1
|
Zojaji M, Yang B, Collins CJ, Crenshaw TD, Ploeg HL. Accurate measurement of a bone surrogate flexural rigidity in three- and four-point bending. J Mech Behav Biomed Mater 2025; 167:106986. [PMID: 40179529 DOI: 10.1016/j.jmbbm.2025.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
The mechanical assessment of long bones through bending is an established preclinical approach to evaluate the effectiveness of treatments for osteoporosis and fractures. Three- and four-point bending (3PB and 4PB) tests are the most common methods for mechanical characterization of long bones with Euler-Bernoulli (EB) theory to calculate of bone flexural rigidity (EI). Previous studies demonstrated that EB theory underestimates the EI of long bones due to its reliance on assumptions that are not entirely applicable to long bones. Therefore, the current study aimed to evaluate the factors that affect the percent error (PE) and bias stemming from the omission of contact and shear deflections in the EI estimation using mechanical testing and finite element analysis (FEA). The true EI of a porcine bone surrogate was used to quantify the percent error and bias of EI estimations from three deflection measurement methods and FEA, in 3PB and 4PB. The analysis confirmed that bending was the main component of total deflection, but only contributed to approximately 50 % and 65 % of the total deflection in 3PB and 4PB, respectively. The combined shear and indentation deflections accounted for the remainder of the total deflection. The FEA aligned with 3PB and 4PB tests with less than 10 % deviation. Underestimation of EI was largest with deflection measurements taken from the machine crosshead (PE 74 % in 3PB and 71 % in 4PB). However, these underestimations improved notably when indentation and shear deflections were considered (PE 42 % in 3PB and 39 % in 4PB). The deflection measurements from extensometer and digital image correlation (DIC) underestimated the EI by 66 % and 71 % in 3PB, and 57 % and 59 % in 4PB. When corrected for shear and indentation deflections, the 3PB PE reduced to 16 % and 14 %, respectively. In 4PB, PE reduced to, 10 % and 7 %, respectively, demonstrating the advantage of the 4PB test configuration over 3PB. The bias resulting from shear deflection was not consistent across deflection measurement methods; and therefore, cannot be generalized with a constant bias correction. The current study highlighted that a slight error in deflection measurement can lead to a significant inaccuracy in EI measurements. This sensitivity comes from the hyperbolic relationship between EI and deflection which not only depends on the ratio of support span to diameter of the specimen but also the test configuration and the ratio of the elastic to shear modulus of specimen. In other words, the PE from neglecting shear effects increases as the specimen EI increases. Accuracy with less than 10 % PE in EI estimations can be achieved by: 1. taking deflection measurements with extensometers, DIC, or FEA; 2. testing in 4PB instead of 3PB; and, 3. correcting for indentation and shear deflections.
Collapse
Affiliation(s)
- Mahsa Zojaji
- Queen's University, Mechanical and Materials Engineering, Kingston, ON, Canada.
| | - Baixuan Yang
- Queen's University, Mechanical and Materials Engineering, Kingston, ON, Canada
| | - Caitlyn J Collins
- Virginia Polytechnic Institute and State University, Department of Biomedical Engineering and Mechanics, VA, USA
| | - Thomas D Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi-Lynn Ploeg
- Queen's University, Mechanical and Materials Engineering, Kingston, ON, Canada
| |
Collapse
|
2
|
Adams DS, Boyce BL, Hooks DE, Garber KW, Klitsner B, Price SA, Blob R. A Brief Introductory Guide to Nanoindentation for Comparative and Evolutionary Biologists, with a Case Study of Bone Material Property Diversity across Artiodactyl Skulls. Integr Org Biol 2025; 7:obaf010. [PMID: 40161253 PMCID: PMC11953029 DOI: 10.1093/iob/obaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Quantifying the material properties of hard biological materials can improve understanding of the relationships between form, function, and performance. This study illustrates the use of nanoindentation as a tool for evaluating material properties in a comparative biology framework. We provide a step-by-step guide for comparative and evolutionary biologists illustrating the collection and analysis of nanoindentation data from samples of artiodactyl skull bones. We assess the impact of methodological decisions on the output of nanoindentation tests. We also investigate whether evolutionary variations in skull bone properties are present between artiodactyl species that engage in intraspecific head-to-head combat and those that do not. Elastic modulus exhibited little variation among numbers of indents performed per test and per bone sample. The average elastic modulus was significantly lower when bones were hydrated with deionized water. The skulls of artiodactyls exhibited a gradient of elastic modulus values in which the anterior of the skull is less stiff than more posterior locations. Species involved in head-to-head combat showed little difference in elastic modulus values compared to non-combat species. This suggests that ecological factors influence the evolutionary diversity of bone material properties, rather than strictly phylogenetic constraints. In a phylogenetic context, nanoindentation reveals tetrapod bone heterogeneity and provides insights into the evolution of these traits.
Collapse
Affiliation(s)
- D S Adams
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - B L Boyce
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - D E Hooks
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - K W Garber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - B Klitsner
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - S A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - R Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Fischer NG, de Souza Araújo IJ, Daghrery A, Yu B, Dal-Fabbro R, Dos Reis-Prado AH, Silikas N, Rosa V, Aparicio C, Watts DC, Bottino MC. Guidance on biomaterials for periodontal tissue regeneration: Fabrication methods, materials and biological considerations. Dent Mater 2025; 41:283-305. [PMID: 39794220 DOI: 10.1016/j.dental.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Regeneration of the multiple tissues and interfaces in the periodontal complex necessitates multidisciplinary evaluation to establish structure/function relationships. This article, an initiative of the Academy of Dental Materials, provides guidance for performing chemical, structural, and mechanical characterization of materials for periodontal tissue regeneration, and outlines important recommendations on methods of testing bioactivity, biocompatibility, and antimicrobial properties of biomaterials/scaffolds for periodontal tissue engineering. First, we briefly summarize periodontal tissue engineering fabrication methods. We then highlight critical variables to consider when evaluating a material for periodontal tissue regeneration, and the fundamental tests used to investigate them. The recommended tests and designs incorporate relevant international standards and provide a framework for characterizing newly developed materials focusing on the applicability of those tests for periodontal tissue regeneration. The most common methods of biofabrication (electrospinning, injectable hydrogels, fused deposition modelling, melt electrowriting, and bioprinting) and their specific applications in periodontal tissue engineering are reviewed. The critical techniques for morphological, chemical, and mechanical characterization of different classes of materials used in periodontal regeneration are then described. The major advantages and drawbacks of each assay, sample sizes, and guidelines on specimen preparation are also highlighted. From a biological standpoint, fundamental methods for testing bioactivity, the biocompatibility of materials, and the experimental models for testing the antimicrobial potential are included in this guidance. In conclusion, researchers performing studies on periodontal tissue regeneration will have this guidance as a tool to assess essential properties and characteristics of their materials/scaffold-based strategies.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isaac J de Souza Araújo
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan 82943, KSA; Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA
| | - Baiqing Yu
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA
| | - Alexandre H Dos Reis-Prado
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA; Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore
| | - Conrado Aparicio
- BOBI-Bioinspired Oral Biomaterials and Interfaces, UPC-Universitat Politènica de Catalunya, Barcelona 08010, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; SCOI - Study and Control of Oral Infections, Faculty of Odontology, UIC Barcelona-Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain; IBEC - Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, United Kingdom
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Xu L, Li Y, Liu Y, Shi Q, Xing W, Jiang T, Zhang G, Li Y, Ta D. Full-Waveform Inversion Imaging of Cortical Bone Using Phased Array Tomography. IEEE Trans Biomed Eng 2025; 72:878-890. [PMID: 39388318 DOI: 10.1109/tbme.2024.3477708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Classic ultrasound bone imaging modalities usually demand either a prior knowledge or an advanced estimation on speed of sound (SoS), which not only renders to a burdensome imaging process but also supplies a limited resolution. To overcome these drawbacks, this article proposed a frequency-domain full-waveform inversion (FDFWI) modality using phased array tomography for high-accuracy cortical bone imaging. A transmission scenario of ultrasound wave in 2-D space was presented in the frequency domain to simulate the forward wavefield propagation. Iterations in the inversion process were performed by matching the simulation wavefield to the experimental one from low to high discrete frequency points. Moreover, the association between the maximum initial frequency and the initial SoS model was explored to prevent the occurrence of cycle-skipping phenomenon, which could lead to the outcomes being trapped in local minima. The feasibility and effectiveness of the proposed imaging scheme were testified by simulation, phantom, and ex-vivo studies, with mean relative errors of cortical part being 3.18%, 8.71%, and 9.36%, respectively. It is verified that the proposed FDFWI method is an effective way for parametric imaging of cortical bone without any prior knowledge of sound speed.
Collapse
|
5
|
Wolffenbuttel T, Ajami S, Borghi A, Schievano S, Dunaway D, Jeelani NUO, Koudstaal M. Cone beam CT for the assessment of bone microstructure to predict head shape changes after spring-assisted craniosynostosis surgery. J Craniomaxillofac Surg 2025; 53:142-153. [PMID: 39603896 DOI: 10.1016/j.jcms.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/10/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Head shape changes following spring-cranioplasty for craniosynostosis (CS) can be difficult to predict. While previous research has indicated a connection between surgical outcomes and calvarial bone microstructure ex-vivo, there exists a demand for identifying imaging biomarkers that can be translated into clinical settings and assist in predicting these outcomes. In this study, ten parietal (8 males, age 157 ± 26 days) and two occipital samples (males, age 1066 and 1162 days) were collected from CS patients who underwent spring cranioplasty procedures. Samples' microstructure were examined using clinical imaging modalities (dental CBCT, C-arm CT) and micro-CT. Cranial index (CI) was measured to evaluate patients' head shape before and after surgery, with an investigation into their relationship with morphometric measurements. Bone cross-sectional thickness (CsTh) showed significant correlation to CI increase post-SAC for C-arm CT (ρ = -0.857, p = 0.014) and 8.9 μm micro-CT (ρ = -0.857, p = 0.014). In addition, bone volume (BV) was correlated to CI increase for CBCT (ρ = -0.643, p = 0.013), 50 μm micro-CT (ρ = -0.857, p < 0.001) and 90 μm micro-CT (ρ = -0.679, p = 0.008). High correlation with micro-CT resampled to match respective voxel sizes was demonstrated for both CBCT and C-arm CT measurements of CsTh and BV (ρ ≥ 0.860, p < 0.001). This preliminary study demonstrates the potential of clinical CT devices to aid in pre-surgical decision making in CS.
Collapse
Affiliation(s)
- Tanya Wolffenbuttel
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, Rotterdam, the Netherlands.
| | - Sara Ajami
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alessandro Borghi
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Engineering, Durham University, Durham, UK
| | - Silvia Schievano
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - David Dunaway
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Noor Ul Owase Jeelani
- Craniofacial Unit, Great Ormond Street Hospital for Children, London, UK; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Maarten Koudstaal
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Tanel L, Nogier A, Van Rooij F, Agu C, Saffarini M, Lalevee M, Beaudet P. Does Decompressive Chevron Osteotomy Decrease Subchondral Bone Density of the First Metatarsophalangeal Joint in Hallux Rigidus? Foot Ankle Int 2025; 46:227-235. [PMID: 39682049 DOI: 10.1177/10711007241300161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND To investigate the impact of decompressive chevron osteotomy on subchondral bone density at the first metatarsophalangeal (MTP) joint. METHODS Sixteen feet (12 patients) with hallux rigidus underwent decompressive chevron osteotomy. Standing cone beam 3D computed tomography (3DCT) were assessed preoperatively and at 4-month follow-up, and clinical data were collected. Radiologic measurements, including bone density using Hounsfield units (HU), were conducted. Statistical analyses were performed to evaluate changes and correlations. RESULTS Postoperative bone density significantly decreased in proximal (Pre, 650.9 ± 149.1; Post, 312.4 ± 115.9; P < .001) and distal (Pre, 910.4 ± 143.3; Post, 639.0 ± 167.1; P < .001) components of the first MTP joint and the first tarsometatarsal (TMT) (Pre, 762.9 ± 166.6; Post, 611.5 ± 165.9; P < .001) joint. No significant difference was measured at the tibiotalar joint (Pre, 497.5 ± 143.6; Post, 534.3 ± 130.7; P = .065). Length of the first metatarsal (Pre, 60.4 ± 3.4; Post, 54.3 ± 3.0; P < .001) and metatarsal protrusion index (MPI) (Pre, -0.9 ± 3.0; Post, -9.0 ± 3.6; P < .001) significantly decreased postoperatively. Clinical assessments showed significant improvements in pain on the visual analog scale (-5.3 ± 1.9). CONCLUSION Decompressive chevron osteotomy leads to a significant decrease in subchondral bone density of the first MTP joint. A decrease in bone density occurs also in the first TMT joint. LEVEL OF EVIDENCE Level IV, radiographic study.
