monascin, responsible for anti-inflammation and antidiabetic effects, and investigated whether whey could be a suitable substrate with or without rice powder for monascin production using M. purpureus AHU 9085, M. pilosus NBRC 4520 and M. ruber NBRC 32318. RESULTS The growth and monascin production of the three Monascus strains were dependent on three liquid media consisting of whey and/or rice. All strains showed the best growth in a rice and whey mixed medium, in which M. ruber NBRC 32318 exhibited the highest total monascin production. Subsequent investigation of the effects of whey components indicated that a mineral cocktail in whey was particularly effective in stimulating the monascin production efficiency of M. ruber NBRC 32318. However, this recipe exhibited less stimulation, or even inhibition, for M. pilosus NBRC 4520 and M. purpureus AHU 9085, respectively. In terms of total monascin production, rice with whey provided the highest amount due to growth promotion along with relatively high production efficiency. CONCLUSION The effect of whey on growth and monascin production was strongly dependent on the Monascus strains. Even a mineral cocktail in whey could regulate monascin productivity in a strain-specific manner. Further studies are needed to elucidate the mechanism behind the diverse responses by the minerals in the production of monascin from Monascus. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qingyun Huang
- Laboratory of Applied Food Science, Graduate School and Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Nodoka Miyaki
- Laboratory of Applied Food Science, Graduate School and Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Zongfei Li
- Laboratory of Applied Food Science, Graduate School and Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yutaroh Takahashi
- Laboratory of Applied Food Science, Graduate School and Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoshi Ishizuka
- Laboratory of Nutritional Biochemistry, Graduate School and Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Toru Hayakawa
- Laboratory of Applied Food Science, Graduate School and Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jun-Ichi Wakamatsu
- Laboratory of Applied Food Science, Graduate School and Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Haruto Kumura
- Laboratory of Applied Food Science, Graduate School and Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Monascus Red Pigment Liposomes: Microstructural Characteristics, Stability, and Anticancer Activity. Foods 2023; 12:foods12030447. [PMID: 36765975 PMCID: PMC9914458 DOI: 10.3390/foods12030447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Monascus red pigments (MRPs), which are a kind of natural colorant produced by Monascus spp., are widely used in the food and health supplements industry but are not very stable during processing and storage. Thus, MRPs were embedded into liposome membranes using a thin-film ultrasonic method to improve stability in this study. Monascus red pigments liposomes (MRPL) exhibited spherical unilamellar vesicles (UV) with particle size, polydispersity indexes (PDI), and zeta potential of 20-200 nm, 0.362 ± 0.023, and -42.37 ± 0.21 mV, respectively. pH, thermal, light, metal ion, storage, and in vitro simulated gastrointestinal digestion stability revealed that, compared with free MRPs, liposomes embedding significantly enhanced the stability of MRPs when exposed to adverse environmental conditions. Furthermore, anticancer assay suggested that MRPL exhibited a stronger inhibitory effect on MKN-28 cells by damaging the integrity of cells, with the IC50 value at 0.57 mg/mL. Overall, MRPLs possess stronger stability in external environment and in vitro simulated digestion with greater anticancer activity, indicating that MRPLs have the potential for promising application in the functional foods and pharmaceutical industries.
Collapse
|
8
|
Keivani H, Jahadi M. Solid-state fermentation for the production of Monascus pigments from soybean meals. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Shi J, Qin X, Zhao Y, Sun X, Yu X, Feng Y. Strategies to enhance the production efficiency of Monascus pigments and control citrinin contamination. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Mohammed HA, Khan RA. Anthocyanins: Traditional Uses, Structural and Functional Variations, Approaches to Increase Yields and Products' Quality, Hepatoprotection, Liver Longevity, and Commercial Products. Int J Mol Sci 2022; 23:2149. [PMID: 35216263 PMCID: PMC8875224 DOI: 10.3390/ijms23042149] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are water-soluble, colored compounds of the flavonoid class, abundantly found in the fruits, leaves, roots, and other parts of the plants. The fruit berries are prime sources and exhibit different colors. The anthocyanins utility as traditional medicament for liver protection and cure, and importance as strongest plants-based anti-oxidants have conferred these plants products different biological activities. These activities include anti-inflammation, liver protective, analgesic, and anti-cancers, which have provided the anthocyanins an immense commercial value, and has impelled their chemistry, biological activity, isolation, and quality investigations as prime focus. Methods in extraction and production of anthocyanin-based products have assumed vital economic importance. Different extraction techniques in aquatic solvents mixtures, eutectic solvents, and other chemically reactive extractions including low acid concentrations-based extractions have been developed. The prophylactic and curative therapy roles of the anthocyanins, together with no reported toxicity has offered much-needed impetus and economic benefits to these classes of compounds which are commercially available. Information retrieval from various search engines, including the PubMed®, ScienceDirect®, Scopus®, and Google Scholar®, were used in the review preparation. This imparted an outlook on the anthocyanins occurrence, roles in plants, isolation-extraction, structures, biosynthetic as well as semi- and total-synthetic pathways, product quality and yields enhancements, including uses as part of traditional medicines, and uses in liver disorders, prophylactic and therapeutic applications in liver protection and longevity, liver cancer and hepatocellular carcinoma. The review also highlights the integrated approach to yields maximizations to meet the regular demands of the anthocyanins products, also as part of the extract-rich preparations together with a listing of marketed products available for human consumption as nutraceuticals/food supplements.
