1
|
Tashjian RZ, Zitnay J, Kazmers NH, Veerabhadraiah SR, Zelada AC, Honeggar M, Smith MC, Chalmers PN, Henninger HB, Jurynec MJ. Tenascin C deletion impairs tendon healing and functional recovery after rotator cuff repair. J Orthop Res 2025; 43:483-491. [PMID: 39601211 PMCID: PMC11806989 DOI: 10.1002/jor.26025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/22/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
The biological factors that affect healing after rotator cuff repair (RCR) are not well understood. Genetic variants in the extracellular matrix protein Tenascin C (TNC) are associated with impaired tendon healing and it is expressed in rotator cuff tendon tissue after injury, suggesting it may have a role in the repair process. The purpose of the current study was to determine the role of TNC on tendon healing after RCR in a murine model. The supraspinatus tendon was transected and repaired on the left shoulder of wild-type (WT-RCR), Tenascin C null (Tnc--RCR) and Tnc heterozygous (Tnc+/--RCR) mice. Controls included the unoperated, contralateral shoulder of WT-RCR, Tnc-RCR, Tnc+/--RCR mice and unoperated shoulders from age and genotype matched controls. We performed histologic, activity testing, bulk RNA-seq, and biomechanical analyses. At 8-weeks post-RCR, Tnc- and Tnc+/- mice had severe bone and tendon defects following RCR. Tnc--RCR mice had reduced activity after RCR including reduced wheel rotations, wheel duration, and wheel episode average velocity compared with WT-RCR. Loss of Tnc following RCR altered gene expression in the shoulder, including upregulation of sex hormone and WNT pathways and a downregulation of inflammation and cell cycle pathways. Tnc- mice had similar biomechanical properties after repair as WT. Further research is required to evaluate tissue specific alterations of Tnc, the interactions of Tnc and sex hormone and inflammation pathways as well as possible adjuvants to improve enthesis healing in the setting of reduced TNC function.
Collapse
Affiliation(s)
- Robert Z. Tashjian
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Jared Zitnay
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Nikolas H. Kazmers
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | | | - Antonio C. Zelada
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Matthew Honeggar
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Matthew C. Smith
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Peter N. Chalmers
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Heath B. Henninger
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Michael J. Jurynec
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Tashjian RZ, Zitnay J, Kazmers NH, Veerabhadraiah SR, Zelada AC, Honeggar M, Smith MC, Chalmers PN, Henninger HB, Jurynec MJ. Tenascin C Deletion Impairs Tendon Healing and Functional Recovery After Rotator Cuff Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612543. [PMID: 39314362 PMCID: PMC11419033 DOI: 10.1101/2024.09.11.612543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The biological factors that affect healing after rotator cuff repair (RCR) are not well understood. Genetic variants in the extracellular matrix protein Tenascin C (TNC) are associated with impaired tendon healing and it is expressed in rotator cuff tendon tissue after injury, suggesting it may have a role in the repair process. The purpose of the current study was to determine the role of TNC on tendon healing after RCR in a murine model. The supraspinatus tendon was transected and repaired on the left shoulder of Wild-Type (WT-RCR), Tenascin C null (Tnc --RCR) and Tnc heterozygous (Tnc +/--RCR) mice. Controls included the unoperated, contralateral shoulder of WT-RCR, Tnc - RCR, Tnc +/--RCR mice and unoperated shoulders from age and genotype matched controls. We performed histologic, activity testing, RNA-seq, and biomechanical analyses. At 8-weeks post-RCR, Tnc - and Tnc +/- mice had severe bone and tendon defects following rotator cuff repair. Tnc --RCR mice had reduced activity after rotator cuff repair including reduced wheel rotations, wheel duration, and wheel episode average velocity compared with WT-RCR. Loss of Tnc following RCR altered gene expression in the shoulder, including upregulation of sex hormone and WNT pathways and a downregulation of inflammation and cell cycle pathways. Tnc - mice had similar biomechanical properties after repair as WT. Further research is required to evaluate tissue specific alterations of Tnc, the interactions of Tnc and sex hormone and inflammation pathways as well as possible adjuvants to improve enthesis healing in the setting of reduced TNC function.