Collapse
Affiliation(s)
- Luca Tanel
- Department of Orthopedic Surgery, Rouen University Hospital, Rouen, France
- Service de Chirurgie Orthopédique, Clinique Trenel, Sainte-Colombe, France
| | - Alexis Nogier
- Service de Chirurgie Orthopédique, Clinique Trenel, Sainte-Colombe, France
- Service de Chirurgie Orthopédique, Clinique Maussins-Nollet, Ramsay Santé, Paris, France
- Clinique Nollet, Paris, France
| | - Floris Van Rooij
- Service de Chirurgie Orthopédique, Clinique Trenel, Sainte-Colombe, France
- ReSurg SA, Nyon, Switzerland
| | | | - Mo Saffarini
- Service de Chirurgie Orthopédique, Clinique Trenel, Sainte-Colombe, France
- ReSurg SA, Nyon, Switzerland
| | - Matthieu Lalevee
- Department of Orthopedic Surgery, Rouen University Hospital, Rouen, France
- CETAPS UR3832, Research Center for Sports and Athletic Activities Transformations, University of Rouen Normandy, Mont-Saint-Aignan, France
| | - Philippe Beaudet
- Service de Chirurgie Orthopédique, Clinique Trenel, Sainte-Colombe, France
| |
Collapse
|
7
|
Müller D, Klotsche J, Kosik MB, Perka C, Buttgereit F, Hoff P, Gaber T. Fracture Fusion on Fast-Forward: Locally Administered Deferoxamine Significantly Enhances Fracture Healing in Animal Models: A Systematic Review and Meta-Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413290. [PMID: 39840407 PMCID: PMC11848589 DOI: 10.1002/advs.202413290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Fractures, with a yearly incidence of 1.2%, can lead to healing complications in up to 10% of cases. The angiogenic stimulant deferoxamine (DFO) is recognized for enhancing bone healing when administered into the fracture gap. This systematic review with meta-analysis investigates the effect of local DFO application on bone healing in rat and mouse models. EMBASE, MEDLINE (PubMed), and Web of Science are systematically searched in January 2024. The study is prospectively registered in PROSPERO (CRD42024492533), and the SYRCLE tool is used to assess study quality and risk of bias. Outcome values contain the primary endpoint bone volume fraction (BV/TV) as well as the secondary endpoints bone volume, tissue volume, bone mineral density, trabecular separation, trabecular thickness, vessel formation and the mechanical properties, assessed by µCT, angiography and mechanical strength tests. Out of 21 included studies, 18 qualify for meta-analysis, involving 539 animals. DFO-treated groups exhibit significantly higher BV/TV values (p < 0.0001) compared to controls, with similarly significant improvements in secondary outcomes. These findings highlight the substantial benefit of DFO in promoting bone healing, especially after radiotherapy. Rapid clinical implementation is recommended to help patients at high risk of fracture healing complications.
Collapse
Affiliation(s)
- Daniel Müller
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Jens Klotsche
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| | - Magdalena B. Kosik
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Carsten Perka
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinCharitéCenter for Orthopedics und Traumatology10117BerlinGermany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| | - Paula Hoff
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- MVZ Endokrinologikum Berlin am Gendarmenmarkt10117BerlinGermany
| | - Timo Gaber
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| |
Collapse
|
8
|
Bahrami M, Khonakdar H, Moghaddam A, Mahand SN, Bambizi PE, Kruppke B, Khonakdar HA. A review of the current status and future prospects of the bone remodeling process: Biological and mathematical perspectives. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:16-33. [PMID: 39423965 DOI: 10.1016/j.pbiomolbio.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
This review dives into the complex dynamics of bone remodeling, combining biological insights with mathematical perspectives to better understand this fundamental aspect of skeletal health. Bone, being a crucial part of our body, constantly renews itself, and with the growing number of individuals facing bone-related issues, research in this field is vital. In this review, we categorized and classified most common mathematical models used to simulate the mechanical behavior of bone under different loading and health conditions, shedding light on the evolving landscape of bone biology. While current models have effectively captured the essence of healthy bone remodeling, the ever-expanding knowledge in bone biology suggests an update in mathematical methods. Knowing the role of the skeleton in whole-body physiology, and looking at the recent discoveries about activities of bone cells emphasize the urgency of refining our mathematical descriptions of the bone remodeling process. The underexplored impact of bone diseases like osteoporosis, Paget's disease, or breast cancer on bone remodeling also points to the need for intensified research into diverse disease types and their unique effects on bone health. By reviewing a range of bone remodeling models, we show the necessity for tailor-made mathematical models to decipher their roots and enhance patient treatment strategies. Collaboration among scientists from various domains is pivotal to surmount these challenges, ensuring improved accuracy and applicability of mathematical models. Ultimately, this effort aims to deepen our understanding of bone remodeling processes and their broader implications for diverse health conditions.
Collapse
Affiliation(s)
- Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
| | - Hanieh Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran 14965-115, Iran
| | - Armaghan Moghaddam
- Department of Polyurethane and Advanced Materials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran 14965-115, Iran
| | - Saba Nemati Mahand
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran 14965-115, Iran
| | - Poorya Esmaili Bambizi
- Mechanical Engineering Department, University of Tehran, 16th Azar St, Enghelab Ave, Tehran 4563-11155 - Iran
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran 14965-115, Iran; Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany.
| |
Collapse
|
9
|
Mészáros S, Piroska M, Leel-Őssy T, Tárnoki ÁD, Tárnoki DL, Jokkel Z, Szabó H, Hosszú É, Csupor E, Kollár R, Kézdi Á, Tabák ÁG, Horváth C. Genetic and environmental determinants of bone quality: a cross-sectional analysis of the Hungarian Twin Registry. GeroScience 2024; 46:6419-6433. [PMID: 38955996 PMCID: PMC11494004 DOI: 10.1007/s11357-024-01265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
There is abundant evidence that bone mineral content is highly heritable, while the heritability of bone quality (i.e. trabecular bone score [TBS] and quantitative ultrasound index [QUI]) is rarely investigated. We aimed to disentangle the role of genetic, shared and unique environmental factors on TBS and QUI among Hungarian twins. Our study includes 82 twin (48 monozygotic, 33 same-sex dizygotic) pairs from the Hungarian Twin Registry. TBS was determined by DXA, QUI by calcaneal bone ultrasound. To estimate the genetic and environmental effects, we utilized ACE-variance decomposition. For the unadjusted model of TBS, an AE model provided the best fit with > 80% additive genetic heritability. Adjustment for age, sex, BMI and smoking status improved model fit with 48.0% of total variance explained by independent variables. Furthermore, there was a strong dominant genetic effect (73.7%). In contrast, unadjusted and adjusted models for QUI showed an AE structure. Adjustments improved model fit and 25.7% of the total variance was explained by independent variables. Altogether 70-90% of the variance in QUI was related to additive genetic influences. We found a strong genetic heritability of bone quality in unadjusted models. Half of the variance of TBS was explained by age, sex and BMI. Furthermore, the adjusted model suggested that the genetic component of TBS could be dominant or an epistasis could be present. In contrast, independent variables explained only a quarter of the variance of QUI and the additive heritability explained more than half of all the variance.
Collapse
Affiliation(s)
- Szilvia Mészáros
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| | - Márton Piroska
- Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Leel-Őssy
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Domonkos Tárnoki
- Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Twin Registry, Budapest, Hungary
| | - Dávid László Tárnoki
- Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Twin Registry, Budapest, Hungary
| | - Zsófia Jokkel
- Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Helga Szabó
- Medical Imaging Centre, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Hosszú
- 2nd Department of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Emőke Csupor
- Health Service, Buda Castle Local Authorities, Budapest, Hungary
| | - Réka Kollár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Árpád Kézdi
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Károly Rácz Conservative Medicine Division, Doctoral College, Semmelweis University, Budapest, Hungary
| | - Ádám G Tabák
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
| | - Csaba Horváth
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Mvula A, Tawara D, Maruyama A. Using micro-CT to explore bone density variations in the skulls of the vulnerable Opsariichthys uncirostris uncirostris (Three-lips fish) during reproductive migration to a Lake Biwa tributary. PLoS One 2024; 19:e0310461. [PMID: 39527588 PMCID: PMC11554045 DOI: 10.1371/journal.pone.0310461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/02/2024] [Indexed: 11/16/2024] Open
Abstract
Not much is known about the changes in bone density due to fish reproductive migration. We used micro-CT and inferential statistics to determine whether the relative bone density in the skulls of adult Three-lips fish, that seasonally upstream migrated to a Lake Biwa tributary, changed across their known reproductive season. The relative bone density significantly decreased as standard length and condition factor (K) increased in both sexes. This negative relationship is likely due to age and hormonal effects in the fish. Results from the bone density analysis also revealed that male Three-lips fish had potentially lower relative bone density (although not significantly different) than females during peak reproductive migration, i.e., July to August. On average, male Three-lips fish are larger in length and weight than females, and in many species, females prefer larger males to smaller males, viewing their size as an indicator of genetic fitness and their ability to provide protection. Resources in the skulls of Three-lips males may be distributed in such a way that increases reproductive success, i.e., size at the expense of quality. In addition, individuals with slightly less dense bones, particularly males, appeared later than those with denser bones during the peak of the reproductive season. The high energy demands involved with aggression in males, often requires resource mobilization from various tissue compartments and could explain the slightly lower density in the latter half of the peak migration. Furthermore, Three-lips individuals that migrated earlier and later during the reproductive season may have more energy reserves than those that had been in the river for some time, hence the variable bone density between individuals. This study serves as a foundation for future studies on the effects of migration, changes in physiology and age on bone density analysis of Three-lips fish and other species in various ecosystems.
Collapse
Affiliation(s)
- Andrew Mvula
- Department of Environmental Solution Technology, Faculty of Science and Technology, Ryukoku University, Seta, Japan
| | - Daisuke Tawara
- Department of Mechanical Engineering and Robotics, Faculty of Science and Technology, Ryukoku University, Seta, Japan
| | - Atsushi Maruyama
- Department of Environmental Solution Technology, Faculty of Science and Technology, Ryukoku University, Seta, Japan
| |
Collapse
|
11
|
Pénzes D, Szerencse C, Major M, Szabó G, Kontsek E, Báskay J, Pollner P, Szabó BT, Dobó-Nagy C, Csete D, Mócsai A, Baba NZ, Németh O, Kivovics M, Mijiritsky E. Microarchitectural Study of the Augmented Bone Following a Modified Ridge Splitting Technique: Histological and Micro-Computed Tomography Analyses. J Clin Med 2024; 13:6679. [PMID: 39597823 PMCID: PMC11594336 DOI: 10.3390/jcm13226679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: The aim of this matched prospective cohort study was to examine the microarchitecture of the augmented bone following a modified alveolar ridge splitting procedure and compare it to that of native bone. Methods: In the test group, patients underwent a modified ridge split osteotomy procedure to restore the width of the posterior segment of the mandible. Patients with sufficient bone width for dental implant placement in the posterior region of the mandible following 3-month-long spontaneous healing after tooth removal were included in the control group. In both study groups, bone biopsy samples were harvested and dental implants were placed. Histomorphometry and micro-CT analysis were performed. Results: Altogether, 15 patients were included in this study (7 patients in the test group, with 14 bone core biopsies harvested, and 8 patients in the control group, with 13 bone core biopsies harvested). Percentage bone volume (BV/TV) in the micro-CT analysis (22.088 ± 8.094% and 12.075 ± 4.009% for the test and control group, respectively) showed statistically significant differences between study groups. Conclusions: Based on histological and micro-CT analyses, the modified ridge splitting procedure with autologous bone block harvested from the retromolar area results in a dental implant recipient bone microarchitecture superior to that of the extraction sockets left to heal undisturbed for a 3-month-long healing period.
Collapse
Affiliation(s)
- Dorottya Pénzes
- Department of Public Dental Health, Semmelweis University, Szentkirályi utca 40, 1088 Budapest, Hungary; (D.P.); (C.S.); (O.N.)
| | - Csilla Szerencse
- Department of Public Dental Health, Semmelweis University, Szentkirályi utca 40, 1088 Budapest, Hungary; (D.P.); (C.S.); (O.N.)
| | - Martin Major
- Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University, Mária utca 52, 1085 Budapest, Hungary; (M.M.); (G.S.)
| | - György Szabó
- Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University, Mária utca 52, 1085 Budapest, Hungary; (M.M.); (G.S.)
| | - Endre Kontsek
- Department of Pathology, Forensic and Insurance Medicine University, Üllői út 93, 1091 Budapest, Hungary
| | - János Báskay
- Data-Driven Health Division of National Laboratory for Health Security, Health Services Management Training Centre, Semmelweis University, Kútvölgyi út 2, 1125 Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/a, 1117 Budapest, Hungary
| | - Péter Pollner
- Data-Driven Health Division of National Laboratory for Health Security, Health Services Management Training Centre, Semmelweis University, Kútvölgyi út 2, 1125 Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/a, 1117 Budapest, Hungary
| | - Bence Tamás Szabó
- Department of Oral Diagnostics, Semmelweis University, Szentkirályi utca 47, 1088 Budapest, Hungary; (B.T.S.); (C.D.-N.)
| | - Csaba Dobó-Nagy
- Department of Oral Diagnostics, Semmelweis University, Szentkirályi utca 47, 1088 Budapest, Hungary; (B.T.S.); (C.D.-N.)
| | - Dániel Csete
- Department of Physiology, Semmelweis University, Tűzoltó u. 34-37, 1094 Budapest, Hungary; (D.C.); (A.M.)