Collapse
Affiliation(s)
- Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
11
|
Bhatnagar S, Aoyagi H. Thermal and UV Degradation Kinetics of Water-Soluble Extracellular Pigment Produced by Talaromyces purpurogenus. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02733-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Fonseca CS, da Silva NR, Ballesteros LF, Basto B, Abrunhosa L, Teixeira JA, Silvério SC. Penicillium brevicompactum as a novel source of natural pigments with potential for food applications. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Sodhi AS, Sharma N, Bhatia S, Verma A, Soni S, Batra N. Insights on sustainable approaches for production and applications of value added products. CHEMOSPHERE 2022; 286:131623. [PMID: 34346348 DOI: 10.1016/j.chemosphere.2021.131623] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for the development of sustainable strategies to utilize and process agro-industrial residues paves new paths for exploring innovative approaches in this area. Biotechnology based microbial transformations provide efficient, low cost and sustainable approaches for the production of value added products. The use of organic rich residues opens new avenues for the production of enzymes, pigments, biofuels, bioactive compounds, biopolymers etc. with vast industrial and therapeutic applications. Innovative technologies like strain improvement, enzyme immobilization, genome editing, morphological engineering, ultrasound/supercritical fluid/pulse electric field extraction, etc. can be employed. These will be helpful in achieving significant improvement in qualitative and quantitative parameters of the finished products. The global trend for the valorisation of biowaste has boosted the commercialization of these products which has transformed the markets by providing new investment opportunities. The upstream processing of raw materials using microbes poses a limitation in terms of product development and recovery which can be overcome by modifying the bioreactor design, physiological parameters or employing alternate technologies which will be discussed in this review. The other problems related to the processes include product stability, industrial applicability and cost competitiveness which needs to be addressed. This review comprehensively discusses the recent progress, avenues and challenges in the approaches aimed at valorisation of agro-industrial wastes along with possible opportunities in the bioeconomy.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Neetu Sharma
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Anoop Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sajeev Soni
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India.
| |
Collapse
|
14
|
Production of soluble dietary fibers and red pigments from potato pomace in submerged fermentation by Monascus purpureus. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Chen X, Chen M, Wu X, Li X. Cost-effective process for the production of Monascus pigments using potato pomace as carbon source by fed-batch submerged fermentation. Food Sci Nutr 2021; 9:5415-5427. [PMID: 34646512 PMCID: PMC8497832 DOI: 10.1002/fsn3.2496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 11/20/2022] Open
Abstract
Potato pomace, generated from starch-processing industry, was applied as a cost-effective resource for producing Monascus pigments via submerged fermentation. First, the pigment-production capacity of potato pomace and its hydrolysate was compared. The results indicated that potato pomace was superior to its hydrolysate when used for producing Monascus pigments. The red and yellow pigments produced in potato pomace medium reached 27.8 and 19.7 OD units/ml in 7 days, with the yield of total pigments at 1,187.5 OD units/g, respectively, increased by 127.9%, 19.4%, and 46.3% compared with the data obtained from hydrolysate. Meanwhile, the citrinin produced in potato pomace medium decreased by 22.6%. Afterward, potato pomace, without hydrolysis, was used as carbon source to obtain the optimal pigment production conditions. In the batch fermentation process, it was found that high amount of pomace inhibited the growth rate of mycelia and the productivity of pigments, and the fed-batch fermentation process could enhance the yield and productivity of pigments. With the same final amount of pomace (80 g/L), the maximal levels of total pigments and productivity obtained from fed-batch process reached 118.8 OD units/ml and 13.2 OD units/(ml·day), which presented an increase of 35.2% and 67.1% compared with the not fed-batch group, respectively. The results demonstrated that potato pomace was a cost-effective substrate for producing Monascus pigments in terms of pigment production capacity and productivity when fed-batch submerged fermentation was applied.