Collapse
Affiliation(s)
- Robert Z. Tashjian
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Jared Zitnay
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Nikolas H. Kazmers
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | | | - Antonio C. Zelada
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Matthew Honeggar
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Matthew C. Smith
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Peter N. Chalmers
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Heath B. Henninger
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
| | - Michael J. Jurynec
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah 84108 USA
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Leong NL, Kator JL, Clemens TL, James A, Enamoto-Iwamoto M, Jiang J. Tendon and Ligament Healing and Current Approaches to Tendon and Ligament Regeneration. J Orthop Res 2020; 38:7-12. [PMID: 31529731 PMCID: PMC7307866 DOI: 10.1002/jor.24475] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
Ligament and tendon injuries are common problems in orthopedics. There is a need for treatments that can expedite nonoperative healing or improve the efficacy of surgical repair or reconstruction of ligaments and tendons. Successful biologically-based attempts at repair and reconstruction would require a thorough understanding of normal tendon and ligament healing. The inflammatory, proliferative, and remodeling phases, and the cells involved in tendon and ligament healing will be reviewed. Then, current research efforts focusing on biologically-based treatments of ligament and tendon injuries will be summarized, with a focus on stem cells endogenous to tendons and ligaments. Statement of clinical significance: This paper details mechanisms of ligament and tendon healing, as well as attempts to apply stem cells to ligament and tendon healing. Understanding of these topics could lead to more efficacious therapies to treat ligament and tendon injuries. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:7-12, 2020.
Collapse
Affiliation(s)
- Natalie L Leong
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Surgery, Baltimore VA Medical Center, Baltimore, Maryland
| | - Jamie L Kator
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Aaron James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Motomi Enamoto-Iwamoto
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Jie Jiang
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| |
Collapse
|
4
|
Narayanan G, Nair LS, Laurencin CT. Regenerative Engineering of the Rotator Cuff of the Shoulder. ACS Biomater Sci Eng 2018; 4:751-786. [PMID: 33418763 DOI: 10.1021/acsbiomaterials.7b00631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rotator cuff tears often heal poorly, leading to re-tears after repair. This is in part attributed to the low proliferative ability of the resident cells (tendon fibroblasts and tendon-stem cells) upon injury to the rotator cuff tissue and the low vascularity of the tendon insertion. In addition, surgical outcomes of current techniques used in clinical settings are often suboptimal, leading to the formation of neo-tissue with poor biomechanics and structural characteristics, which results in re-tears. This has prompted interest in a new approach, which we term as "Regenerative Engineering", for regenerating rotator cuff tendons. In the Regenerative Engineering paradigm, roles played by stem cells, scaffolds, growth factors/small molecules, the use of local physical forces, and morphogenesis interplayed with clinical surgery techniques may synchronously act, leading to synergistic effects and resulting in successful tissue regeneration. In this regard, various cell sources such as tendon fibroblasts and adult tissue-derived stem cells have been isolated, characterized, and investigated for regenerating rotator cuff tendons. Likewise, numerous scaffolds with varying architecture, geometry, and mechanical characteristics of biologic and synthetic origin have been developed. Furthermore, these scaffolds have been also fabricated with biochemical cues (growth factors and small molecules), facilitating tissue regeneration. In this Review, various strategies to regenerate rotator cuff tendons using stem cells, advanced materials, and factors in the setting of physical forces under the Regenerative Engineering paradigm are described.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
5
|
Lebaschi A, Nakagawa Y, Wada S, Cong GT, Rodeo SA. Tissue-specific endothelial cells: a promising approach for augmentation of soft tissue repair in orthopedics. Ann N Y Acad Sci 2018; 1410:44-56. [PMID: 29265420 DOI: 10.1111/nyas.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Biologics are playing an increasingly significant role in the practice of modern medicine and surgery in general and orthopedics in particular. Cell-based approaches are among the most important and widely used modalities in orthopedic biologics, with mesenchymal stem cells and other multi/pluripotent cells undergoing evaluation in numerous preclinical and clinical studies. On the other hand, fully differentiated endothelial cells (ECs) have been found to perform critical roles in homeostasis of visceral tissues through production of an adaptive panel of so-called "angiocrine factors." This newly discovered function of ECs renders them excellent candidates for novel approaches in cell-based biologics. Here, we present a review of the role of ECs and angiocrine factors in some visceral tissues, followed by an overview of current cell-based approaches and a discussion of the potential applications of ECs in soft tissue repair.