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Tűzoltó u. 34-37, 1094 Budapest, Hungary; (D.C.); (A.M.)
| | - Nadim Z. Baba
- Advanced Dental Education Program in Implant Dentistry, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Orsolya Németh
- Department of Public Dental Health, Semmelweis University, Szentkirályi utca 40, 1088 Budapest, Hungary; (D.P.); (C.S.); (O.N.)
| | - Márton Kivovics
- Department of Public Dental Health, Semmelweis University, Szentkirályi utca 40, 1088 Budapest, Hungary; (D.P.); (C.S.); (O.N.)
| | - Eitan Mijiritsky
- Department of Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, School of Medicine, Tel Aviv University, Tel Aviv 64239, Israel;
- Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
| |
Collapse
|
12
|
Goulding DA, Bonnet N, Horcajada MN, Baruchet M, Bermont F, Hauser J, Macrì S, Pisa E, Nembrini C, Vidal K, O'Brien NM, O'Mahony JA, O'Regan J. The impact of complexation or complex coacervation of lactoferrin and osteopontin on simulated infant gastrointestinal digestion, intestinal inflammation, and in vivo bone development. Food Funct 2024; 15:9928-9940. [PMID: 39259160 DOI: 10.1039/d4fo02790f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Lactoferrin (LF) and osteopontin (OPN) are bioactive milk proteins which can form heteroprotein complexes and complex coacervates. This research studied the effect of LF-OPN complexation and complex coacervation on the simulated infant gastrointestinal digestion of LF with subsequent examination of gut and bone health bioactivities in preclinical models. In an infant digestion model, the proteolytic profile of LF was unaltered by the pre-association of LF and OPN. Gastric proteolysis of LF was increased when the model gastric pH was reduced from 5.3 to 4.0, but less so when complexed with OPN. In a model of intestinal inflammation, undigested (79% inhibition) and gastric digestates (26% inhibition) of LF, but not gastrointestinal digestates, inhibited lipopolysaccharide (LPS)-induced NF-κB activation in intestinal epithelial cells. LF-OPN complexation sustained the inhibitory effect (21-43% of the undigested effect, depending on the type of complex) of LF after gastrointestinal digestion, suggesting that the peptides produced were different. In a neonatal rodent model used to study bone development, coacervating LF and OPN improved bone structures with a significant increase of trabecular proportion (BV/TV increase by 21.7%). This resulted in an 11.3% increase in stiffness of bones. Feeding the LF and OPN proteins in coacervate format also increased the levels of OPN, P1NP and M-CSF in blood, signifying a more pronounced impact on bone development. This research demonstrated that LF-OPN complexation and complex coacervation can delay simulated infant gastrointestinal digestion of LF and protect or improve the bioactivity of the proteins.
Collapse
Affiliation(s)
- David A Goulding
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, V94 E7P9, Ireland.
| | - Nicolas Bonnet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Marie-Noëlle Horcajada
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Michael Baruchet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Flavien Bermont
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Jonas Hauser
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Nembrini
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Karine Vidal
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Jonathan O'Regan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, V94 E7P9, Ireland.
| |
Collapse
|
13
|
Vom Scheidt A, Krug J, Goggin P, Bakker AD, Busse B. 2D vs. 3D Evaluation of Osteocyte Lacunae - Methodological Approaches, Recommended Parameters, and Challenges: A Narrative Review by the European Calcified Tissue Society (ECTS). Curr Osteoporos Rep 2024; 22:396-415. [PMID: 38980532 PMCID: PMC11324773 DOI: 10.1007/s11914-024-00877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Quantification of the morphology of osteocyte lacunae has become a powerful tool to investigate bone metabolism, pathologies and aging. This review will provide a brief overview of 2D and 3D imaging methods for the determination of lacunar shape, orientation, density, and volume. Deviations between 2D-based and 3D-based lacunar volume estimations are often not sufficiently addressed and may give rise to contradictory findings. Thus, the systematic error arising from 2D-based estimations of lacunar volume will be discussed, and an alternative calculation proposed. Further, standardized morphological parameters and best practices for sampling and segmentation are suggested. RECENT FINDINGS We quantified the errors in reported estimation methods of lacunar volume based on 2D cross-sections, which increase with variations in lacunar orientation and histological cutting plane. The estimations of lacunar volume based on common practice in 2D imaging methods resulted in an underestimation of lacunar volume of up to 85% compared to actual lacunar volume in an artificial dataset. For a representative estimation of lacunar size and morphology based on 2D images, at least 400 lacunae should be assessed per sample.
Collapse
Affiliation(s)
- Annika Vom Scheidt
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Auenbruggerplatz 25, Graz, 8036, Austria.
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| | - Patricia Goggin
- Biomedical Imaging Unit, Laboratory and Pathology Block, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Astrid Diana Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan, Amsterdam, 3004, 1081 LA, The Netherlands
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| |
Collapse
|
14
|
Kulić M, Bagavac P, Bekić M, Krstulović-Opara L. Ex Vivo Biomechanical Bone Testing of Pig Femur as an Experimental Model. Bioengineering (Basel) 2024; 11:572. [PMID: 38927808 PMCID: PMC11200541 DOI: 10.3390/bioengineering11060572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigates the mechanical behavior of femur bones under loading conditions, focusing on the transition from elastic to plastic deformation and eventual fracture. The force-displacement curves reveal distinct phases of deformation, with an initial linear relationship indicating elastic behavior, followed by deviation from linearity marking the onset of plastic deformation. Fracture occurs beyond a critical load, leading to a sharp drop in the force-displacement curve. The maximum fracture force varies among specimens and is influenced by bone geometry, size, cross-sectional area, and cortical thickness. Post-failure analysis highlights additional insights into fracture mechanics and bone material toughness. Reinforcing bones with screws enhances their strength, which is evident in the higher fracture forces observed in force-displacement diagrams. Fixation procedures following fractures further increase bone strength. Comparing specimens with and without strengthening underscores the effectiveness of reinforcement methods in improving bone mechanical properties. After analyzing the results, it is evident that femur bones with reinforcement can withstand greater loads, and they can also absorb higher impact energies while remaining in the elastic deformation range and without suffering permanent plastic damage. This study provides valuable insights into bone biomechanics and the efficacy of reinforcement techniques in enhancing bone strength and fracture resistance.
Collapse
Affiliation(s)
| | - Petra Bagavac
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia;
| | - Marijo Bekić
- Dubrovnik County Hospital, 20000 Dubrovnik, Croatia;
| | - Lovre Krstulović-Opara
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia;
| |
Collapse
|
15
|
Bhoraskar M, Denny C, Srikant N, Ongole R, Archana M, Sampath P. Fractal Dimension and Lacunarity Analysis in the Dentulous and Edentulous Mandibular Posterior Region Using Cone-beam Computed Tomography: A Cross-sectional Retrospective Study. J Contemp Dent Pract 2024; 25:581-587. [PMID: 39364825 DOI: 10.5005/jp-journals-10024-3701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
AIMS This cross-sectional retrospective study was conducted to assess the differences in the microarchitecture of the trabecular bone of the posterior mandibular region at dentulous and edentulous sites with the help of fractal dimension (FD) and lacunarity using cone-beam computed tomography (CBCT). MATERIALS AND METHODS Ninety CBCT scans were analyzed for the purpose of the present study. Inclusion criteria included subjects with unilaterally missing mandibular molars or premolars and an with intact contralateral opposing tooth. The coronal view of the dentulous and edentulous sites was used, and the region of interest (ROI) was selected 2.6 mm below the apex of the tooth present. These images were then transferred to ImageJ Software, and fractal analysis was done using the box-counting method of the FracLac plug-in. A paired samples t-test was performed to compare the means of FD and lacunarity, and a Kendall correlation was performed to check correlations. A p-value less than 0.05 was considered to indicate statistical significance. RESULTS Statistical analysis revealed that the mean FD of the edentulous side was significantly greater than that of the dentulous side (p-value = 0.011). Additionally, the mean lacunarity of the edentulous side was marginally significantly greater than that of the dentulous side (p-value = 0.089). A significant negative correlation was detected between the FD and lacunarity of the edentulous region (p-value = 0.017), and a marginally significant negative correlation was detected between edentulous lacunarity and dentulous lacunarity (p-value = 0.081). CONCLUSION The differences in occlusal forces exerted in dentulous and edentulous regions can lead to a change in the trabecular pattern of the bone in these regions. This change in the microarchitecture of bones can be detected by FD and lacunarity, which can further help us assess changes pre- and post-implant. CLINICAL SIGNIFICANCE The advanced technology, the assessment of microarchitecture of the bone has been made easy, using FD and lacunarity, as done in the present study. This analysis can further aid us in both pre- and post-implant analysis to prevent failure of the implant. How to cite this article: Bhoraskar M, Denny C, Srikant N, et al. Fractal Dimension and Lacunarity Analysis in the Dentulous and Edentulous Mandibular Posterior Region Using Cone-beam Computed Tomography: A Cross-sectional Retrospective Study. J Contemp Dent Pract 2024;25(6):581-587.
Collapse
Affiliation(s)
- Mohana Bhoraskar
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104, Orcid: https://orcid.org/0000-0002-4448-3281
| | - Ceena Denny
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104, Phone: +919986597112, e-mail: , Orcid: https://orcid.org/0000-0001-9908-6753
| | - N Srikant
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104, Orcid: https://orcid.org/0000-0002-2686-0397
| | - Ravikiran Ongole
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104, Orcid: https://orcid.org/0000-0001-7075-2708
| | - M Archana
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104, Orcid: https://orcid.org/0000-0002-4182-9080
| | - Prejith Sampath
- Department of Oral Medicine and Radiology, KMCT Dental College, Mukkam, Kerala, India-673602, Orcid: https://orcid.org/0000-0002-3339-0565
| |
Collapse
|
16
|
Guzman V BM, De La Torre I MH, Frausto-Reyes C. Impact of the preservation media on ex vivo bone samples for full field mechanical testing. APPLIED OPTICS 2024; 63:3745-3752. [PMID: 38856336 DOI: 10.1364/ao.512047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/13/2024] [Indexed: 06/11/2024]
Abstract
The preservation method to store bone tissue for posterior analysis is a widespread practice. However, the method's potential influence on the material's mechanical properties is often overlooked during single-point experimentation. Saline and formaldehyde solutions are the most common among the employed preservation media. A full field analysis of the mice femoral bone deformation using non-destructive optical techniques is conducted to assess the influence of the storage media on the viscoelastic properties of the tissue. Three different groups are subjected to a standard three-point bending test. The first group is the control, with fresh post-mortem samples. The second and third groups used saline and formaldehyde solutions, respectively. During the mechanical test, the bone's surface and internal deformation are monitored simultaneously using digital holographic interferometry and Fourier-domain optical coherence tomography. A mechanical comparison among the three groups is presented. The results show that after 48 h of immersion in saline solution, the mice bones keep their viscoelastic behavior similar to fresh bones. Meanwhile, 48 h in formaldehyde modifies the response and affects the marrow structure. The high sensitivity of the optical phase also makes it possible to observe changes in the anisotropy of the samples. As a comparison, Raman spectroscopy analyzes the three bone groups to prove that the preservation media does not affect a single-point inspection.
Collapse
|
17
|
López Valdés FJ, Vázquez Sanz C, Victoria Rodríguez I, Forriol F. [Translated article] Mechanical properties variations of immature bone in the earliest stages of development. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024; 68:T271-T279. [PMID: 38621437 DOI: 10.1016/j.recot.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/24/2023] [Indexed: 04/17/2024] Open
Abstract
INTRODUCTION Bone as a material varies its composition and mechanical properties throughout life. Although these variations are better understood in adulthood, there is little experimental information on the variation of these properties in early stages of development. The objective of this study is to analyze the mechanical behavior and chemical properties of cortical bone tissue from two animal species in these earliest stages. MATERIAL AND METHODOLOGY Twenty specimens of cortical bone were manufactured from bovine and ovine species that were in different stages of development (feeding exclusively on breast milk, in the transition period to feed or pasture, and young animals but on a solid food diet). The specimens were subjected to tensile tests, recorded with a high-speed camera to obtain deformation maps. Measurements of the tensile force until the specimen broke were also carried out. A fractographic study was carried out with a scanning electron microscope to analyze the fracture surface and an analysis of the amount of calcium in each of the specimens using X-ray dispersion spectroscopy. RESULTS A statistically significant and positive correlation was found between the elastic modulus of the specimens and their calcium content. A trend towards more rigid behavior with age was observed. CONCLUSIONS Young bone tissue tends to stiffen with age as the calcium content increases with an increase in elastic modulus.
Collapse
Affiliation(s)
- F J López Valdés
- MOBIOS Lab, Instituto de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid, Spain
| | - C Vázquez Sanz
- MOBIOS Lab, Instituto de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid, Spain
| | - I Victoria Rodríguez
- MOBIOS Lab, Instituto de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid, Spain
| | - F Forriol
- MOBIOS Lab, Instituto de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid, Spain.
| |
Collapse
|
18
|
López Valdés FJ, Vázquez Sanz C, Victoria Rodríguez I, Forriol F. Mechanical properties variations of immature bone in the earliest stages of development. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024; 68:271-279. [PMID: 38043739 DOI: 10.1016/j.recot.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
INTRODUCTION Bone as a material varies its composition and mechanical properties throughout life. Although these variations are better understood in adulthood, there is little experimental information on the variation of these properties in early stages of development. The objective of this study is to analyze the mechanical behavior and chemical properties of cortical bone tissue from two animal species in these earliest stages. MATERIAL AND METHODOLOGY Twenty specimens of cortical bone were manufactured from bovine and ovine species that were in different stages of development (feeding exclusively on breast milk, in the transition period to feed or pasture, and young animals but on a solid food diet). The specimens were subjected to tensile tests, recorded with a high-speed camera to obtain deformation maps. Measurements of the tensile force until the specimen broke were also carried out. A fractographic study was carried out with a scanning electron microscope to analyze the fracture surface and an analysis of the amount of calcium in each of the specimens using X-ray dispersion spectroscopy. RESULTS A statistically significant and positive correlation was found between the elastic modulus of the specimens and their calcium content. A trend towards more rigid behavior with age was observed. CONCLUSIONS Young bone tissue tends to stiffen with age as the calcium content increases with an increase in elastic modulus.