Collapse
Affiliation(s)
- Xiaoju Chen
- College of Chemistry and Material EngineeringChaohu UniversityChaohuChina
| | - Minmin Chen
- College of Chemistry and Material EngineeringChaohu UniversityChaohuChina
| | - Xuefeng Wu
- Key Laboratory for Agricultural Products Processing of Anhui ProvinceSchool of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Xingjiang Li
- Key Laboratory for Agricultural Products Processing of Anhui ProvinceSchool of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| |
Collapse
|
16
|
Abdollahi F, Jahadi M, Ghavami M. Thermal stability of natural pigments produced by Monascus purpureus in submerged fermentation. Food Sci Nutr 2021; 9:4855-4862. [PMID: 34531997 PMCID: PMC8441413 DOI: 10.1002/fsn3.2425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/16/2021] [Accepted: 06/06/2021] [Indexed: 01/06/2023] Open
Abstract
The major aim of the current study was to assess thermal stability of red pigments produced by Monascus purpureus ATCC 16362/PTCC 5303 in submerged fermentation. Natural pigments were produced by Monascus purpureus using stirred tank bioreactor. Stability of Monascus purpureus pigments was assessed under various temperature (50.2-97.8°C), salt (0%-2.5%), and pH (4.3-7.7) values. Thermal degradation constant and half-life value of the red Monascus purpureus pigments were analyzed using response surface methodology followed by a first-order kinetic reaction. Results of this study showed that pH, temperature, and salt content could affect red color stability of Monascus purpureus. The pigment showed various stabilities in various thermal conditions (temperature, salt, and pH). At high temperatures, degradation constant of the red pigments increased with decreasing pH, revealing that the Monascus red pigment was destroyed at lower pH values and salt could affect stability of the red pigments at lower temperatures.
Collapse
Affiliation(s)
- Fatemeh Abdollahi
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Mahshid Jahadi
- Department of Food Science and TechnologyFaculty of Agriculture, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Mehrdad Ghavami
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
17
|
Utilization of Whey for Red Pigment Production by Monascus purpureus in Submerged Fermentation. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Various biotechnological approaches have been employed to convert food waste into value-added bioproducts through fermentation processes. Whey, a major waste generated by dairy industries, is considered an important environmental pollutant due to its massive production and high organic content. The purpose of this study is to investigate the effect of different fermentation parameters in simultaneous hydrolysis and fermentation (SHF) of whey for pigment production with Monascus purpureus. The submerged culture fermentation parameters optimized were type and pretreatment of whey, pH, inoculation ratio, substrate concentration and monosodium glutamate (MSG) concentration. Demineralized (DM), deproteinized (DP), and raw whey (W) powders were used as a substrate for pigment production by simultaneous hydrolysis and fermentation (SHF). The maximum red pigment production was obtained as 38.4 UA510 nm (absorbance units) at the optimized condition of SHF. Optimal conditions of SHF were 2% (v/v) inoculation ratio, 75 g/L of lactose as carbon source, 25 g/L of MSG as nitrogen source, and fermentation medium pH of 7.0. The specific growth rate of M. purpureus on whey and the maximum pigment production yield values were 0.023 h−1 and 4.55 UAd−1, respectively. This study is the first in the literature to show that DM whey is a sustainable substrate in the fermentation process of the M. purpureus red pigment.
Collapse
|
18
|
Potato pomace: An efficient resource for Monascus pigments production through solid-state fermentation. J Biosci Bioeng 2021; 132:167-173. [PMID: 33941465 DOI: 10.1016/j.jbiosc.2021.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022]
Abstract
Monascus pigments are the important natural additives in food industrial production. To obtain more economic pigments production processes, the present study was performed to evaluate the feasibility of using pomace resource as substrate for pigments production. Petri dish fermentation was designed to seek the optimal process parameters, and the value of red, yellow and total pigments per dry fermented substrate could achieve 654.6, 1268.1 and 1922.7 OD units/g, respectively. Shallow tray fermentation experiments were used for investigating the potential industrial production of pigments using potato pomace as sole carbon. The final total pigments of 200 g and 1000 g shallow tray experiments could reach 1886.9 and 1737.4 OD units/g. The results in this work indicating that potato pomace could be an efficient and low cost substrate for the production of Monascus pigments, and will supply a valuable reference for the comprehensive utilization of potato resources and seeking the economical natural pigments process.
Collapse
|
19
|
OVAT Analysis and Response Surface Methodology Based on Nutrient Sources for Optimization of Pigment Production in the Marine-Derived Fungus Talaromyces albobiverticillius 30548 Submerged Fermentation. Mar Drugs 2021; 19:md19050248. [PMID: 33925595 PMCID: PMC8146719 DOI: 10.3390/md19050248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pigment production from filamentous fungi is gaining interest due to the diversity of fungal species, the variety of compounds synthesized, and the possibility of controlled massive productions. The Talaromyces species produce a large panel of metabolites, including Monascus-like azaphilone pigments, with potential use as natural colorants in industrial applications. Optimizing pigment production from fungal strains grown on different carbon and nitrogen sources, using statistical methods, is widespread nowadays. The present work is the first in an attempt to optimize pigments production in a culture of the marine-derived T. albobiverticillius 30548, under the influence of several nutrients sources. Nutrient combinations were screened through the one-variable-at-a-time (OVAT) analysis. Sucrose combined with yeast extract provided a maximum yield of orange pigments (OPY) and red pigments (RPY) (respectively, 1.39 g/L quinizarin equivalent and 2.44 g/L Red Yeast pigment equivalent), as well as higher dry biomass (DBW) (6.60 g/L). Significant medium components (yeast extract, K2HPO4 and MgSO4·7H2O) were also identified from one-variable-at-a-time (OVAT) analysis for pigment and biomass production. A five-level central composite design (CCD) and a response surface methodology (RSM) were applied to evaluate the optimal concentrations and interactive effects between selected nutrients. The experimental results were well fitted with the chosen statistical model. The predicted maximum response for OPY (1.43 g/L), RPY (2.59 g/L), and DBW (15.98 g/L) were obtained at 3 g/L yeast extract, 1 g/L K2HPO4, and 0.2 g/L MgSO4·7H2O. Such optimization is of great significance for the selection of key nutrients and their concentrations in order to increase the pigment production at a pilot or industrial scale.
