1
|
Zhao SH, Tan J, Zhang W, Zhou Y, Ning YQ, Sun Y, Zhao JW, Jiang DM, Li XF. Identification of ice-binding proteins from Raphanus sativus and application in frozen dough. NPJ Sci Food 2025; 9:58. [PMID: 40274810 PMCID: PMC12022278 DOI: 10.1038/s41538-025-00420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Cryopreservation is a widely employed method for processing and preserving food. However, conventional antifreeze agents often hard to mitigate the mechanical damage caused by ice recrystallization during freeze-thaw cycles. In this study, two ice-binding proteins (IBPs), COR15B and COR47, were identified from Raphanus sativus using bioinformatics and molecular biology techniques. Both IBPs exhibited significant ice recrystallization inhibition (IRI) and ice crystal morphology modification activity. A novel, high-yield Bacillus subtilis expression system was developed for the heterologous production of these IBPs, achieving approximately 50 μg/mL through response surface optimization. These proteins, even when used at thousandths of the ratio, retained their IRI activity. Notably, the heterologously expressed IBPs significantly reduced freeze-induced damage in flour-based products and improved yeast survival and fermentative capacity during repeated freeze-thaw cycles. These results highlight the considerable potential of radish-derived IBPs as cryoprotectants for enhancing food storage stability.
Collapse
Affiliation(s)
- Shu-Heng Zhao
- School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai, 200241, P R China
| | - Jing Tan
- School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai, 200241, P R China
| | - Wei Zhang
- School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai, 200241, P R China
| | - Yan Zhou
- School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai, 200241, P R China
| | - Yi-Qiu Ning
- School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai, 200241, P R China
| | - Yue Sun
- School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai, 200241, P R China
| | - Jun-Wei Zhao
- Beijing Institute of Life Science and Technology, Courtyard 7, Yingcai South 1st Street, Future Science City South District, Beiqijia Town, Changping District, Beijing, 102200, PR China
| | - De-Ming Jiang
- School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai, 200241, P R China.
| | - Xiao-Fang Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai, 200241, P R China.
| |
Collapse
|
2
|
Wang X, Geng H, Wu D, Wang L, Zhang N, Wang W, Yu D. Isolation of ice structuring proteins from winter wheat in frigid region (Dongnongdongmai1) and the effect on freeze-thaw stability of dough. Food Res Int 2024; 197:115295. [PMID: 39577943 DOI: 10.1016/j.foodres.2024.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/17/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
In this study, ice structuring proteins (WISPs) extracted from winter wheat in a frigid region were prepared and added to frozen-thawed dough. The WISPs were characterized, revealing that they contained a higher proportion of hydrophilic amino acids and had a molecular weight of approximately 15 kDa. The highest thermal hysteresis activity (THA) observed was 0.62 °C. The secondary structure of WISPs was determined to be as follows: β-sheet: 49.33 %, random coil: 13.87 %, α-helix: 16.35 %, β-turn: 20.45 %. The study investigated the effects of different additions of WISPs on the water mobility, glass transition temperature, microstructure, rheological properties, and texture analysis of frozen-thawed dough. The results demonstrated that the inclusion of WISPs reduced the fluidity of water and water migration in the dough during the frozen-thawed cycle. This protective effect preserved the internal structure and gluten network of the dough, leading to increased viscosity, elasticity, and improved texture properties of the frozen-thawed dough. Furthermore, the addition of WISPs at concentrations ranging from 0 % to 0.7 % resulted in a 1.8 °C increase in the glass transition temperature (Tg). Overall, these findings suggest that WISPs can serve as a beneficial additive for enhancing the freeze-thaw stability of dough.