Collapse
Affiliation(s)
- F J López Valdés
- MOBIOS Lab, Instituto de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid, España
| | - C Vázquez Sanz
- MOBIOS Lab, Instituto de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid, España
| | - I Victoria Rodríguez
- MOBIOS Lab, Instituto de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid, España
| | - F Forriol
- MOBIOS Lab, Instituto de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid, España.
| |
Collapse
|
19
|
Picavet PP, Claeys S, Rondia E, Balligand M. Compressive mechanical properties of dry antler cortical bone cylinders from different cervidae species. J Mech Behav Biomed Mater 2024; 152:106442. [PMID: 38330876 DOI: 10.1016/j.jmbbm.2024.106442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Antlers are bony structures composed predominantly of primary osteons with unique mechanical properties due to their specific use by deer as weapon and shield. Antler bone fracture resistance has attracted prior scrutiny through experimental tests and theoretical models. To characterize antler mechanical properties, compression of cubes, or bending or tensioning of rectangular bars have been performed in the literature with variations in the protocols precluding comparisons of the data. Compression testing is a widely used experimental technique for determining the mechanical properties of specimens excised from cortical or cancellous regions of bone. However, the recommended geometry for compression tests is the cylinder, being more representative of the real performances of the material. The purpose of research was to report data for compressive strength and stiffness of antler cortical bone following current guidelines. Cylinders (n = 296) of dry antler cortical bone from either the main beam or the tines of Cervus elaphus, Rangifer tarandus, Cervus nippon and Damadama were tested. This study highlights the fact that compression of antler cortical bone cylinders following current guidelines is feasible but not applicable in all species. Standardization of the testing protocols could help to compare data from the literature. This study also confirms that sample localization has no effect on the mechanical properties, that sample density has a significant impact and allows enriching the knowledge of the mechanical properties of dry antler cortical bone.
Collapse
Affiliation(s)
- Pierre P Picavet
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium; Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.
| | - Stéphanie Claeys
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
| | - Etienne Rondia
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
| | - Marc Balligand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
| |
Collapse
|
20
|
Yang J, Pei Q, Wu X, Dai X, Li X, Pan J, Wang B. Stress reduction through cortical bone thickening improves bone mechanical behavior in adult female Beclin-1 +/- mice. Front Bioeng Biotechnol 2024; 12:1357686. [PMID: 38600946 PMCID: PMC11004267 DOI: 10.3389/fbioe.2024.1357686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Fragility fractures, which are more prevalent in women, may be significantly influenced by autophagy due to altered bone turnover. As an essential mediator of autophagy, Beclin-1 modulates bone homeostasis by regulating osteoclast and chondrocyte differentiation, however, the alteration in the local bone mechanical environment in female Beclin-1+/- mice remains unclear. In this study, our aim is to investigate the biomechanical behavior of femurs from seven-month-old female wild-type (WT) and Beclin-1+/- mice under peak physiological load, using finite element analysis on micro-CT images. Micro-CT imaging analyses revealed femoral cortical thickening in Beclin-1+/- female mice compared to WT. Three-point bending test demonstrated a 63.94% increase in whole-bone strength and a 61.18% increase in stiffness for female Beclin-1+/- murine femurs, indicating improved biomechanical integrity. After conducting finite element analysis, Beclin-1+/- mice exhibited a 26.99% reduction in von Mises stress and a 31.62% reduction in maximum principal strain in the femoral midshaft, as well as a 36.64% decrease of von Mises stress in the distal femurs, compared to WT mice. Subsequently, the strength-safety factor was determined using an empirical formula, revealing that Beclin-1+/- mice exhibited significantly higher minimum safety factors in both the midshaft and distal regions compared to WT mice. In summary, considering the increased response of bone adaptation to mechanical loading in female Beclin-1+/- mice, our findings indicate that increasing cortical bone thickness significantly improves bone biomechanical behavior by effectively reducing stress and strain within the femoral shaft.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Qilin Pei
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Xingfan Wu
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Dai
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xi Li
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bin Wang
- Institute of Life Sciences, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Beitlitum I, Rayyan F, Pokhojaev A, Tal H, Sarig R. A novel micro-CT analysis for evaluating the regenerative potential of bone augmentation xenografts in rabbit calvarias. Sci Rep 2024; 14:4321. [PMID: 38383533 PMCID: PMC10881464 DOI: 10.1038/s41598-024-54313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Guided Bone Regeneration is a common procedure, yet, as new grafting materials are being introduced into the market, a reliable evaluation method is required. Critical size defect in animal models provides an accurate simulation, followed by histological sections to evaluate the new bone formation. However, histology is destructive, two-dimensional and technique-sensitive. In this study we developed a novel volumetric Micro-CT analysis to quantify new bone formation characteristics. Eight adult female New Zealand white rabbits were subjected to calvarial critical-size defects. Four 8 mm in diameter circular defects were preformed in each animal, to allow random allocation of four treatment modalities. All calvarias were scanned using Micro-CT. Each defect was segmented into four equal parts: pristine bone, outer, middle, and inner. Amira software (v. 6.3, www.fei.com ) was used to calculate the new bone volume in each region and compare it to that of the pristine bone. All grafting materials demonstrated that new bone formation decreased as it moved inward. Only the inner region differed across grafting materials (p = 0.001). The new Micro-CT analysis allowed us to divide each defect into 3D regions providing better understanding of the bone formation process. Amongst the various advantages of the Micro-CT, it enables us to quantify the graft materials and the newly formed bone independently, and to describe the defect morphology in 3D (bi- vs. uni-cortical defects). Providing an insight into the inner region of the defect can better predict the regenerative potential of the bone augmentation graft material. Therefore, the suggested Micro-CT analysis is beneficial for further developing of clinical approaches.
Collapse
Affiliation(s)
- Ilan Beitlitum
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Fatma Rayyan
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ariel Pokhojaev
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Haim Tal
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Rachel Sarig
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Faculty of Medicine, Tel-Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
22
|
Báskay J, Pénzes D, Kontsek E, Pesti A, Kiss A, Guimarães Carvalho BK, Szócska M, Szabó BT, Dobó-Nagy C, Csete D, Mócsai A, Németh O, Pollner P, Mijiritsky E, Kivovics M. Are Artificial Intelligence-Assisted Three-Dimensional Histological Reconstructions Reliable for the Assessment of Trabecular Microarchitecture? J Clin Med 2024; 13:1106. [PMID: 38398417 PMCID: PMC10889719 DOI: 10.3390/jcm13041106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Objectives: This study aimed to create a three-dimensional histological reconstruction through the AI-assisted classification of tissues and the alignment of serial sections. The secondary aim was to evaluate if the novel technique for histological reconstruction accurately replicated the trabecular microarchitecture of bone. This was performed by conducting micromorphometric measurements on the reconstruction and comparing the results obtained with those of microCT reconstructions. Methods: A bone biopsy sample was harvested upon re-entry following sinus floor augmentation. Following microCT scanning and histological processing, a modified version of the U-Net architecture was trained to categorize tissues on the sections. Detector-free local feature matching with transformers was used to create the histological reconstruction. The micromorphometric parameters were calculated using Bruker's CTAn software (version 1.18.8.0, Bruker, Kontich, Belgium) for both histological and microCT datasets. Results: Correlation coefficients calculated between the micromorphometric parameters measured on the microCT and histological reconstruction suggest a strong linear relationship between the two with p-values of 0.777, 0.717, 0.705, 0.666, and 0.687 for BV/TV, BS/TV, Tb.Pf Tb.Th, and Tb.Sp, respectively. Bland-Altman and mountain plots suggest good agreement between BV/TV measurements on the two reconstruction methods. Conclusions: This novel method for three-dimensional histological reconstruction provides researchers with a tool that enables the assessment of accurate trabecular microarchitecture and histological information simultaneously.
Collapse
Affiliation(s)
- János Báskay
- Data-Driven Health Division of National Laboratory for Health Security, Health Services Management Training Centre, Semmelweis University, Kútvölgyi út 2, 1125 Budapest, Hungary; (J.B.); (M.S.); (P.P.)
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/a, 1117 Budapest, Hungary
| | - Dorottya Pénzes
- Department of Community Dentistry, Semmelweis University, Szentkirályi Utca 40, 1088 Budapest, Hungary; (D.P.); (B.K.G.C.); (O.N.)
| | - Endre Kontsek
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, 1091 Budapest, Hungary; (E.K.); (A.P.); (A.K.)
| | - Adrián Pesti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, 1091 Budapest, Hungary; (E.K.); (A.P.); (A.K.)
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, 1091 Budapest, Hungary; (E.K.); (A.P.); (A.K.)
| | | | - Miklós Szócska
- Data-Driven Health Division of National Laboratory for Health Security, Health Services Management Training Centre, Semmelweis University, Kútvölgyi út 2, 1125 Budapest, Hungary; (J.B.); (M.S.); (P.P.)
| | - Bence Tamás Szabó
- Department of Oral Diagnostics, Semmelweis University, Szentkirályi Utca 47, 1088 Budapest, Hungary; (B.T.S.); (C.D.-N.)
| | - Csaba Dobó-Nagy
- Department of Oral Diagnostics, Semmelweis University, Szentkirályi Utca 47, 1088 Budapest, Hungary; (B.T.S.); (C.D.-N.)
| | - Dániel Csete
- Department of Physiology, Semmelweis University, Tűzoltó u. 34-37, 1094 Budapest, Hungary; (D.C.); (A.M.)
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Tűzoltó u. 34-37, 1094 Budapest, Hungary; (D.C.); (A.M.)
| | - Orsolya Németh
- Department of Community Dentistry, Semmelweis University, Szentkirályi Utca 40, 1088 Budapest, Hungary; (D.P.); (B.K.G.C.); (O.N.)
| | - Péter Pollner
- Data-Driven Health Division of National Laboratory for Health Security, Health Services Management Training Centre, Semmelweis University, Kútvölgyi út 2, 1125 Budapest, Hungary; (J.B.); (M.S.); (P.P.)
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/a, 1117 Budapest, Hungary
| | - Eitan Mijiritsky
- Department of Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, School of Medicine, Tel Aviv University, Tel Aviv 64239, Israel;
- Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
| | - Márton Kivovics
- Department of Community Dentistry, Semmelweis University, Szentkirályi Utca 40, 1088 Budapest, Hungary; (D.P.); (B.K.G.C.); (O.N.)
| |
Collapse
|
23
|
Gautam R, Ahmed R, Haugen E, Unal M, Fitzgerald S, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Assessment of spatially offset Raman spectroscopy to detect differences in bone matrix quality. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123240. [PMID: 37591015 PMCID: PMC10528408 DOI: 10.1016/j.saa.2023.123240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Since spatially offset Raman spectroscopy (SORS) can acquire biochemical measurements of tissue quality through light scattering materials, we investigated the feasibility of this technique to acquire Raman bands related to the fracture resistance of bone. Designed to maximize signals at different offsets, a SORS probe was used to acquire spectra from cadaveric bone with and without skin-like tissue phantoms attenuating the light. Autoclaving the lateral side of femur mid-shafts from 5 female and 5 male donors at 100 °C and again at 120 °C reduced the yield stress of cortical beams subjected to three-point bending. It did not affect the volumetric bone mineral density or porosity. Without tissue phantoms, autoclaving affected more Raman characteristics of the organic matrix when determined by peak intensity ratios, but fewer matrix properties depended on the three offsets (5 mm, 6 mm, and 7 mm) when determined by band area ratios. The cut-off in the thickness of the tissue phantom layers was ∼4 mm for most properties, irrespective of offset. Matching trends when spectra were acquired without phantom layers between bone and the probe, ν1PO43-/Amide III and ν1PO43-/(proline + OH-proline) were higher and lower in the non-treated bone than in the autoclaved bone, respectively, when the thickness of tissue phantom layers was 4 mm. The layers, however, caused a loss of sensitivity to autoclaving-related changes in ν3CO3/ν1PO43- and crystallinity. Without advanced post-processing of Raman spectra, SORS acquisition through turbid layers can detect changes in Raman properties of bone that accompany a loss in bone strength.
Collapse
Affiliation(s)
- Rekha Gautam
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Biophotonics@Tyndall, IPIC, Tyndall National Institute, Cork, Ireland
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - Ezekiel Haugen
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA
| | - Mustafa Unal
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey; Department of Biophysics, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman 70200, Turkey
| | - Sean Fitzgerald
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Vanderbilt Biophotonics Center, 410 24th Ave. S., Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S., Nashville, TN 37212, USA.
| |
Collapse
|
24
|
Kochetkova T, Hanke MS, Indermaur M, Groetsch A, Remund S, Neuenschwander B, Michler J, Siebenrock KA, Zysset P, Schwiedrzik J. Composition and micromechanical properties of the femoral neck compact bone in relation to patient age, sex and hip fracture occurrence. Bone 2023; 177:116920. [PMID: 37769956 DOI: 10.1016/j.bone.2023.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Current clinical methods of bone health assessment depend to a great extent on bone mineral density (BMD) measurements. However, these methods only act as a proxy for bone strength and are often only carried out after the fracture occurs. Besides BMD, composition and tissue-level mechanical properties are expected to affect the whole bone's strength and toughness. While the elastic properties of the bone extracellular matrix (ECM) have been extensively investigated over the past two decades, there is still limited knowledge of the yield properties and their relationship to composition and architecture. In the present study, morphological, compositional and micropillar compression bone data was collected from patients who underwent hip arthroplasty. Femoral neck samples from 42 patients were collected together with anonymous clinical information about age, sex and primary diagnosis (coxarthrosis or hip fracture). The femoral neck cortex from the inferomedial region was analyzed in a site-matched manner using a combination of micromechanical testing (nanoindentation, micropillar compression) together with micro-CT and quantitative polarized Raman spectroscopy for both morphological and compositional characterization. Mechanical properties, as well as the sample-level mineral density, were constant over age. Only compositional properties demonstrate weak dependence on patient age: decreasing mineral to matrix ratio (p = 0.02, R2 = 0.13, 2.6 % per decade) and increasing amide I sub-peak ratio I∼1660/I∼1683 (p = 0.04, R2 = 0.11, 1.5 % per decade). The patient's sex and diagnosis did not seem to influence investigated bone properties. A clear zonal dependence between interstitial and osteonal cortical zones was observed for compositional and elastic bone properties (p < 0.0001). Site-matched microscale analysis confirmed that all investigated mechanical properties except yield strain demonstrate a positive correlation with the mineral fraction of bone. The output database is the first to integrate the experimentally assessed microscale yield properties, local tissue composition and morphology with the available patient clinical information. The final dataset was used for bone fracture risk prediction in-silico through the principal component analysis and the Naïve Bayes classification algorithm. The analysis showed that the mineral to matrix ratio, indentation hardness and micropillar yield stress are the most relevant parameters for bone fracture risk prediction at 70 % model accuracy (0.71 AUC). Due to the low number of samples, further studies to build a universal fracture prediction algorithm are anticipated with the higher number of patients (N > 200). The proposed classification algorithm together with the output dataset of bone tissue properties can be used for the future comparison of existing methods to evaluate bone quality as well as to form a better understanding of the mechanisms through which bone tissue is affected by aging or disease.