Collapse
|
20
|
Wang J, Huang Y, Shao Y. From Traditional Application to Genetic Mechanism: Opinions on Monascus Research in the New Milestone. Front Microbiol 2021; 12:659907. [PMID: 33868216 PMCID: PMC8044512 DOI: 10.3389/fmicb.2021.659907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 01/16/2023] Open
Affiliation(s)
- Jie Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yueyan Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Chatragadda R, Dufossé L. Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms 2021; 9:637. [PMID: 33803896 PMCID: PMC8003166 DOI: 10.3390/microorganisms9030637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness of all kinds of organisms. Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments offer a wide array of food, drug, colorants, dyes, and imaging applications. In contrast to the natural pigments from microbes, synthetic colorants are widely used due to high production, high intensity, and low cost. Nevertheless, natural pigments are gaining more demand over synthetic pigments as synthetic pigments have demonstrated side effects on human health. Therefore, research on microbial pigments needs to be extended, explored, and exploited to find potential industrial applications. In this review, the evolutionary aspects, the spatial significance of important pigments, biomedical applications, research gaps, and future perspectives are detailed briefly. The pathogenic nature of some pigmented bacteria is also detailed for awareness and safe handling. In addition, pigments from macro-organisms are also discussed in some sections for comparison with microbes.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), Council of Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Ecole Supérieure d’Ingénieurs Réunion Océan Indien (ESIROI), Département Agroalimentaire, Université de La Réunion, F-97744 Saint-Denis, France
| |
Collapse
|
22
|
Pigment bioproduction by Monascus purpureus using corn bran, a byproduct of the corn industry. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Mahmoud GAE, Soltan HAH, Abdel-Aleem WM, Osman SAM. Safe natural bio-pigment production by Monascus purpureus using mixed carbon sources with cytotoxicity evaluation on root tips of Allium cepa L. Journal of Food Science and Technology 2020; 58:2516-2527. [PMID: 34194088 DOI: 10.1007/s13197-020-04758-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Revised: 07/09/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
By increasing the undesirable side effects of synthetic food pigments on human health, using safe natural food pigment become an urgent issue. Incorporate corn starch with oils conducted a high impact on red pigment production by Monascus purpureus. Fortification the medium with sesame oil raised the pigment production by 80% and the dry mass by 63% compared with free oil medium. Response surface methodology maximizes the production with 114.6% (12.8 A500) using medium constituents (g/l); Sesame oil 5; Corn starch 30; Yeast extract 1.5; KH2PO4 2.5 and MgSO4.7H2O 0.1. After evaluating red pigment stability in three common food components, citric acid showed a great effect on residual stability percentage compared with ascorbic and salicylic acid which decrease slightly the residual stability percentage at light and dark conditions. The mitotic index of red pigment was lower than the negative control at all tested concentrations. Different types of mitotic chromosomal abnormalities e.g. lagging chromosome, chromosomal bridge, chromosome and chromatin fragments, outside chromosome, chromosomal stickiness and micro nuclei were recorded. Insignificant increase in total mitotic aberrations percentage in all tested root tips treated with all concentrations of red pigment (1.23, 1.58, 1.63, 2.32 and 2.40%) compared with negative control (0.91%). There was a significant increase in total aberrations percentage after treatment with all concentrations (10, 15, 20 and 25%) of positive control (2.93, 3.00, 3.55 and 6.53 respectively) except (5%) which was insignificant (2.71%). From the previous data, this red pigment can be used as an alternative safe pigment in the food industry.
Collapse
Affiliation(s)
| | - Hassan A H Soltan
- Central Laboratory of Organic Agriculture, Agriculture Research Center, Giza, Egypt
| | | | - Sayed A M Osman
- Genetics Department, Faculty of Agriculture, Minia University, Minia, Egypt
| |
Collapse
|
24
|
Biochemical Properties of a Partially Purified Protease from Bacillus sp. CL18 and Its Use to Obtain Bioactive Soy Protein Hydrolysates. Appl Biochem Biotechnol 2020; 192:643-664. [PMID: 32504245 DOI: 10.1007/s12010-020-03355-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
Abstract
Microbial proteases are relevant biocatalysts with diverse applications. Production of protein hydrolysates is recently focused, since they might display biological activities. Therefore, the extracellular protease from Bacillus sp. CL18 was partially purified through ammonium sulfate precipitation (25-50% saturation) and gel filtration chromatography, with a 60.7-fold purification (40,593 U/mg protein) and 21.3% recovery. The partially purified protease (PPP) was characterized as a serine protease, with optimal activity at 51-59 °C and pH 7.4-8.8 and low thermal stability. Thermal inactivation followed first-order kinetics. PPP depended on Ca2+ for higher thermal stability, depicted by increases in half-lives (t1/2), activation energy (Ea), and free energy (ΔG#) for kinetic inactivation. PPP preferentially hydrolyzed casein > soy protein isolate (SPI) >>> keratinous materials. SPI hydrolysis by PPP was further investigated, and the obtained hydrolysates exhibited increased in vitro bioactivities. Hydrolysates displayed antioxidant capacities through the scavenging of synthetic organic radicals and Fe3+-reducing ability. In addition, hydrolysates inhibited the activities of dipeptidyl peptidase IV (DPP IV) and angiotensin-converting enzyme (ACE), suggesting antidiabetic and antihypertensive potentials, respectively. From its biochemical properties, PPP might be used to produce protein hydrolysates with multifunctional bioactivities. Both PPP and SPI hydrolysates can find applications in food biotechnology.