Collapse
Affiliation(s)
- Amir Lebaschi
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Yusuke Nakagawa
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Susumu Wada
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Guang-Ting Cong
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York
| |
Collapse
|
6
|
Barboni B, Russo V, Gatta V, Bernabò N, Berardinelli P, Mauro A, Martelli A, Valbonetti L, Muttini A, Di Giacinto O, Turriani M, Silini A, Calabrese G, Abate M, Parolini O, Stuppia L, Mattioli M. Therapeutic potential of hAECs for early Achilles tendon defect repair through regeneration. J Tissue Eng Regen Med 2017; 12:e1594-e1608. [PMID: 29024514 DOI: 10.1002/term.2584] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/26/2022]
Abstract
Cell-based therapy holds great promise for tendon disorders, a widespread debilitating musculoskeletal condition. Even if the cell line remains to be defined, preliminary evidences have proven that amniotic-derived cells possess in vitro and in vivo a great tenogenic potential. This study investigated the efficacy of transplanted human amniotic epithelial cells (hAECs) by testing their early regenerative properties and mechanisms involved on a validated ovine Achilles tendon partial defect performed on 29 animals. The injured tendons treated with hAECs recovered rapidly, in 28 days, structural and biomechanical properties undertaking a programmed tissue regeneration, differently from the spontaneous healing tissues. hAECs remained viable within the host tendons establishing with the endogenous progenitor cells an active dialogue. Through the secretion of modulatory factors, hAECs inhibited the inflammatory cells infiltration, activated the M2 macrophage subpopulation early recruitment, and accelerated blood vessel as well as extracellular matrix remodelling. In parallel, some in situ differentiated hAECs displayed a tenocytelike phenotype. Both paracrine and direct hAECs stimulatory effects were confirmed analysing their genome profile before and after transplantation. The 49 human up-regulated transcripts recorded in transplanted hAECs belonged to tendon lineage differentiation (epithelial-mesenchymal transition, connective specific matrix components, and skeleton or muscle system development-related transcripts), as well as the in situ activation of paracrine signalling involved in inflammatory and immunomodulatory response. Altogether, these evidences support the hypothesis that hAECs are a practicable and efficient strategy for the acute treatment of tendinopathy, reinforcing the idea of a concrete use of amniotic epithelial cells towards the clinical practice.
Collapse
Affiliation(s)
- Barbara Barboni
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Gatta
- Medical Genetics, University "G. d'Annunzio" of Chieti Pescara, Chieti, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Paolo Berardinelli
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessandra Martelli
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Aurelio Muttini
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Oriana Di Giacinto
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Maura Turriani
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Antonietta Silini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Giuseppe Calabrese
- Medical Genetics, University "G. d'Annunzio" of Chieti Pescara, Chieti, Italy
| | - Michele Abate
- Department of Medicine and Science of Aging, University "G. d'Annunzio" Chieti Pescara, Chieti, Italy
| | - Ornella Parolini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Liborio Stuppia
- Medical Genetics, University "G. d'Annunzio" of Chieti Pescara, Chieti, Italy
| | - Mauro Mattioli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| |
Collapse
|
7
|
Carballo CB, Lebaschi A, Rodeo SA. Cell-based approaches for augmentation of tendon repair. TECHNIQUES IN SHOULDER & ELBOW SURGERY 2017; 18:e6-e14. [PMID: 29276433 PMCID: PMC5737795 DOI: 10.1097/bte.0000000000000132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-based approaches are among the principal interventions in orthobiologics to improve tendon and ligament healing and to combat degenerative processes. The number of options available for investigation are expanding rapidly and investigators have an increasing number of cell types to choose from for research purposes. However, in part due to the current regulatory environment, the list of available cells at clinicians' disposal for therapeutic purposes is still rather limited. In this review, we present an overview of the main cellular categories in current use. Notable recent developments in cell-based approaches include the introduction of diverse sources of mesenchymal stem cells, pluripotent cells of extra-embryonic origin, and the emerging popularity of fully differentiated cells such as tenocytes and endothelial cells. Delivery strategies are discussed and a succinct discussion of the current regulatory environment in the United States is presented.