Collapse
Affiliation(s)
- Tatiana Kochetkova
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.
| | - Markus S Hanke
- Department of Orthopedic Surgery, Inselspital, University of Bern, Switzerland
| | - Michael Indermaur
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Alexander Groetsch
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Stefan Remund
- Institute for Applied Laser, Photonics and Surface Technologies (ALPS), Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Beat Neuenschwander
- Institute for Applied Laser, Photonics and Surface Technologies (ALPS), Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Johann Michler
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Klaus A Siebenrock
- Department of Orthopedic Surgery, Inselspital, University of Bern, Switzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Jakob Schwiedrzik
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland.
| |
Collapse
|
25
|
Lintz F, Bernasconi A, Buedts K, Welck M, Ellis S, de Cesar Netto C. Ankle Joint Bone Density Distribution Correlates with Overall 3-Dimensional Foot and Ankle Alignment. J Bone Joint Surg Am 2023; 105:1801-1811. [PMID: 37616414 DOI: 10.2106/jbjs.23.00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
BACKGROUND Altered stress distribution in the lower limb may impact bone mineral density (BMD) in the ankle bones. The purpose of the present study was to evaluate the spatial distribution of BMD with use of weight-bearing cone-beam computed tomography (WBCT). Our hypothesis was that BMD distribution would be even in normal hindfeet, increased medially in varus hindfeet, and increased laterally in valgus hindfeet. METHODS In this study, 27 normally aligned hindfeet were retrospectively compared with 27 valgus and 27 varus-aligned hindfeet. Age (p = 0.967), body mass index (p = 0.669), sex (p = 0.820), and side (p = 0.708) were similar in the 3 groups. Hindfoot alignment was quantified on the basis of WBCT data sets with use of multiple measurements. BMD was calculated with use of the mean Hounsfield unit (HU) value as a surrogate. The HU medial-to-lateral ratio (HUR), calculated from tibial and talar medial and lateral half-volumes, was the primary outcome of the study. RESULTS The 3 groups significantly differed (p < 0.001) in terms of tibial HUR (median, 0.91 [interquartile range (IQR), 0.75 to 0.98] in valgus hindfeet, 1 [IQR, 0.94 to 1.05] in normal hindfeet, and 1.04 [IQR, 0.99 to 1.1] in varus hindfeet) and talar HUR (0.74 [IQR, 0.50 to 0.80] in valgus hindfeet, 0.82 [IQR, 0.76 to 0.87] in normal hindfeet, and 0.92 [IQR, 0.86 to 1.05] in varus hindfeet). Linear regression showed that all hindfoot measurements significantly correlated with tibial and talar HUR (p < 0.001 for all). The mean HU values for normally-aligned hindfeet were 495.2 ± 110 (medial tibia), 495.6 ± 108.1 (lateral tibia), 368.9 ± 80.3 (medial talus), 448.2 ± 90.6 (lateral talus), and 686.7 ± 120.4 (fibula). The mean HU value for each compartment was not significantly different across groups. CONCLUSIONS Hindfoot alignment and medial-to-lateral BMD distribution were correlated. In varus hindfeet, an increased HU medial-to-lateral ratio was consistent with a greater medial bone density in the tibia and talus as compared with the lateral parts of these bones. In valgus hindfeet, a decreased ratio suggested greater bone density in the lateral as compared with the medial parts of both the tibia and the talus. LEVEL OF EVIDENCE Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- François Lintz
- Department of Foot and Ankle Surgery, Clinique de l'Union, Ramsay Healthcare, Saint Jean, France
| | - Alessio Bernasconi
- Trauma and Orthopaedics Unit, Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Matthew Welck
- Royal National Orthopaedic Hospital, London, United Kingdom
| | - Scott Ellis
- The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY
| | - Cesar de Cesar Netto
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa
| |
Collapse
|
26
|
Reiner E, Weston F, Pleshko N, Querido W. Application of Optical Photothermal Infrared (O-PTIR) Spectroscopy for Assessment of Bone Composition at the Submicron Scale. APPLIED SPECTROSCOPY 2023; 77:1311-1324. [PMID: 37774686 DOI: 10.1177/00037028231201427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The molecular basis of bone structure and strength is mineralized collagen fibrils at the submicron scale (∼500 nm). Recent advances in optical photothermal infrared (O-PTIR) spectroscopy allow the investigation of bone composition with unprecedented submicron spatial resolution, which may provide new insights into factors contributing to underlying bone function. Here, we investigated (i) whether O-PTIR-derived spectral parameters correlated to standard attenuated total reflection (ATR) Fourier transform infrared spectroscopy spectral data and (ii) whether O-PTIR-derived spectral parameters, including heterogeneity of tissue, contribute to the prediction of proximal femoral bone stiffness. Analysis of serially demineralized bone powders showed a significant correlation (r = 0.96) between mineral content quantified using ATR and O-PTIR spectroscopy, indicating the validity of this technique in assessing bone mineralization. Using femoral neck sections, the principal component analysis showed that differences between O-PTIR and ATR spectra were primarily attributable to the phosphate ion (PO4) absorbance band, which was typically shifter toward higher wavenumbers in O-PTIR spectra. Additionally, significant correlations were found between hydrogen phosphate (HPO4) content (r = 0.75) and carbonate (CO3) content (r = 0.66) quantified using ATR and O-PTIR spectroscopy, strengthening the validity of this method to assess bone mineral composition. O-PTIR imaging of individual trabeculae at 500 nm pixel resolution illustrated differences in submicron composition in the femoral neck from bones with different stiffness. O-PTIR analysis showed a significant negative correlation (r = -0.71) between bone stiffness and mineral maturity, reflective of newly formed bone being an important contributor to bone function. Finally, partial least squares regression analysis showed that combining multiple O-PTIR parameters (HPO4 content and heterogeneity, collagen integrity, and CO3 content) could significantly predict proximal femoral stiffness (R2 = 0.74, error = 9.7%) more accurately than using ATR parameters. Additionally, we describe new findings in the effects of bone tissue orientation in the O-PTIR spectra. Overall, this study highlights a new application of O-PTIR spectroscopy that may provide new insights into molecular-level factors underlying bone mechanical competence.
Collapse
Affiliation(s)
- Emily Reiner
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Frank Weston
- Photothermal Spectroscopy Corporation, Santa Barbara, CA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
27
|
Khamisi S, Udumyan R, Sjölin G, Calissendorff J, Filipsson Nyström H, Holmberg M, Hallengren B, Lantz M, Planck T, Wallin G, Ljunggren Ö. Fracture Incidence in Graves' Disease: A Population-Based Study. Thyroid 2023; 33:1349-1357. [PMID: 37725590 DOI: 10.1089/thy.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Background: Population-based studies have indicated an increase in bone turnover in hyperthyroidism with a subsequent decrease in bone mineral density and an increased risk of fractures, especially in postmenopausal women. However, heterogeneity between studies prevents a definitive conclusion. Graves' disease (GD) is an autoimmune disease, and it is the most common cause of hyperthyroidism. The aim of this study was to investigate fracture risk in patients with GD. Methods: A total of 2134 patients with incident GD and 21,261 age, sex- and county-matched controls were included 16-18 years after diagnosis in a retrospective cohort study. Drug and patient national registries in Sweden were used to assess the risk of developing skeletal complications. Up to 10 years of age, sex- and county-matched controls per patient were selected from databases from the National Board of Health and Welfare and Statistics Sweden. Cox proportional hazards models were fitted to estimate hazard ratios (HR) and confidence intervals [CI]. Results: There were no significant differences in fracture rates between GD and controls but after adjustment for comorbidities, the data showed higher vertebral fracture rates in male GD patients aged >52 years compared to male controls, HR = 2.83 [CI 1.05-7.64]. The rates of osteoporosis treatments as well as treatment with corticosteroids were higher in patients with GD. However, HR for the association between GD and fractures remained largely unchanged after adjustment for osteoporosis treatments and treatments with corticosteroids. Conclusions: There were no significant differences in total fracture rate between GD and the general population. However, men older than 52 years had a higher vertebral fracture rate. This study also shows that patients with treated GD receive more osteoporosis treatments compared to the general population.
Collapse
Affiliation(s)
- Selwan Khamisi
- Department of Endocrinology and Diabetes, Uppsala University Hospital, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ruzan Udumyan
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Gabriel Sjölin
- Faculty of Medicine and Health, Örebro University Hospital, Örebro, Sweden
- Department of Surgery, Örebro University and University Hospital, Örebro, Sweden
| | - Jan Calissendorff
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes; Stockholm, Sweden
| | - Helena Filipsson Nyström
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Göteborg, Sweden
- Wallenberg Center for Molecular and Translational Medicine, Göteborg, Sweden
| | - Mats Holmberg
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- ANOVA; Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Hallengren
- Department of Endocrinology, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mikael Lantz
- Department of Endocrinology, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tereza Planck
- Department of Endocrinology, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Göran Wallin
- Faculty of Medicine and Health, Örebro University Hospital, Örebro, Sweden
- Department of Surgery, Örebro University and University Hospital, Örebro, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Östen Ljunggren
- Department of Endocrinology and Diabetes, Uppsala University Hospital, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Wehrle-Martinez A, Dittmer K, Rogers CW. Editorial: Bone health and disease in veterinary species. Front Vet Sci 2023; 10:1290149. [PMID: 37799405 PMCID: PMC10548375 DOI: 10.3389/fvets.2023.1290149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Affiliation(s)
| | - Keren Dittmer
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Chris W. Rogers
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
- School of Agriculture and Environmental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
29
|
Kuo CC, Soliman MAR, Aguirre AO, Ruggiero N, Kruk M, Khan A, Hess RM, Smolar DE, Mullin JP, Pollina J. Strong Correlation Between the Vertebral Bone Quality Score and the Cervical-Vertebral Bone Quality Score in Spine Surgery Patients. World Neurosurg 2023; 177:e1-e9. [PMID: 36870445 DOI: 10.1016/j.wneu.2023.02.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVE Osteoporosis is a burgeoning public health problem for over 44 million people in the United States. The magnetic resonance imaging-based vertebral bone quality (VBQ) score and cervical VBQ (C-VBQ) score are two novel approaches that use data routinely gathered during preoperative evaluation to assess bone quality. The goal of this study was to investigate the relationship between the VBQ and C-VBQ scores. METHODS We performed a retrospective review of chart data for patients who underwent spine surgery for degenerative conditions between 2015 and 2022. Patients eligible for study inclusion had preoperative T1-weighted magnetic resonance imaging of the lumbar and cervical spine available for review. Demographics of each patient were collected. The VBQ score was determined by dividing the median signal intensity (SI) of the L1-L4 vertebral bodies by the SI of the cerebrospinal fluid at L3. The C-VBQ score was calculated by dividing the median SI of the C3-C6 vertebral bodies by the SI of the C2 cerebrospinal fluid space. Pearson's correlation test was utilized to evaluate the association between the scores. RESULTS We identified 171 patients, with a mean age of 57.44 ± 11.79 years. The interrater reliability of the VBQ and C-VBQ measurements was excellent (intraclass correlation-coefficients were 0.89 and 0.84, respectively). A statistically significant, positive correlation was found between the VBQ score and the C-VBQ score (r = 0.757,P < 0.001). CONCLUSIONS This is the first study, to our knowledge, to assess the degree to which the newly developed C-VBQ score correlates with the VBQ score. We found a strong positive correlation between the scores.
Collapse
Affiliation(s)
- Cathleen C Kuo
- Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, New York, USA
| | - Mohamed A R Soliman
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York, USA; Department of Neurosurgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alexander O Aguirre
- Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, New York, USA
| | - Nicco Ruggiero
- Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, New York, USA
| | - Marissa Kruk
- Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, New York, USA
| | - Asham Khan
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York, USA
| | - Ryan M Hess
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York, USA
| | - David E Smolar
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York, USA
| | - Jeffrey P Mullin
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York, USA
| | - John Pollina
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, New York, USA.
| |
Collapse
|
30
|
Park CS, Kang SR, Kim JE, Huh KH, Lee SS, Heo MS, Han JJ, Yi WJ. Validation of bone mineral density measurement using quantitative CBCT image based on deep learning. Sci Rep 2023; 13:11921. [PMID: 37488135 PMCID: PMC10366160 DOI: 10.1038/s41598-023-38943-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
The bone mineral density (BMD) measurement is a direct method of estimating human bone mass for diagnosing osteoporosis, and performed to objectively evaluate bone quality before implant surgery in dental clinics. The objective of this study was to validate the accuracy and reliability of BMD measurements made using quantitative cone-beam CT (CBCT) image based on deep learning by applying the method to clinical data from actual patients. Datasets containing 7500 pairs of CT and CBCT axial slice images from 30 patients were used to train a previously developed deep-learning model (QCBCT-NET). We selected 36 volumes of interest in the CBCT images for each patient in the bone regions of potential implants sites on the maxilla and mandible. We compared the BMDs shown in the quantitative CBCT (QCBCT) images with those in the conventional CBCT (CAL_CBCT) images at the various bone sites of interest across the entire field of view (FOV) using the performance metrics of the MAE, RMSE, MAPE (mean absolute percentage error), R2 (coefficient of determination), and SEE (standard error of estimation). Compared with the ground truth (QCT) images, the accuracy of the BMD measurements from the QCBCT images showed an RMSE of 83.41 mg/cm3, MAE of 67.94 mg/cm3, and MAPE of 8.32% across all the bone sites of interest, whereas for the CAL_CBCT images, those values were 491.15 mg/cm3, 460.52 mg/cm3, and 54.29%, respectively. The linear regression between the QCBCT and QCT images showed a slope of 1.00 and a R2 of 0.85, whereas for the CAL_CBCT images, those values were 0.32 and 0.24, respectively. The overall SEE between the QCBCT images and QCT images was 81.06 mg/cm3, whereas the SEE for the CAL_CBCT images was 109.32 mg/cm3. The QCBCT images thus showed better accuracy, linearity, and uniformity than the CAL_CBCT images across the entire FOV. The BMD measurements from the quantitative CBCT images showed high accuracy, linearity, and uniformity regardless of the relative geometric positions of the bone in the potential implant site. When applied to actual patient CBCT images, the CBCT-based quantitative BMD measurement based on deep learning demonstrated high accuracy and reliability across the entire FOV.