Collapse
|
25
|
Virk MS, Ramzan R, Virk MA, Yuan X, Chen F. Transfigured Morphology and Ameliorated Production of Six Monascus Pigments by Acetate Species Supplementation in Monascus ruber M7. Microorganisms 2020; 8:microorganisms8010081. [PMID: 31936171 PMCID: PMC7023389 DOI: 10.3390/microorganisms8010081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022] Open
Abstract
Monascus species have been used for the production of many industrially and medically important metabolites, most of which are polyketides produced by the action of polyketide synthases that use acetyl-CoA and malonyl-CoA as precursors, and some of them are derived from acetate. In this study the effects of acetic acid, and two kinds of acetates, sodium acetate and ammonium acetate at different concentrations (0.1%, 0.25% and 0.5%) on the morphologies, biomasses, and six major Monascus pigments (MPs) of M. ruber M7 were investigated when M7 strain was cultured on potato dextrose agar (PDA) at 28 °C for 4, 8, 12 days. The results showed that all of the added acetate species significantly affected eight above-mentioned parameters. In regard to morphologies, generally the colonies transformed from a big orange fleecy ones to a small compact reddish ones, or a tightly-packed orange ones without dispersed mycelia with the increase of additives concentration. About the biomass, addition of ammonium acetate at 0.1% increased the biomass of M. ruber M7. With respect to six MPs, all acetate species can enhance pigment production, and ammonium acetate has the most significant impacts. Production of monascin and ankaflavin had the highest increase of 11.7-fold and 14.2-fold in extracellular contents at the 8th day when 0.1% ammonium acetate was supplemented into PDA. Intracellular rubropunctatin and monascorubrin contents gained 9.6 and 6.46-fold at the 8th day, when 0.1% ammonium acetate was added into PDA. And the extracellular contents of rubropunctamine and monascorubramine were raised by 1865 and 4100-fold at the 4th day when M7 grew on PDA with 0.5% ammonium acetate.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (M.S.V.); (R.R.); (X.Y.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rabia Ramzan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (M.S.V.); (R.R.); (X.Y.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Xi Yuan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (M.S.V.); (R.R.); (X.Y.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (M.S.V.); (R.R.); (X.Y.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87282111
| |
Collapse
|
26
|
Liu J, Luo Y, Guo T, Tang C, Chai X, Zhao W, Bai J, Lin Q. Cost-effective pigment production by Monascus purpureus using rice straw hydrolysate as substrate in submerged fermentation. J Biosci Bioeng 2019; 129:229-236. [PMID: 31500988 DOI: 10.1016/j.jbiosc.2019.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Abstract
Monascus pigments (MPs), the secondary metabolites produced by the fungal strains of Monascus spp., hold commercial importance in not only the food and meat industries, but also therapeutic, cosmetic, and textile industries. To reduce the cost of MPs production, the utilization of rice straw hydrolysate as a substrate in submerged fermentation was investigated. The atmospheric and room temperature plasma (ARTP) mutation system was employed to develop a mutant strain Monascus purpureus M630, with high total extracellular Monascus pigments (exMPs) production of 34.12 U/mL in submerged fermentation with glucose-based medium. The results revealed that M. purpureus M630 produces 8.61 U/mL and 20.86 U/mL of exMPs in rice straw hydrolysate alone or in combination with glucose fermentation medium, respectively. Furfural (Fur) and 5'-hydroxymethyl furfural (5'-HMF), produced during pretreatment and hydrolysis of rice straw; are generally inhibitory for microbial growth and fermentation. Our findings revealed that M. purpureus M630 develops the tolerance and adaptation mechanisms in response to 5'-HMF and Fur during growth and MPs biosynthesis in rice straw hydrolysate. In conclusion, we report that rice straw hydrolysate can serve as an efficient and low-cost substitute for the MP production through submerged fermentation by Monascus spp.