Collapse
Affiliation(s)
- Xue Wang
- Harbin University of Commerce, Harbin 150028, China
| | - Haoyuan Geng
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Dandan Wu
- Harbin University of Commerce, Harbin 150028, China
| | - Liqi Wang
- Harbin University of Commerce, Harbin 150028, China.
| | - Na Zhang
- Harbin University of Commerce, Harbin 150028, China
| | - Weining Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Obadi M, Xu B. Characteristics and applications of plant-derived antifreeze proteins in frozen dough: A review. Int J Biol Macromol 2024; 255:128202. [PMID: 37979748 DOI: 10.1016/j.ijbiomac.2023.128202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Frozen dough technology has been widely used in the food industry at home and abroad due to its advantages of extending shelf life, preventing aging, and facilitating refrigeration and transportation. However, during the transportation and storage process of frozen dough, the growth and recrystallization of ice crystals caused by temperature fluctuations can lead to a deterioration in the quality of the dough, resulting in poor sensory characteristics of the final product and decreased consumption, which limits the large-scale application of frozen dough. In response to this issue, antifreeze proteins (AFPs) could be used as a beneficial additive to frozen dough that can combine with ice crystals, modify the ice crystal morphology, reduce the freezing point of water, and inhibit the recrystallization of ice crystals. Because of its special structure and function, it can well alleviate the quality deterioration problem caused by ice crystal recrystallization during frozen storage of dough, especially the plant-derived AFPs, which have a prominent effect on inhibiting ice crystal recrystallization. In this review, we introduce the characteristics and mechanisms of action of plant-derived AFPs. Furthermore, the application of plant-derived AFPs in frozen dough are also discussed.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
4
|
Markowska J, Tyfa A, Drabent A, Stępniak A. The Physicochemical Properties and Melting Behavior of Ice Cream Fortified with Multimineral Preparation from Red Algae. Foods 2023; 12:4481. [PMID: 38137285 PMCID: PMC10742974 DOI: 10.3390/foods12244481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Ice cream is a popular frozen food consumed worldwide throughout the year. However, as a thermally unstable product, it requires proper cold chain management. Thermal fluctuations alter the physicochemical properties of ice cream and reduce its quality. This study was conducted to evaluate the physicochemical and sensory properties of ice cream containing different amounts (0.5; 0.8; 1.0%) of a multimineral preparation from Atlantic red algae. The effect of thermal shock on the quality of ice cream after preparation and 90 days of frozen storage was studied. The addition of a multimineral component slightly increased the freezing and glass transition temperatures of the ice cream. The overrun of the ice cream ranged from 48.55 to 52.78% and decreased with the frozen storage time, but the samples with 0.8 and 1.0% mineral content had the most stable overrun in terms of storage time and thermal fluctuations. Ice cream stored for both 7 and 90 days showed a similar melting behavior, although a shift in the melting curves was observed after long frozen storage. The samples exposed to the thermal treatment had lower melting rates by 39.2-59.9% and 55.2-65.4% for 7-day and 90-day stored ice cream, respectively. The hardness parameters of the ice cream did not change significantly under the conditions applied, so the fragility of the ice cream and its fluffiness did not seem to be affected. The organoleptic evaluation showed that ice cream with a mineral content of 0.8% was the most acceptable in terms of taste, texture, and overall acceptability. The applied mineral and sucrose content ratios did not alter the main physicochemical and organoleptic parameters, but significantly affected the nutrient density of the ice cream.
Collapse
Affiliation(s)
- Joanna Markowska
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute (IBPRS-PIB), Department of Refrigeration Technology and Technique, Marszalka J. Pilsudzkiego 84 Avenue, 92-202 Lodz, Poland; (A.T.); (A.D.)
| | - Agnieszka Tyfa
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute (IBPRS-PIB), Department of Refrigeration Technology and Technique, Marszalka J. Pilsudzkiego 84 Avenue, 92-202 Lodz, Poland; (A.T.); (A.D.)
| | - Anna Drabent
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute (IBPRS-PIB), Department of Refrigeration Technology and Technique, Marszalka J. Pilsudzkiego 84 Avenue, 92-202 Lodz, Poland; (A.T.); (A.D.)