Collapse
Grants
- Project Number: 1711174552, KMDF_PR_20200901_0147 Korea Medical Device Development Fund Grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety)
- Project Number: 1711174543, KMDF_PR_20200901_0011 Korea Medical Device Development Fund Grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety)
Collapse
Affiliation(s)
- Chan-Soo Park
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Se-Ryong Kang
- Department of Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Jo-Eun Kim
- Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Kyung-Hoe Huh
- Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sam-Sun Lee
- Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Min-Suk Heo
- Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jeong-Joon Han
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Won-Jin Yi
- Department of Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.
- Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea.
| |
Collapse
|
31
|
Zhou C, Xu K, Ta D. Frequency-domain full-waveform inversion-based musculoskeletal ultrasound computed tomography. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:279-294. [PMID: 37449785 DOI: 10.1121/10.0020151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Recently, full-waveform inversion (FWI) has become a promising tool for ultrasound computed tomography (USCT). However, as a computationally intensive technique, FWI suffers from computational burden, especially in conventional time-domain full-waveform inversion (TDFWI). On the contrary, frequency-domain full-waveform inversion (FDFWI) provides a relatively high computational efficiency as the propagation of discrete frequencies is much cheaper than full time-domain modeling. FDFWI has already been applied in soft tissue imaging, such as breast, but for the musculoskeletal model with high impedance contrast between hard and soft tissues, there is still a lack of an effective source estimation method. In this paper, a water-referenced data calibration method is proposed to address the source estimation challenge in the presence of bones, which achieves consistency between the measured and simulated data before the FDFWI procedure. To avoid the cycle-skipping local minimum effect and facilitate the algorithm convergence, a starting frequency criterion for musculoskeletal FDFWI is further proposed. The feasibility of the proposed method is demonstrated by numerical studies on retrieving the anatomies of the leg models and different musculoskeletal lesions. The study extends the advanced FDFWI method to the musculoskeletal system and provides an alternative solution for musculoskeletal USCT imaging with high computational efficiency.
Collapse
Affiliation(s)
- Chenchen Zhou
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Kailiang Xu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Gonzalez EA, Bell MAL. Photoacoustic Imaging and Characterization of Bone in Medicine: Overview, Applications, and Outlook. Annu Rev Biomed Eng 2023; 25:207-232. [PMID: 37000966 DOI: 10.1146/annurev-bioeng-081622-025405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Photoacoustic techniques have shown promise in identifying molecular changes in bone tissue and visualizing tissue microstructure. This capability represents significant advantages over gold standards (i.e., dual-energy X-ray absorptiometry) for bone evaluation without requiring ionizing radiation. Instead, photoacoustic imaging uses light to penetrate through bone, followed by acoustic pressure generation, resulting in highly sensitive optical absorption contrast in deep biological tissues. This review covers multiple bone-related photoacoustic imaging contributions to clinical applications, spanning bone cancer, joint pathologies, spinal disorders, osteoporosis, bone-related surgical guidance, consolidation monitoring, and transsphenoidal and transcranial imaging. We also present a summary of photoacoustic-based techniques for characterizing biomechanical properties of bone, including temperature, guided waves, spectral parameters, and spectroscopy. We conclude with a future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Eduardo A Gonzalez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Muyinatu A Lediju Bell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA;
| |
Collapse
|
33
|
Suo M, Zhang D, Yang H, Yang Y. Application of full waveform inversion algorithm in Laplace-Fourier domain for high-contrast ultrasonic bone quantitative imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107404. [PMID: 36758266 DOI: 10.1016/j.cmpb.2023.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Full waveform inversion (FWI) has been widely applied for the reconstruction of underground medium parameters in seismic communities and has made a great success. It is also a promising way to image hard tissues such as bones by ultrasonic FWI algorithm. However, the ultrasonic FWI methods for bone parameters imaging reported in literature so far are limited to the time domain and/or Fourier domain, and can only achieve quantitative imaging with acoustic velocity of bone less than 3000 m/s. Because the acoustic velocity of actual cortical bones can be as high as 4200 m/s, it is still a challenge for FWI to achieve higher parameter contrast bone imaging. METHODS Here, we proposed an ultrasonic FWI algorithm in Laplace-Fourier domain (LFDFWI) for high-contrast bone quantitative imaging. Compared to Time domain and Fourier domain, the LFDFWI algorithm is more appropriate for dealing with the presence of high contrast between bone tissues, reducing the possibility of inversion falling into a local minimum, and obtaining better inversion results. We adapted the seismic FWI algorithm to make it suitable for high-frequency ultrasonic sources and small-sized bone parameter imaging. RESULTS We conducted a series of bone models to evaluate the effectiveness of the proposed algorithm, including four kinds of bone model derived from micro computed tomography (Micro-CT) image of rat. We evaluated the experimental results based on visual analysis, error analysis and structural similarity (SSIM). The numerical simulation results showed that, when acoustic approximation is used, the proposed method can obtain accurate high-contrast images of the velocity and density parameters of bone structure, the mean relative error (MRE) in the region of interest (ROI) were all less than 2%, and the SSIM is up to 98%; when the viscoelastic approximation is used, this method can also obtain the desired high-contrast bone parameter distribution, with MRE less than 4% and SSIM higher than 74%, both of which are better than FDFWI in Fourier domain (FDFWI). CONCLUSION The results demonstrated that the proposed FWI algorithm can obtain high resolution bone parameter models close to the Micro-CT image, which proves its clinical application potential.
Collapse
Affiliation(s)
- Meng Suo
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China
| | - Dong Zhang
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Haiqi Yang
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yan Yang
- School of Physics & Technology Wuhan University, Wuhan, Hubei 430072, PR China
| |
Collapse
|
34
|
Xu Z, Yang C, Wu F, Tan X, Guo Y, Zhang H, Wang H, Sui X, Xu Z, Zhao M, Jiang S, Dai Z, Li Y. Triple-gene deletion for osteocalcin significantly impairs the alignment of hydroxyapatite crystals and collagen in mice. Front Physiol 2023; 14:1136561. [PMID: 37057181 PMCID: PMC10089303 DOI: 10.3389/fphys.2023.1136561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Osteocalcin (Ocn), also known as bone Gla protein, is synthesized by osteoblasts and thought to regulate energy metabolism, testosterone synthesis and brain development. However, its function in bone is not fully understood. Mice have three Ocn genes: Bglap, Bglap2 and Bglap3. Due to the long span of these genes in the mouse genome and the low expression of Bglap3 in bone, researchers commonly use Bglap and Bglap2 knockout mice to investigate the function of Ocn. However, it is unclear whether Bglap3 has any compensatory mechanisms when Bglap and Bglap2 are knocked out. Considering the controversy surrounding the role of Ocn in bone, we constructed an Ocn-deficient mouse model by knocking out all three genes (Ocn−/−) and analyzed bone quality by Raman spectroscopy (RS), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and MicroCT (μCT). The RS test showed that the alignment of hydroxyapatite crystals and collagen fibers was significantly poorer in Ocn−/− mice than in wild-type (WT) mice. Ocn deficiency resulted in a looser surface structure of bone particles and a larger gap area proportion. FTIR analysis showed few differences in bone mineral index between WT and Ocn−/− mice, while μCT analysis showed no significant difference in cortical and trabecular regions. However, under tail-suspension simulating bone loss condition, the disorder of hydroxyapatite and collagen fiber alignment in Ocn−/− mice led to more obvious changes in bone mineral composition. Collectively, our results revealed that Ocn is necessary for regulating the alignment of minerals parallel to collagen fibrils.
Collapse
Affiliation(s)
- Zihan Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaowen Tan
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiukun Sui
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zi Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Minbo Zhao
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Siyu Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| | - Yinghui Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| |
Collapse
|
35
|
Dimai HP. New Horizons: Artificial Intelligence Tools for Managing Osteoporosis. J Clin Endocrinol Metab 2023; 108:775-783. [PMID: 36477337 PMCID: PMC9999362 DOI: 10.1210/clinem/dgac702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a disease characterized by low bone mass and microarchitectural deterioration leading to increased bone fragility and fracture risk. Typically, osteoporotic fractures occur at the spine, hip, distal forearm, and proximal humerus, but other skeletal sites may be affected as well. One of the major challenges in the management of osteoporosis lies in the fact that although the operational diagnosis is based on bone mineral density (BMD) as measured by dual x-ray absorptiometry, the majority of fractures occur at nonosteoporotic BMD values. Furthermore, osteoporosis often remains undiagnosed regardless of the low severity of the underlying trauma. Also, there is only weak consensus among the major guidelines worldwide, when to treat, whom to treat, and which drug to use. Against this background, increasing efforts have been undertaken in the past few years by artificial intelligence (AI) developers to support and improve the management of this disease. The performance of many of these newly developed AI algorithms have been shown to be at least comparable to that of physician experts, or even superior. However, even if study results appear promising at a first glance, they should always be interpreted with caution. Use of inadequate reference standards or selection of variables that are of little or no value in clinical practice are limitations not infrequently found. Consequently, there is a clear need for high-quality clinical research in this field of AI. This could, eg, be achieved by establishing an internationally consented "best practice framework" that considers all relevant stakeholders.
Collapse
Affiliation(s)
- Hans Peter Dimai
- Correspondence: Hans Peter Dimai, MD, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.
| |
Collapse
|
36
|
Vázquez Sanz C, Victoria Rodríguez I, Forriol F, Tejado E, Lopez-Valdes FJ. Variation in Juvenile Long Bone Properties as a Function of Age: Mechanical and Compositional Characterization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1637. [PMID: 36837267 PMCID: PMC9967109 DOI: 10.3390/ma16041637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Bone is a heterogeneous, hierarchical biocomposite material made of an organic matrix filled with a mineral component, which plays an important role in bone strength. Although the effect of the mineral/matrix ratio on the mechanical properties of bone during aging has been intensively investigated, the relationship between the mechanical properties and the chemical composition of bone with age requires additional research in juvenile individuals. In this study, bone coupons from bovine and ovine animal species were machined from cortical areas of long bones to quantify whether the variation in mechanical properties at different stages of development is related to the change in the composition of bone tissue. An energy-dispersive X-ray detector (EDX) attached to a scanning electron microscope (SEM) was used to perform a compositional analysis of the tissue. In addition, nanoindentation analyses were carried out to address how the elastic modulus changed with age. Nonparametric statistical analyses found significant differences (p < 0.05) in Ca content and elastic modulus between species, but no differences were found within each species with development. A multiple linear regression model found that the elastic modulus was significantly related to the decrease in P and C in the samples, to the animal species (larger in bovine), and development, although not linearly. This model also found an interaction between Ca and development that could explain the lack of significance of the relationship between the elastic modulus and development in the univariate models.
Collapse
Affiliation(s)
- Claudia Vázquez Sanz
- Instituto de Investigación Tecnológica (IIT), ICAI School of Engineering, Universidad Pontificia Comillas, 28015 Madrid, Spain
| | - Ignacio Victoria Rodríguez
- Instituto de Investigación Tecnológica (IIT), ICAI School of Engineering, Universidad Pontificia Comillas, 28015 Madrid, Spain
| | - Francisco Forriol
- Instituto de Investigación Tecnológica (IIT), ICAI School of Engineering, Universidad Pontificia Comillas, 28015 Madrid, Spain
| | - Elena Tejado
- Departamento de Ciencia de Materiales-CIME, Universidad Politécnica de Madrid, 28015 Madrid, Spain
| | - Francisco J. Lopez-Valdes
- Instituto de Investigación Tecnológica (IIT), ICAI School of Engineering, Universidad Pontificia Comillas, 28015 Madrid, Spain
| |
Collapse
|
37
|
Akin I, Sevil-Kilimci F, Yaygingul R, Bardakcioglu HE. Radiographic Evaluation of Fractured and Non-Fractured Metacarpal Bones in Holstein Calves Subjected to Pulling during Dystocia. Vet Comp Orthop Traumatol 2023; 36:117-124. [PMID: 36652955 DOI: 10.1055/s-0042-1760376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE This study aimed to investigate the transverse cortical cross-sections of the metacarpal bones of newborn calves subjected to pulling during dystocia. MATERIALS AND METHODS In total, radiographs of 63 metacarpal bones (35 fractured and 28 non-fractured) of 50 Holstein calves were evaluated in this study. According to the declaration of the owners, all calves were pulled by their metacarpal bones during parturition.The periosteal and endosteal diameters, medial and lateral cortical thicknesses and dorsal and palmar cortical thicknesses were measured. Furthermore, the total, cortical and medullary areas of each section, moments of inertia on the X and Y axes, major and minor principal moments of inertia, angle of rotation of the axis and polar moment of inertia were calculated. The data were analysed by sex and body weight. RESULTS Body weight did not affect the bone status. However, females had a 6.5 times higher risk of bone fracture as compared with the males (p = 0.001). The lateral cortical thickness of the fractured bones in the female animals was thinner than that of the male animals (p = 0.001). CONCLUSION These results can be used to improve dystocia manipulations, encourage the development of new tools for dystocia and the treatment of metacarpal fractures in calves.