Collapse
Affiliation(s)
- Jun Liu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, Henan 450002, China
| | - Yunchuan Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Guo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Chenglun Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Xueying Chai
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wen Zhao
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jie Bai
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
27
|
Silbir S, Goksungur Y. Natural Red Pigment Production by Monascus Purpureus in Submerged Fermentation Systems Using a Food Industry Waste: Brewer's Spent Grain. Foods 2019; 8:E161. [PMID: 31083556 PMCID: PMC6560435 DOI: 10.3390/foods8050161] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
This paper studies the production of natural red pigments by Monascus purpureus CMU001 in the submerged fermentation system using a brewery waste hydrolysate, brewer's spent grain (BSG). The chemical, structural and elemental characterization of the BSG was performed with Van-Soest method, Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. The lignocellulosic structure of BSG was hydrolyzed with a dilute sulfuric acid solution (2% (w/v)) followed by detoxification with Ca(OH)2. Maximum red pigment production (22.25 UA500) was achieved with the following conditions: 350 rpm shake speed, 50 mL fermentation volume, initial pH of 6.5, inoculation ratio of 2% (v/v), and monosodium glutamate (MSG) as the most effective nitrogen source. Plackett-Burman design was used to assess the significance of the fermentation medium components, and MSG and ZnSO4·7H2O were found to be the significant medium variables. This study is the first study showing the compatibility of BSG hydrolysate to red pigment production by Monascus purpureus in a submerged fermentation system.
Collapse
Affiliation(s)
- Selim Silbir
- Engineering Faculty, Department of Food Engineering, Iğdır University, Iğdır 76000, Turkey.
| | - Yekta Goksungur
- Engineering Faculty, Department of Food Engineering, Ege University, Izmir 35040, Turkey.
| |
Collapse
|
28
|
Urnau L, Colet R, Reato PT, Fernandes de Medeiros Burkert J, Rodrigues E, Gomes R, Jacques RA, Valduga E, Steffens C. Use of Low-Cost Agro-Industrial Substrate to Obtain Carotenoids from Phaffia rhodozyma in a Bioreactor. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2018.0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Letícia Urnau
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| | - Rosicler Colet
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| | | | | | - Eliseu Rodrigues
- Institute of Science and Food Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Raul Gomes
- Institute of Science and Food Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | | | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| | - Clarice Steffens
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Induction of pigment production through media composition, abiotic and biotic factors in two filamentous fungi. ACTA ACUST UNITED AC 2019; 21:e00308. [PMID: 30788221 PMCID: PMC6369258 DOI: 10.1016/j.btre.2019.e00308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
Pigment production and accumulation is dependent of high C:N ratios in F. oxysporum and A. chevaleri. Red pigment content of F. oxysporum in terms of Absorbance units per gram of biomass increased in 191% through use of blue light. Different light wavelengths stimulate synthesis of additional pigments in A. chevalieri with highest accumulation in red and UV-light. Stimulation of pigment production in co-culture is species – specific, being only accomplished in A. chevalieri. With a rise higher that 500% of a pigment obtained in green light.
In addition to plant-derived, fungal pigments have become an alternative in respect to synthetic ones. Besides Monascus sp., several pigment-producing fungi do not have culture conditions well-established yet. In this research, media composition, light wavelength and co-culture were evaluated, results were reported in Absorbance Units per gram of biomass (AU/Bgr). For Fusarium oxysporum a C:N ratio above 7 was advantageous, using both complex and defined media; blue LED light increased the AU/Bgr value from 18013 to 344; co-culture did not enhance pigment production. In Aspergillus chevalieri a high C:N ratio with glucose as carbon source was ideal. When exposing cultures to light, UV and red light gave the highest pigmentation; moreover, differential UV-VIS spectra in all wavelengths suggested production of additional pigments. Particularly a pigment observed when cultured in green light was also found in co-culture with yeast and there was an improvement of AU/Bgr value of 52549%. This is the first report regarding light effect and co-culture for these fungi, as well as C:N ratio for A. chevalieri.