| | - Artur Stępniak
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165 Street, 90-236 Lodz, Poland;
| |
Collapse
|
5
|
Ekpo MD, Xie J, Hu Y, Liu X, Liu F, Xiang J, Zhao R, Wang B, Tan S. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking. Int J Mol Sci 2022; 23:2639. [PMID: 35269780 PMCID: PMC8910022 DOI: 10.3390/ijms23052639] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing temperature of the water below its melting point in a process termed thermal hysteresis which is then responsible for ice crystal equilibrium and inhibition of ice recrystallisation; the major cause of cell dehydration, membrane rupture and subsequent cryodamage. Scientists on the other hand have been exploring various substances as cryoprotectants. Some of the cryoprotectants in use include trehalose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), sucrose, propylene glycol (PG) and glycerol but their extensive application is limited mostly by toxicity, thus fueling the quest for better cryoprotectants. Hence, extracting or synthesizing antifreeze protein and testing their cryoprotective activity has become a popular topic among researchers. Research concerning AFPs encompasses lots of effort ranging from understanding their sources and mechanism of action, extraction and purification/synthesis to structural elucidation with the aim of achieving better outcomes in cryopreservation. This review explores the potential clinical application of AFPs in the cryopreservation of different cells, tissues and organs. Here, we discuss novel approaches, identify research gaps and propose future research directions in the application of AFPs based on recent studies with the aim of achieving successful clinical and commercial use of AFPs in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (M.D.E.); (J.X.); (Y.H.); (X.L.); (F.L.); (J.X.); (R.Z.); (B.W.)
| |
Collapse
|
6
|
Zhang G, Zhu C, Walayat N, Nawaz A, Ding Y, Liu J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit Rev Food Sci Nutr 2022; 63:5874-5889. [PMID: 34996325 DOI: 10.1080/10408398.2022.2025534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Chunyan Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, P.R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| |
Collapse
|
7
|
Non-destructive monitoring of food freezing process by microwave resonance spectroscopy with an open-ended coaxial resonator. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Chen X, Shi X, Cai X, Yang F, Li L, Wu J, Wang S. Ice-binding proteins: a remarkable ice crystal regulator for frozen foods. Crit Rev Food Sci Nutr 2020; 61:3436-3449. [PMID: 32715743 DOI: 10.1080/10408398.2020.1798354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ice crystal growth during cold storage presents a quality problem in frozen foods. The development of appropriate technical conditions and ingredient formulations is an effective method for frozen food manufacturers to inhibit ice crystals generated during storage and distribution. Ice-binding proteins (IBPs) have great application potential as ice crystal growth inhibitors. The ability of IBPs to retard the growth of ice crystals suggests that IBPs can be used as a natural ice conditioner for a variety of frozen products. In this review, we first discussed the damage caused by ice crystals in frozen foods during freezing and frozen storage. Next, the methods and technologies for production, purification and evaluation of IBPs were summarized. Importantly, the present review focused on the characteristics, structural diversity and mechanisms of IBPs, and the application advances of IBPs in food industry. Finally, the challenges and future perspectives of IBPs are also discussed. This review may provide a better understanding of IBPs and their applications in frozen products, providing some valuable information for further research and application of IBPs.
Collapse
Affiliation(s)
- Xu Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Xiaodan Shi
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Xixi Cai
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Fujia Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Ling Li
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Ice Binding Proteins: Diverse Biological Roles and Applications in Different Types of Industry. Biomolecules 2020; 10:biom10020274. [PMID: 32053888 PMCID: PMC7072191 DOI: 10.3390/biom10020274] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
More than 80% of Earth’s surface is exposed periodically or continuously to temperatures below 5 °C. Organisms that can live in these areas are called psychrophilic or psychrotolerant. They have evolved many adaptations that allow them to survive low temperatures. One of the most interesting modifications is production of specific substances that prevent living organisms from freezing. Psychrophiles can synthesize special peptides and proteins that modulate the growth of ice crystals and are generally called ice binding proteins (IBPs). Among them, antifreeze proteins (AFPs) inhibit the formation of large ice grains inside the cells that may damage cellular organelles or cause cell death. AFPs, with their unique properties of thermal hysteresis (TH) and ice recrystallization inhibition (IRI), have become one of the promising tools in industrial applications like cryobiology, food storage, and others. Attention of the industry was also caught by another group of IBPs exhibiting a different activity—ice-nucleating proteins (INPs). This review summarizes the current state of art and possible utilizations of the large group of IBPs.