Collapse
Affiliation(s)
- Ibrahim Akin
- Department of Surgery, Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Aydin, Turkey
| | - Figen Sevil-Kilimci
- Department of Anatomy, Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Aydin, Turkey
| | - Rahime Yaygingul
- Department of Surgery, Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Aydin, Turkey
| | - Husnu Erbay Bardakcioglu
- Department of Animal Science, Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Aydin, Turkey
| |
Collapse
|
38
|
Lee H, Kim SA, Jo S, Jo S. Biomechanical analysis analyzing association between bone mineral density and lag screw migration. Sci Rep 2023; 13:747. [PMID: 36639718 PMCID: PMC9839704 DOI: 10.1038/s41598-023-27860-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
A proximal femoral nail using a helical blade (HB) is commonly utilized to treat proximal femoral fracture but cut through failure of the lag screws is one of the devastating complications following the surgery. While controversial, one of the potential risk factors for cut through failure is poor bone strength which can be predicted by measuring bone mineral density (BMD). In this study, we performed a biomechanical test on the fractured femoral head to validate whether the indirectly measured BMD from the contralateral hip or that measured directly from the retrieved femoral head can elucidate the structural strength of the fractured femoral head and thereby can be used to predict migration of lag screws. Our result showed that directly measured BMD has a significant correlation with the HB migration on the osteoporotic femoral head. However, while the BMDs measured from the contralateral femoral neck or total hip is the most widely used parameter to predict the bone strength of the fractured femur, this may have limited usability to predict HB migration.
Collapse
Affiliation(s)
- Hyeonjoon Lee
- Department of Orthopedic Surgery, Chosun University Hospital, Gwangju, South Korea
| | - Soo Ah Kim
- School of Medicine, Chosun University, 365 Pilmundae-Ro, Dong-Gu, Gwangju, 61453, South Korea.,Osteoporosis Study Group, Chosun University, Gwangju, South Korea.,Department of Obstetrics and Gynecology, Chosun University, Gwangju, South Korea
| | - Sungmin Jo
- Department of Orthopedic Surgery, Chosun University Hospital, Gwangju, South Korea
| | - Suenghwan Jo
- Department of Orthopedic Surgery, Chosun University Hospital, Gwangju, South Korea. .,School of Medicine, Chosun University, 365 Pilmundae-Ro, Dong-Gu, Gwangju, 61453, South Korea. .,Osteoporosis Study Group, Chosun University, Gwangju, South Korea.
| |
Collapse
|
39
|
Bott KN, Feldman E, de Souza RJ, Comelli EM, Klentrou P, Peters SJ, Ward WE. Lipopolysaccharide-Induced Bone Loss in Rodent Models: A Systematic Review and Meta-Analysis. J Bone Miner Res 2023; 38:198-213. [PMID: 36401814 PMCID: PMC10107812 DOI: 10.1002/jbmr.4740] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Osteoporosis has traditionally been characterized by underlying endocrine mechanisms, though evidence indicates a role of inflammation in its pathophysiology. Lipopolysaccharide (LPS), a component of gram-negative bacteria that reside in the intestines, can be released into circulation and stimulate the immune system, upregulating bone resorption. Exogenous LPS is used in rodent models to study the effect of systemic inflammation on bone, and to date a variety of different doses, routes, and durations of LPS administration have been used. The study objective was to determine whether systemic administration of LPS induced inflammatory bone loss in rodent models. A systematic search of Medline and four other databases resulted in a total of 110 studies that met the inclusion criteria. Pooled standardized mean differences (SMDs) and corresponding 95% confidence intervals (CI) with a random-effects meta-analyses were used for bone volume fraction (BV/TV) and volumetric bone mineral density (vBMD). Heterogeneity was quantified using the I2 statistic. Shorter-term (<2 weeks) and longer-term (>2 weeks) LPS interventions were analyzed separately because of intractable study design differences. BV/TV was significantly reduced in both shorter-term (SMD = -3.79%, 95% CI [-4.20, -3.38], I2 62%; p < 0.01) and longer-term (SMD = -1.50%, 95% CI [-2.00, -1.00], I2 78%; p < 0.01) studies. vBMD was also reduced in both shorter-term (SMD = -3.11%, 95% CI [-3.78, -2.44]; I2 72%; p < 0.01) and longer-term (SMD = -3.49%, 95% CI [-4.94, -2.04], I2 82%; p < 0.01) studies. In both groups, regardless of duration, LPS negatively impacted trabecular bone structure but not cortical bone structure, and an upregulation in bone resorption demonstrated by bone cell staining and serum biomarkers was reported. This suggests systemically delivered exogenous LPS in rodents is a viable model for studying inflammatory bone loss, particularly in trabecular bone. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kirsten N Bott
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Evelyn Feldman
- Lakehead University Library, Lakehead University, Thunder Bay, ON, Canada
| | - Russell J de Souza
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, ON, Canada
| | - Elena M Comelli
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sandra J Peters
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Wendy E Ward
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
40
|
Tsuji K, Kitamura M, Chiba K, Muta K, Yokota K, Okazaki N, Osaki M, Mukae H, Nishino T. Comparison of bone microstructures via high-resolution peripheral quantitative computed tomography in patients with different stages of chronic kidney disease before and after starting hemodialysis. Ren Fail 2022; 44:381-391. [PMID: 35220856 PMCID: PMC8890516 DOI: 10.1080/0886022x.2022.2043375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic kidney disease (CKD) negatively affects bone strength; however, the osteoporotic conditions in patients with CKD are not fully understood. Moreover, the changes in bone microstructure between pre-dialysis and dialysis are unknown. High-resolution peripheral quantitative computed tomography (HR-pQCT) reveals the three-dimensional microstructures of the bone. We aimed to evaluate bone microstructures in patients with different stages of CKD. This study included 119 healthy men and 40 men admitted to Nagasaki University Hospital for inpatient education or the initiation of hemodialysis. The distal radius and tibia were scanned with HR-pQCT. Patient clinical characteristics and bone microstructures were evaluated within 3 months of initiation of hemodialysis (in patients with CKD stage 5 D), patients with CKD stage 4-5, and healthy volunteers. Cortical bone parameters were lower in the CKD group than in healthy controls. Tibial cortical and trabecular bone parameters (cortical thickness, cortical area, trabecular volumetric bone mineral density, trabecular-bone volume fraction, and trabecular thickness) differed between patients with CKD stage 5 D and those with CKD stage 4-5 (p < 0.01). These differences were also observed between patients with CKD stage 5 and those with CKD stage 5 D (p < 0.017), but not between patients with CKD stage 4 and those with CKD stage 5, suggesting that the bone microstructure rapidly changed at the start of hemodialysis. Patients with CKD stage 5 D exhibited tibial microstructural impairment compared with those with CKD stage 4-5. HR-pQCT is useful for elucidation of the pathology of bone microstructures in patients with renal failure.
Collapse
Affiliation(s)
- Kiyokazu Tsuji
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mineaki Kitamura
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kumiko Muta
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuaki Yokota
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Narihiro Okazaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoya Nishino
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
41
|
Shitova AD, Kovaleva ON, Olsufieva AV, Gadzhimuradova IA, Zubkov DD, Kniazev MO, Zharikova TS, Zharikov YO. Risk modeling of femoral neck fracture based on geometric parameters of the proximal epiphysis. World J Orthop 2022; 13:733-743. [PMID: 36159625 PMCID: PMC9453284 DOI: 10.5312/wjo.v13.i8.733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fractures of the proximal femur epiphysis are problematic for state health care because they are associated with severe medical and social problems and high morbidity and mortality rates. AIM To model the potential risk of hip fracture via femur geometric parameters. METHODS Seventy educational cadaveric femurs from people aged 14 to 80 years, 10 X-ray images from the records of the Human Anatomy Department and 10 X-ray images from the Department of Traumatology, Orthopedics and Disaster Surgery of Sechenov University, were evaluated. The parameters of the fractured bone were measured using images captured with a Canon d60 camera. The projection values of the proximal epiphysis of the cadaveric femurs and geometric parameters of the bones shown in the X-ray images were measured with Autodesk software (AutoCAD 2018). Analysis of the video frames showing bone rotation reveal that the greater trochanter can be inscribed in a parallelepiped, where one of the faces is parallel to the plane of view in the frontal standard projection and is rectangular. The angle of bone rotation obtained by turning the cube corresponded to the angle measured with the second technique. This reliable method of calculating the rotation of the bone relative to the anterior projection was employed in subsequent calculations. The geometric parameters of the femur were measured using X-ray images according to the proposed method. RESULTS The geometric parameters of 70 femurs were analyzed, and correlation coefficients were calculated. Our measurement results were compared with those reported by other authors. The potential influence of femur geometry on force distribution in the proximal epiphysis of the femur was described, and a 2-dimensional model of the femur epiphysis associated with minimal neck fracture risk was provided. The assessment of the geometric parameters of the femoral epiphysis indicated the greatest risk of a varus fracture of the neck if the angle of the minimal resistance zone (AMRZ) index > 24° and the neck-shaft angle (NSA) < 127.5°. In contrast, the minimum risk was observed at AMRZ < 14° and NSA > 128.87°. CONCLUSION The proposed method provides the potential femur neck fracture risk based on geometric parameters.
Collapse
Affiliation(s)
- Anna D Shitova
- International School “Medicine of the Future”, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Moscow, Russia
| | - Olga N Kovaleva
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Moscow, Russia
| | - Anna V Olsufieva
- Department of Biomedical Disciplines of the Faculty of Medicine, Nonstate Educational Private Institution of Higher Education "Moscow Financial and Industrial University “Synergy”, Moscow 125190, Moscow, Russia
| | - Inchekhanum A Gadzhimuradova
- International School “Medicine of the Future”, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Moscow, Russia
| | - Dmitry D Zubkov
- International School “Medicine of the Future”, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Moscow, Russia
| | - Mikhail O Kniazev
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Moscow, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Moscow, Russia
| | - Yury O Zharikov
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Moscow, Russia
| |
Collapse
|
42
|
Pascart T, Falgayrac G, Cortet B, Paccou J, Bleuse M, Coursier R, Putman S, Quinchon JF, Bertheaume N, Delattre J, Marchandise P, Cultot A, Norberciak L, Kerckhofs G, Budzik JF. Subchondral involvement in osteonecrosis of the femoral head: insight on local composition, microstructure and vascularization. Osteoarthritis Cartilage 2022; 30:1103-1115. [PMID: 35568111 DOI: 10.1016/j.joca.2022.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine changes of subchondral bone composition, micro-structure, bone marrow adiposity and micro-vascular perfusion in end-stage osteonecrosis of the femoral head (ONFH) compared to osteoarthritis (OA) using a combined in vivo and ex vivo approach. DESIGN Male patients up to 70 years old referred for total hip replacement surgery for end-stage ONFH were included (n = 14). Fifteen patients with OA were controls. Pre-operative MRI was used to assess bone perfusion (dynamic contrast-enhanced (DCE) sequences) and marrow fat content (chemical shift imaging). Three distinct zones of femoral head subchondral bone - necrotic, sclerotic, distant - were compared between groups. After surgery, plugs were sampled in these zones and Raman spectroscopy was applied to characterize bone mineral and organic components (old and newly-formed), and contrast-enhanced micro-computed tomography (CE-μCT) to determine bone micro-structural parameters and volume of bone marrow adipocytes, using conventional 2D histology as a reference. RESULTS In the necrotic zone of ONFH patients compared to OA patients: 1) the subchondral plate did not exhibit significant changes in composition nor structure; 2) the volume fraction of subchondral trabecular bone was significantly lower; 3) type-B carbonate substitution was less pronounced, 4) collagen maturity was more pronounced; and 5) bone marrow adipocytes were significantly depleted. The sclerotic zone from the ONFH group showed greater trabecular thickness, and higher DCE-MRI AUC and Ktrans. Volume fraction of subchondral bone, trabecular number, and Kep were significantly lower in the distant zone of the ONFH group. CONCLUSIONS This study demonstrated alterations of subchondral bone microstructure, composition, perfusion and/or adipose content in all zones of the femoral head.
Collapse
Affiliation(s)
- T Pascart
- Department of Rheumatology, Lille Catholic Hospitals and Lille Catholic University, Lille, France; Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France.
| | - G Falgayrac
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - B Cortet
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France; Univ. Lille, CHU Lille, ULR 4490, Department of Rheumatology, 59000 Lille, France
| | - J Paccou
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France; Univ. Lille, CHU Lille, ULR 4490, Department of Rheumatology, 59000 Lille, France
| | - M Bleuse
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - R Coursier
- Department of Orthopaedic Surgery, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - S Putman
- Department of Orthopaedic Surgery, CHU Lille, Lille University, Lille, France
| | - J-F Quinchon
- Department of Anatomopathology, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - N Bertheaume
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - J Delattre
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - P Marchandise
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - A Cultot
- Department of Diagnostic and Interventional Radiology, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - L Norberciak
- Department of Research, Biostatistics, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - G Kerckhofs
- Biomechanics Lab - Institute of Mechanics, Materials, and Civil Engineering, Louvain-la-Neuve, UCLouvain, Belgium; IREC - Institute of Experimental and Clinical Research, UCLouvain, Woluwe, Belgium; Department Materials Engineering, Leuven, KU Leuven, Belgium; Prometheus, Division for Skeletal Tissue Engineering, Leuven, KU Leuven, Belgium
| | - J-F Budzik
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France; Department of Diagnostic and Interventional Radiology, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| |
Collapse
|
43
|
Olali AZ, Carpenter KA, Myers M, Sharma A, Yin MT, Al-Harthi L, Ross RD. Bone Quality in Relation to HIV and Antiretroviral Drugs. Curr HIV/AIDS Rep 2022; 19:312-327. [PMID: 35726043 DOI: 10.1007/s11904-022-00613-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW People living with HIV (PLWH) are at an increased risk for osteoporosis, a disease defined by the loss of bone mineral density (BMD) and deterioration of bone quality, both of which independently contribute to an increased risk of skeletal fractures. While there is an emerging body of literature focusing on the factors that contribute to BMD loss in PLWH, the contribution of these factors to bone quality changes are less understood. The current review summarizes and critically reviews the data describing the effects of HIV, HIV disease-related factors, and antiretroviral drugs (ARVs) on bone quality. RECENT FINDINGS The increased availability of high-resolution peripheral quantitative computed tomography has confirmed that both HIV infection and ARVs negatively affect bone architecture. There is considerably less data on their effects on bone remodeling or the composition of bone matrix. Whether changes in bone quality independently predict fracture risk, as seen in HIV-uninfected populations, is largely unknown. The available data suggests that bone quality deterioration occurs in PLWH. Future studies are needed to define which factors, viral or ARVs, contribute to loss of bone quality and which bone quality factors are most associated with increased fracture risk.