Collapse
|
30
|
Aryanti N, Nafiunisa A, Bella N, Sanjaya R, Wardhani DH, Kumoro AC. Kinetics of Ultrasound-Assisted Extraction of Anthocyanin from Purple Roselle Calyces under different pH Conditions. CHEMISTRY & CHEMICAL TECHNOLOGY 2018. [DOI: 10.23939/chcht12.04.523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Orak T, Caglar O, Ortucu S, Ozkan H, Taskin M. Chicken feather peptone: A new alternative nitrogen source for pigment production by Monascus purpureus. J Biotechnol 2018; 271:56-62. [DOI: 10.1016/j.jbiotec.2018.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/20/2018] [Accepted: 02/20/2018] [Indexed: 01/12/2023]
|
32
|
Jian W, Sun Y, Wu JY. Improving the water solubility of Monascus pigments under acidic conditions with gum arabic. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2926-2933. [PMID: 27981585 DOI: 10.1002/jsfa.8130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/08/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Monascus pigments (Mps) are natural food colorants and their stability in acidic solutions is important for application in the food industry. This study aimed to evaluate the use of gum arabic (GA) as a stabilizer for maintaining the solubility of Mps in an acidic aqueous solution exposed to a high temperature, and to analyze the molecular interactions between GA and Mps. RESULTS Mps dispersed (0.2 g kg-1 ) in deionized water at pH 3.0-4.0 without GA formed precipitates but remained in a stable solution in the presence of GA (1 g kg-1 ). The significant improvement of Mps water solubility under acidic conditions was attributed to the formation of Mps-GA complexes, as indicated by a sharp increase in the fluorescence intensity. The results on particle size, zeta potential, and transmission electron microscopy further suggested that molecular binding of Mps to GA, electrostatic repulsion, and steric hindrance of GA were contributing factors to preventing the aggregation of Mps in acidic solutions. A mechanistic model was presented for GA-Mps interactions and complex structures. CONCLUSION GA was proven to be an effective stabilizer of natural food colorants in acidic solutions. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjie Jian
- Department of Applied Biology and Chemical Technology, State Key Lab of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Department of Medical Technology, Xiamen Medical College, Xiamen, 361000, China
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanming Sun
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Yong Wu
- Department of Applied Biology and Chemical Technology, State Key Lab of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
33
|
Use of low-cost agro products as substrate in semi-continuous process to obtain carotenoids by Sporidiobolus salmonicolor. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Monascus Pigments Mediated Rapid Green Synthesis and Characterization of Gold Nanoparticles with Possible Mechanism. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1254-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Alipour S, Habibi A, Taavoni S, Varmira K. β-carotene production from soap stock by loofa-immobilized Rhodotorula rubra in an airlift photobioreactor. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Aguilar-Machado D, Morales-Oyervides L, Contreras-Esquivel JC, Aguilar C, Méndez-Zavala A, Raso J, Montañez J. Effect of ohmic heating processing conditions on color stability of fungal pigments. FOOD SCI TECHNOL INT 2017; 23:338-348. [PMID: 28121170 DOI: 10.1177/1082013216689514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this work was to analyze the effect of ohmic heating processing conditions on the color stability of a red pigment extract produced by Penicillium purpurogenum GH2 suspended in a buffer solution (pH 6) and in a beverage model system (pH 4). Color stability of pigmented extract was evaluated in the range of 60-90 ℃. The degradation pattern of pigments was well described by the first-order (fractional conversion) and Bigelow model. Degradation rate constants ranged between 0.009 and 0.088 min-1 in systems evaluated. Significant differences in the rate constant values of the ohmic heating-treated samples in comparison with conventional thermal treatment suggested a possible effect of the oscillating electric field generated during ohmic heating. The thermodynamic analysis also indicated differences in the color degradation mechanism during ohmic heating specifically when the pigment was suspended in the beverage model system. In general, red pigments produced by P. purpurogenum GH2 presented good thermal stability under the range of the evaluated experimental conditions, showing potential future applications in pasteurized food matrices using ohmic heating treatment.
Collapse
Affiliation(s)
| | | | | | - Cristóbal Aguilar
- 1 Department of Food Research, Universidad Autónoma de Coahuila, Saltillo, Mexico
| | | | - Javier Raso
- 3 Food Technology, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Julio Montañez
- 2 Department of Chemical Engineering, Universidad Autónoma de Coahuila, Saltillo, Mexico
| |
Collapse
|
37
|
Sant'Anna V, Sfoglia NM, Mercali GD, Corrêa APF, Brandelli A. Effect of cooking on polyphenols and antioxidant activity ofAraucaria angustifoliaseed coat and evaluation of phytochemical and microbiological stability over storage. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Voltaire Sant'Anna
- Food Residues Processing Laboratory; Life and Environmental Area; State University of Rio Grande do Sul; Encantado Campus; Encantado Rio Grande do Sul Brazil
| | - Natalia M. Sfoglia
- Food Residues Processing Laboratory; Life and Environmental Area; State University of Rio Grande do Sul; Encantado Campus; Encantado Rio Grande do Sul Brazil
| | - Giovana D. Mercali
- Food Chemistry Laboratory; Institute of Food Science and Technology; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Ana Paula F. Corrêa
- Laboratório de Bioquímica e Microbiologia Aplicada; Instituto de Ciência e Tecnologia de Alimentos; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada; Instituto de Ciência e Tecnologia de Alimentos; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
38
|