Collapse
Affiliation(s)
- Camila B Carballo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery
| | - Amir Lebaschi
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery
| | - Scott A Rodeo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery
| |
Collapse
|
8
|
Bagchi RA, Lin J, Wang R, Czubryt MP. Regulation of fibronectin gene expression in cardiac fibroblasts by scleraxis. Cell Tissue Res 2016; 366:381-391. [PMID: 27324126 DOI: 10.1007/s00441-016-2439-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
The glycoprotein fibronectin is a key component of the extracellular matrix. By interacting with numerous matrix and cell surface proteins, fibronectin plays important roles in cell adhesion, migration and intracellular signaling. Up-regulation of fibronectin occurs in tissue fibrosis, and previous studies have identified the pro-fibrotic factor TGFβ as an inducer of fibronectin expression, although the mechanism responsible remains unknown. We have previously shown that a key downstream effector of TGFβ signaling in cardiac fibroblasts is the transcription factor scleraxis, which in turn regulates the expression of a wide variety of extracellular matrix genes. We noted that fibronectin expression tracked closely with scleraxis expression, but it was unclear whether scleraxis directly regulated the fibronectin gene. Here, we report that scleraxis acts via two E-box binding sites in the proximal human fibronectin promoter to govern fibronectin expression, with the second E-box being both sufficient and necessary for scleraxis-mediated fibronectin expression to occur. A combination of electrophoretic mobility shift and chromatin immunoprecipitation assays indicated that scleraxis interacted to a greater degree with the second E-box. Over-expression or knockdown of scleraxis resulted in increased or decreased fibronectin expression, respectively, and scleraxis null mice presented with dramatically decreased immunolabeling for fibronectin in cardiac tissue sections compared to wild-type controls. Furthermore, scleraxis was required for TGFβ-induced fibronectin expression: TGFβ lost its ability to induce fibronectin expression following scleraxis knockdown. Together, these results demonstrate a novel and required role for scleraxis in the regulation of cardiac fibroblast fibronectin gene expression basally or in response to TGFβ.
Collapse
Affiliation(s)
- Rushita A Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Division of Cardiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, RC2- Room 8450, Aurora, CO, 80045, USA
| | - Justin Lin
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Ryan Wang
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
9
|
The role of an octacalcium phosphate in the re-formation of infraspinatus tendon insertion. J Shoulder Elbow Surg 2015; 24:e175-84. [PMID: 25825137 DOI: 10.1016/j.jse.2015.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/10/2015] [Accepted: 01/21/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND To improve the success rate of rotator cuff repair, we investigated whether octacalcium phosphate (OCP) with gelatin (Gel) vehicle had a positive effect on tendon-to-bone healing. METHODS We assessed the histologic characteristics of the tendon-to-bone healing using the rabbit rotator cuff repair model. We divided the shoulders into 3 groups: control (without OCP/Gel composite), OCP/Gel composite (OCP+group), and Gel alone without OCP (Gel group) to evaluate the effectiveness of gelatin. RESULTS Both the number of newly formed tendon fibers and the Sharpey fibers at the repair site increased in the OCP+group compared with those in the other 2 groups on hematoxylin-eosin staining (P < .05). On immunohistochemical evaluation, both the bone and the fibers in the OCP+group demonstrated that type I collagen was picked up, whereas the newly formed tendon fibers and Sharpey fibers revealed type III collagen. CONCLUSION Treatment with OCP made collagen fibers and the Sharpey fibers, constituted by type I and type III collagens, increase at the tendon-to-bone insertion. It might be beneficial for the healing of rotator cuff tendon to bone.