Collapse
|
10
|
Tian Y, Zhu Z, Sun DW. Naturally sourced biosubstances for regulating freezing points in food researches: Fundamentals, current applications and future trends. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Zhu Z, Zhou Q, Sun DW. Measuring and controlling ice crystallization in frozen foods: A review of recent developments. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Extraction of antifreeze proteins from cold acclimated leaves of Drimys angustifolia and their application to star fruit (Averrhoa carambola) freezing. Food Chem 2019; 289:65-73. [DOI: 10.1016/j.foodchem.2019.03.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
|
13
|
Chen X, Wu J, Li L, Wang S. Cryoprotective Activity and Action Mechanism of Antifreeze Peptides Obtained from Tilapia Scales on Streptococcus thermophilus during Cold Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1918-1926. [PMID: 30689371 DOI: 10.1021/acs.jafc.8b06514] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cold stress adversely affects cell viability and acidification, and new cryoprotective methods continue to be needed in cold-chain food industry. Given this, we investigated the cryoprotective effects and action mechanism of antifreeze peptides obtained from tilapia scales (TSAPP) on Streptococcus thermophilus during cold stress. Our results showed that the molecular weight of TSAPP ranged from 180 to 2000 Da and its thermal hysteresis activity was 0.29 °C. Growth of S. thermophilus was improved after treatment with TSAPP (1 mg/mL) under cold stress. This growth was notable when compared with the effects of other cryoprotectants. Furthermore, TSAPP improved the metabolic activity of S. thermophilus during cold stress. TSAPP likely offered its cellular protection by maintaining cell membrane fluidity through hydrogen bonding of the phospholipid bilayer. These results indicate that TSAPP has potential as a novel biological peptide material with cryoprotective activity for future use in probiotic or other processed food applications.
Collapse
Affiliation(s)
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | | | | |
Collapse
|
14
|
Liu M, Liang Y, Zhang H, Wu G, Wang L, Qian H, Qi X. Comparative Study on the Cryoprotective Effects of Three Recombinant Antifreeze Proteins from Pichia pastoris GS115 on Hydrated Gluten Proteins during Freezing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6151-6161. [PMID: 29863868 DOI: 10.1021/acs.jafc.8b00910] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During the freezing process, ice crystal formation leads to the deterioration in physicochemical properties and networks of gluten proteins. The cryoprotective effects of recombinant carrot ( Daucus carota) antifreeze protein (rCaAFP), type II antifreeze protein from Epinephelus coioides (rFiAFP), and Tenebrio molitor antifreeze protein (rTmAFP) produced from Pichia pastoris GS115 on hydrated gluten, glutenin, and gliadin during freezing were investigated. The thermal hysteresis (TH) activity and ice crystals' morphology modification ability of recombinant antifreeze proteins (rAFPs) were analyzed by differential scanning calorimetry (DSC) and cryomicroscope, respectively. The freezing and melting properties, water state, rheological properties, and microstructure of hydrated gluten proteins were studied by DSC, low field nuclear magnetic resonance, rheometer, and scanning electron microscopy, respectively. The rTmAFP exhibited strongest TH activity and ice crystals' morphology modification ability, followed by rFiAFP and rCaAFP. The addition of the three rAFPs caused freezing hysteresis and weakened the damage of freezing to the networks of hydrated gluten, glutenin, and gliadin. During freezing, the cryoprotective effects of the three rAFPs on the freezable water content, water mobility and distribution, and rheological properties of hydrated gluten were achieved by protecting these corresponding properties of hydrated glutenin. Among the three rAFPs, rTmAFP was most effective in the cryoprotective activities on hydrated gluten proteins during freezing. The results demonstrate the potential of these rAFPs, especially rTmAFP, to preserve the above properties of hydrated gluten proteins during the freezing process.