CAXAMBÚ S, BIONDO E, KOLCHINSKI EM, PADILHA RL, BRANDELLI A, SANT’ANNA V. Evaluation of the antimicrobial activity of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell aqueous extract on minimally processed lettuce leaves. FOOD SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1590/1678-457x.0043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Effect of heat exposure on the colour intensity of red pigments produced by Penicillium purpurogenum GH2. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Morales-Oyervides L, Oliveira J, Sousa-Gallagher M, Méndez-Zavala A, Montañez J. Quantitative assessment of the impact of the type of inoculum on the kinetics of cell growth, substrate consumption and pigment productivity by Penicillium purpurogenum GH2 in liquid culture with an integrated stochastic approach. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Goswami G, Chaudhuri S, Dutta D. Studies on the stability of a carotenoid produced by a novel isolate using low cost agro-industrial residue and its application in different model systems. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Red pigment production by Monascus purpureus using sweet potato-based medium in submerged fermentation. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13749-015-0032-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Santos-Ebinuma VC, Lopes AM, Pessoa A, Teixeira MFS. Extraction of natural red colorants from the fermented broth ofPenicillium purpurogenumusing aqueous two-phase polymer systems. Biotechnol Prog 2015; 31:1295-304. [DOI: 10.1002/btpr.2127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/17/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Valéria Carvalho Santos-Ebinuma
- Dept. of Bioprocess and Biotechnology, School of Pharmaceutical Sciences; UNESP-Universidade Estadual Paulista; Araraquara SP Brazil
| | - André Moreni Lopes
- Dept. of Biochemical and Pharmaceutical Technology; University of São Paulo; Avenida Prof. Lineu Prestes 580, B16 05508-900 São Paulo SP Brazil
| | - Adalberto Pessoa
- Dept. of Biochemical and Pharmaceutical Technology; University of São Paulo; Avenida Prof. Lineu Prestes 580, B16 05508-900 São Paulo SP Brazil
| | - Maria Francisca Simas Teixeira
- Culture Collection DPUA/UFAM. Federal University of Amazonas; Av. Gal. Rodrigo Octávio Jordão Ramos, 3000 69077-000 Manaus AM Brazil
| |
Collapse
|
44
|
Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, Chen F. Edible Filamentous Fungi from the SpeciesMonascus: Early Traditional Fermentations, Modern Molecular Biology, and Future Genomics. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12145] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wanping Chen
- Key Laboratory of Environment Correlative Dietology; Huazhong Agricultural Univ.; Wuhan Hubei Province 430070 China
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan Hubei Province 430070 China
| | - Yi He
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan Hubei Province 430070 China
| | - Youxiang Zhou
- Inst. of Quality Standard and Testing Technology for Agro-Products; Hubei Academy of Agricultural Sciences; Wuhan Hubei Province 430070 China
| | - Yanchun Shao
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan Hubei Province 430070 China
| | - Yanli Feng
- College of Life Sciences; Hubei Normal Univ.; Huangshi Hubei Province 435000 China
| | - Mu Li
- Key Laboratory of Environment Correlative Dietology; Huazhong Agricultural Univ.; Wuhan Hubei Province 430070 China
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan Hubei Province 430070 China
| | - Fusheng Chen
- Key Laboratory of Environment Correlative Dietology; Huazhong Agricultural Univ.; Wuhan Hubei Province 430070 China
- National Key Laboratory of Agro-Microbiology; Huazhong Agricultural Univ.; Wuhan Hubei Province 430070 China
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan Hubei Province 430070 China
| |
Collapse
|
45
|
Aruldass CA, Rubiyatno R, Venil CK, Ahmad WA. Violet pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity. RSC Adv 2015. [DOI: 10.1039/c5ra05765e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Liquid pineapple waste, a novel nutritious low cost growth medium. Crude violet pigment shows bioactivity. This is the first report on the production of violet pigment using liquid pineapple waste medium.
Collapse
Affiliation(s)
- Claira Arul Aruldass
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- Johor
- Malaysia
| | - Rubiyatno Rubiyatno
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- Johor
- Malaysia
| | | | - Wan Azlina Ahmad
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- Johor
- Malaysia
| |
Collapse
|
46
|
Fed-batch production of carotenoids by Sporidiobolus salmonicolor (CBS 2636): kinetic and stoichiometric parameters. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2318-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Zhou Z, Yin Z, Hu X. Corncob hydrolysate, an efficient substrate forMonascuspigment production through submerged fermentation. Biotechnol Appl Biochem 2014; 61:716-23. [DOI: 10.1002/bab.1225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/14/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Zhongxin Zhou
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Zheng Yin
- State Key Laboratory of Food Science and Technology & Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi 214122 People's Republic of China
| | - Xiaoqing Hu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
- State Key Laboratory of Food Science and Technology & Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi 214122 People's Republic of China
| |
Collapse
|
48
|
Feng Y, Shao Y, Zhou Y, Chen F. Monacolin K production by citrinin-freeMonascus pilosusMS-1 and fermentation process monitoring. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yanli Feng
- Key Laboratory of Environment Correlative Dietology; Ministry of Education; Huazhong Agricultural University; Wuhan Hubei Province P. R. China
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan Hubei Province P. R. China
| | - Yanchun Shao
- Key Laboratory of Environment Correlative Dietology; Ministry of Education; Huazhong Agricultural University; Wuhan Hubei Province P. R. China
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan Hubei Province P. R. China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products; Hubei Academy of Agricultural Sciences; Wuhan Hubei Province P. R. China
| | - Fusheng Chen
- Key Laboratory of Environment Correlative Dietology; Ministry of Education; Huazhong Agricultural University; Wuhan Hubei Province P. R. China
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan Hubei Province P. R. China
| |
Collapse
|
49
|
Valduga E, Rausch Ribeiro AH, Cence K, Colet R, Tiggemann L, Zeni J, Toniazzo G. Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agroindustrial substrates. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
|