Collapse
Affiliation(s)
- Arnold Z Olali
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA.,Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Kelsey A Carpenter
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Maria Myers
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | | | - Michael T Yin
- Columbia University Medical Center, New York, NY, USA
| | - Lena Al-Harthi
- Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Ryan D Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA. .,Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
44
|
Shi Q, Li Y, Liu Y, Gu M, Song X, Liu C, Ta D, Wang W. Index-Rotated Fast Ultrasound Imaging of Cortical Bone Based on Predicted Velocity Model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1582-1595. [PMID: 35275812 DOI: 10.1109/tuffc.2022.3157256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the significant acoustic impedance contrast at cortical boundaries, highly inside attenuation, and the unknown sound velocity distribution, accurate ultrasound cortical bone imaging remains a challenge, especially for the traditional pulse-echo modalities using unique sound velocity. Moreover, the large amounts of data recorded by multielement probe results in a relatively time-consuming reconstruction process. To overcome these limitations, this article proposed an index-rotated fast ultrasound imaging method based on predicted velocity model (IR-FUI-VP) for cortical cross section ultrasound tomography (UST) imaging, utilizing ray-tracing synthetic aperture (RTSA). In virtue of ring probe, the sound velocity model was predicted in advance using bent-ray inversion (BRI). With the predicted velocity model, index-rotated fast ultrasound imaging (IR-FUI) was further applied to image the cortical cross sections in the sectors corresponding to the dynamic apertures (DAs) and ring center. The final result was merged by all sector images. One cortical bone phantom and two ex vivo bovine femurs were utilized to demonstrate the performance of the proposed method. Compared to the conventional synthetic aperture (SA) imaging, the method can not only accurately image the outer cortical boundary but also precisely reconstruct the inner cortical surface. The mean relative errors of the predicted sound velocity in the region of interest (ROI) were all smaller than 7%, and the mean errors of cortical thickness are all less than 0.31 mm. The reconstructed images of bovine femurs were in good agreement with the reference images scanned by micro-computed tomography ( μ CT) with respect to the morphology and thickness. The speed of IR-FUI is about 3.73 times faster than the traditional SA. It is proved that the proposed IR-FUI-VP-based UST is an effective way for fast and accurate cortical bone imaging.
Collapse
|
45
|
Goldsmith M, Crooks SD, Condon SF, Willie BM, Komarova SV. Bone strength and composition in spacefaring rodents: systematic review and meta-analysis. NPJ Microgravity 2022; 8:10. [PMID: 35418128 PMCID: PMC9008045 DOI: 10.1038/s41526-022-00195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
Studying the effects of space travel on bone of experimental animals provides unique advantages, including the ability to perform post-mortem analysis and mechanical testing. To synthesize the available data to assess how much and how consistently bone strength and composition parameters are affected by spaceflight, we systematically identified studies reporting bone health in spacefaring animals from Medline, Embase, Web of Science, BIOSIS, and NASA Technical reports. Previously, we reported the effect of spaceflight on bone architecture and turnover in rodents and primates. For this study, we selected 28 articles reporting bone strength and composition in 60 rats and 60 mice from 17 space missions ranging from 7 to 33 days in duration. Whole bone mechanical indices were significantly decreased in spaceflight rodents, with the percent difference between spaceflight and ground control animals for maximum load of −15.24% [Confidence interval: −22.32, −8.17]. Bone mineral density and calcium content were significantly decreased in spaceflight rodents by −3.13% [−4.96, −1.29] and −1.75% [−2.97, −0.52] respectively. Thus, large deficits in bone architecture (6% loss in cortical area identified in a previous study) as well as changes in bone mass and tissue composition likely lead to bone strength reduction in spaceflight animals.
Collapse
Affiliation(s)
- Matthew Goldsmith
- Research Centre, Shriners Hospital for Children - Canada, Montréal, QC, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Sequoia D Crooks
- Research Centre, Shriners Hospital for Children - Canada, Montréal, QC, Canada
| | - Sean F Condon
- Research Centre, Shriners Hospital for Children - Canada, Montréal, QC, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children - Canada, Montréal, QC, Canada.,Department of Pediatric Surgery, McGill University, Montréal, QC, Canada
| | - Svetlana V Komarova
- Research Centre, Shriners Hospital for Children - Canada, Montréal, QC, Canada. .,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada.
| |
Collapse
|
46
|
Wang F, Zheng L, Theopold J, Schleifenbaum S, Heyde CE, Osterhoff G. Methods for bone quality assessment in human bone tissue: a systematic review. J Orthop Surg Res 2022; 17:174. [PMID: 35313901 PMCID: PMC8935787 DOI: 10.1186/s13018-022-03041-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background For biomechanical investigations on bone or bone implants, bone quality represents an important potential bias. Several techniques for assessing bone quality have been described in the literature. This study aims to systematically summarize the methods currently available for assessing bone quality in human bone tissue, and to discuss the advantages and limitations of these techniques. Methods A systematic review of the literature was carried out by searching the PubMed and Web of Science databases from January 2000 to April 2021. References will be screened and evaluated for eligibility by two independent reviewers as per PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies must apply to bone quality assessment with imaging techniques, mechanical testing modalities, and compositional characterization. The terms used for the systematic search were: “(bone quality”. Ti,ab.) AND “(human bone specimens)”. Results The systematic review identified 502 relevant articles in total. Sixty-eight articles met the inclusion criteria. Among them, forty-seven articles investigated several imaging modalities, including radiography, dual-energy X-ray absorptiometry (DEXA), CT-based techniques, and MRI-based methods. Nineteen articles dealt with mechanical testing approaches, including traditional testing modalities and novel indentation techniques. Nine articles reported the correlation between bone quality and compositional characterization, such as degree of bone mineralization (DBM) and organic composition. A total of 2898 human cadaveric bone specimens were included. Conclusions Advanced techniques are playing an increasingly important role due to their multiple advantages, focusing on the assessment of bone morphology and microarchitecture. Non-invasive imaging modalities and mechanical testing techniques, as well as the assessment of bone composition, need to complement each other to provide comprehensive and ideal information on the bone quality of human bone specimens. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03041-4.
Collapse
Affiliation(s)
- Fangxing Wang
- ZESBO - Center for Research On Musculoskeletal Systems, Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany. .,Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany.
| | - Leyu Zheng
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Jan Theopold
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Stefan Schleifenbaum
- ZESBO - Center for Research On Musculoskeletal Systems, Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany
| | - Christoph-Eckhard Heyde
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Georg Osterhoff
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| |
Collapse
|
47
|
Tan J, Labrinidis A, Williams R, Mian M, Anderson PJ, Ranjitkar S. Micro-CT-Based Bone Microarchitecture Analysis of the Murine Skull. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2403:129-145. [PMID: 34913121 DOI: 10.1007/978-1-0716-1847-9_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X-ray micro-computed tomography (micro-CT) imaging has important applications in microarchitecture analysis of cortical and trabecular bone structure. While standardized protocols exist for micro-CT-based microarchitecture assessment of long bones, specific protocols need to be developed for different types of skull bones taking into account differences in embryogenesis, organization, development, and growth compared to the rest of the body. This chapter describes the general principles of bone microarchitecture analysis of murine craniofacial skeleton to accommodate for morphological variations in different regions of interest.
Collapse
Affiliation(s)
- Jenny Tan
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - Agatha Labrinidis
- Adelaide Microscopy, The University of Adelaide, Adelaide, SA, Australia
| | - Ruth Williams
- Adelaide Microscopy, The University of Adelaide, Adelaide, SA, Australia
| | - Mustafa Mian
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - Peter J Anderson
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia.,Australian Craniofacial Unit, Women's and Children's Hospital, North Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Sarbin Ranjitkar
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia. .,Department of Dentistry and Oral Health, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia.
| |
Collapse
|
48
|
So E, Rushing C, Prissel MA, Berlet GC. The Role of Secondary Imaging Techniques for Assessing Bone Mineral Density in Elderly Ankle Fractures. J Foot Ankle Surg 2022; 61:149-156. [PMID: 34312077 DOI: 10.1053/j.jfas.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023]
Abstract
Elderly ankle fractures in the elderly represent a substantial healthcare burden. Dual-energy x-ray absorptiometry (DXA) is the gold standard for diagnosis of osteoporosis. However, there is emerging research regarding secondary imaging techniques to evaluate bone mineral density (BMD). The purpose of this systematic review was to summarize the role of secondary imaging techniques for measuring BMD in elderly ankle fractures. A literature search was undertaken using relevant search terms. Articles were screened for suitability and data extracted where studies met inclusion criteria and were of sufficient quality. Eight studies were included in the systematic review. Computed tomography (CT) may have a role in preoperative surgical planning, provide an explanation for injury patterns in elderly patients, and may be correlated with clinical outcomes. High-resolution peripheral quantitative CT may be better suited than DXA for the assessment of ankle fractures due to the resolution of the image and its ability to distinguish between bone compartments, as well as provide a more accurate estimation of bone quality. Quantitative ultrasound has shown promise as a tool for measuring BMD in patients with osteoporosis, but is not able to detect osteoporosis in patients with ankle fractures. This paper helps define the role of each modality in the spectrum of care in the evaluation of osteoporosis as it pertains to elderly ankle fractures.
Collapse
Affiliation(s)
- Eric So
- Bryan Health, Lincoln, NE; Ohio Innovation Group, Columbus, OH.
| | | | | | | |
Collapse
|
49
|
Wei J, Yan Y, Gao J, Li Y, Wang R, Wang J, Zou Q, Zuo Y, Zhu M, Li J. 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112618. [PMID: 35031175 DOI: 10.1016/j.msec.2021.112618] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023]
Abstract
Bone tissue engineering scaffolds with similar composition, structure, and mechanical properties to natural bone are conducive to bone regeneration. The objective of this study was to prepare hydroxyapatite/poly (lactic-co-glycolic acid) (HA/PLGA) three-dimensional porous scaffolds with HA content close to natural bone and strong mechanical strength to promote osteogenesis. To achieve this, we modified HA microspheres with polyvinyl alcohol to create an inorganic filler to endow the HA/PLGA printing ink with higher HA content and excellent printing fluidity for 3D printing. We successfully printed a series of HA/PLGA scaffolds with different HA contents. The highest HA content reached 60 wt%, which is close to the mineral percentage in natural bone. The composition, structure, mechanical properties, and in vitro degradability of the fabricated scaffolds were systematically characterized. The cytocompatibility and osteogenic activity of the fabricated HA/PLGA scaffolds were evaluated by in vitro cell culture and rabbit femoral defect repair experiments in vivo. The results indicated that the HA/PLGA composite scaffold with 45 wt% HA had the highest compressive strength of more than 40 MPa, which was six times higher than that of the pure PLGA scaffold. The incorporation of HA microspheres into the PLGA matrix significantly improved the cell adhesion, proliferation, and osteogenic differentiation of bone marrow stem cells (BMSCs) cultured on the surface of the scaffolds. Animal experiments showed that the HA/PLGA composite with 45 wt% HA exhibited the best structure maintenance and osteogenic performance in vivo. The prepared HA/PLGA composite 3D scaffold with HA microsphere reinforcement has considerable application potential in the field of large bone defect repair.
Collapse
Affiliation(s)
- Jiawei Wei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Yan Yan
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Jing Gao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jiexin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
50
|
Knox AM, McGuire AC, Natoli RM, Kacena MA, Collier CD. Methodology, selection, and integration of fracture healing assessments in mice. J Orthop Res 2021; 39:2295-2309. [PMID: 34436797 PMCID: PMC8542592 DOI: 10.1002/jor.25172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 02/04/2023]
Abstract
Long bone fractures are one of the most common and costly medical conditions encountered after trauma. Characterization of the biology of fracture healing and development of potential medical interventions generally involves animal models of fracture healing using varying genetic or treatment groups, then analyzing relative repair success via the synthesis of diverse assessment methodologies. Murine models are some of the most widely used given their low cost, wide variety of genetic variants, and rapid breeding and maturation. This review addresses key concerns regarding fracture repair investigations in mice and may serve as a guide in conducting and interpreting such studies. Specifically, this review details the procedures, highlights relevant parameters, and discusses special considerations for the selection and integration of the major modalities used for quantifying fracture repair in such studies, including X-ray, microcomputed tomography, histomorphometric, biomechanical, gene expression and biomarker analyses.
Collapse
Affiliation(s)
- Adam M. Knox
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Anthony C. McGuire
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Roman M. Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
- Richard L. Roudebush VA Medical Center, IN, USA
| | | |
Collapse
|