Collapse
Affiliation(s)
| | - Ying Liang
- College of Biological Engineering , Henan University of Technology , Zhengzhou 450001 , China
| | | | | | | | | | | |
Collapse
|
15
|
Zhang L, Jin Q, Luo J, Wu J, Wang S, Wang Z, Gong S, Zhang W, Lan X. Intracellular Expression of Antifreeze Peptides in Food Grade Lactococcus lactis and Evaluation of Their Cryoprotective Activity. J Food Sci 2018; 83:1311-1320. [PMID: 29660758 DOI: 10.1111/1750-3841.14117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
Abstract
Antifreeze peptides can protect living organisms from low temperatures by preventing damage or killing due to ice crystal formation between cells. Therefore, antifreeze peptides can be used as a low temperature protectant for cryopreservation of cells and tissues, and also in food production. In this study, a recombinant SF-P gene was constructed and inserted into pNZ8149 to construct a food grade expression vector, which was then electroporated into Lactococcus lactis NZ3900. The expression of the target protein was induced using Nisin, and the optimal expression condition was determined to be a pH of 6.0, Nisin concentration of 25 ng/mL, temperature of 37 °C, and incubation time of 6 hr. Compared to the strain NZ3900 and the recombinant strain SF-P1 without addition of Nisin, the recombinant strain SF-P2 showed the highest cell survival and thermal hysteresis activity, and had a reduction in the changes of activities of extracellular and intracellular lactate dehydrogenase and β-galactosidase after freezing. Moreover, analysis by SEM showed that SF-P2 cells were more completely and regularly shaped than other strains, displayed no obvious leakage of cell contents, and had an intact boundary between cells after freezing. These results indicate that the recombinant strain SF-P2 has a protective effect against freezing. This paper presents a food grade expression system for an antifreeze peptide SF-P using L. lactis as a host, and shows that the intracellular expression of antifreeze peptide could protect the cellular integrity and physiological functions of L. lactis. PRACTICAL APPLICATION The recombinant Lactococcus lactis with intracellular expression of antifreeze peptides SF-P could reduce the damage of bacteria cells induced by freezing or freeze drying, so, it could be applied in the process of freezing food without separation, such as the manufacture of yoghurt ice cream, frozen dough, and so on.
Collapse
Affiliation(s)
- Li Zhang
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Quan Jin
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jing Luo
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jinhong Wu
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou Univ., Fuzhou, 350108, China
| | - Zhengwu Wang
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Shengxiang Gong
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Wei Zhang
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Xiaohong Lan
- Dept. of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| |
Collapse
|
16
|
Sitthiya K, Devkota L, Sadiq MB, Anal AK. Extraction and characterization of proteins from banana ( Musa Sapientum L) flower and evaluation of antimicrobial activities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:658-666. [PMID: 29391630 PMCID: PMC5785391 DOI: 10.1007/s13197-017-2975-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Ultrasonic assisted alkaline extraction of protein from banana flower was optimized using response surface methodology. The extracted proteins were characterized by Fourier transform infrared spectroscopy and molecular weight distribution was determined by gel electrophoresis. The maximum protein yield of 252.25 mg/g was obtained under optimized extraction conditions: temperature 50 °C, 30 min extraction time and 1 M NaOH concentration. The alkaline extraction produced a significantly high protein yield compared to enzymatic extraction of banana flower. Chemical finger printing of proteins showed the presence of tyrosine, tryptophan and amide bonds in extracted protein. Alkaline and pepsin assisted extracted banana flower proteins showed characteristic bands at 40 and 10 kDA, respectively. The extracted proteins showed antibacterial effects against both gram positive and gram negative bacteria. The high protein content and antimicrobial activity indicate the potential applications of banana flower in the food and feed industry.
Collapse
Affiliation(s)
- Kewalee Sitthiya
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Lavaraj Devkota
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Muhammad Bilal Sadiq
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Anil Kumar Anal
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| |
Collapse
|