Collapse
|
10
|
Kushida T, Iida H. Bone marrow cell transplantation efficiently repairs tendon and ligament injuries. Front Cell Dev Biol 2014; 2:27. [PMID: 25364734 PMCID: PMC4207000 DOI: 10.3389/fcell.2014.00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/18/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Taketoshi Kushida
- Department of Orthopaedic Surgery, Kansai Medical University Hirakata, Japan
| | - Hirokazu Iida
- Department of Orthopaedic Surgery, Kansai Medical University Hirakata, Japan
| |
Collapse
|
11
|
Davies BM, Morrey ME, Mouthuy PA, Baboldashti NZ, Hakimi O, Snelling S, Price A, Carr A. Repairing damaged tendon and muscle: are mesenchymal stem cells and scaffolds the answer? Regen Med 2014; 8:613-30. [PMID: 23998754 DOI: 10.2217/rme.13.55] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have become an area of intense interest in the treatment of musculoskeletal conditions, such as muscle and tendon injury, as various animal and human trials have demonstrated that implantation with MSCs leads to improved healing and function. However, these trials have usually been relatively small scale and lacking in adequate controls. Additionally, the optimum source of these cells has yet to be determined, partly due to a lack of understanding as to how MSCs produce their beneficial effects when implanted. Scaffolds have been shown to improve tissue-engineering repairs but require further work to optimize their interactions with both native tissue and implanted MSCs. Robust, well-controlled trials are therefore required to determine the usefulness of MSCs in musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Benjamin M Davies
- Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, University of Oxford OX3 7HE, UK.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu H, Zhu S, Zhang C, Lu P, Hu J, Yin Z, Ma Y, Chen X, OuYang H. Crucial transcription factors in tendon development and differentiation: their potential for tendon regeneration. Cell Tissue Res 2014; 356:287-98. [PMID: 24705622 DOI: 10.1007/s00441-014-1834-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/30/2014] [Indexed: 12/22/2022]
Abstract
Tendons that connect muscles to bone are often the targets of sports injuries. The currently unsatisfactory state of tendon repair is largely attributable to the limited understanding of basic tendon biology. A number of tendon lineage-related transcription factors have recently been uncovered and provide clues for the better understanding of tendon development. Scleraxis and Mohawk have been identified as critical transcription factors in tendon development and differentiation. Other transcription factors, such as Sox9 and Egr1/2, have also been recently reported to be involved in tendon development. However, the molecular mechanisms and application of these transcription factors remain largely unclear and this prohibits their use in tendon therapy. Here, we systematically review and analyze recent findings and our own data concerning tendon transcription factors and tendon regeneration. Based on these findings, we provide interaction and temporal programming maps of transcription factors, as a basis for future tendon therapy. Finally, we discuss future directions for tendon regeneration with differentiation and trans-differentiation approaches based on transcription factors.
Collapse
Affiliation(s)
- Huanhuan Liu
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Caliari SR, Harley BAC. Composite growth factor supplementation strategies to enhance tenocyte bioactivity in aligned collagen-GAG scaffolds. Tissue Eng Part A 2013; 19:1100-12. [PMID: 23157454 DOI: 10.1089/ten.tea.2012.0497] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Biomolecular environments encountered in vivo are complex and dynamic, with combinations of biomolecules presented in both freely diffusible (liquid-phase) and sequestered (bound to the extracellular matrix) states. Strategies for integrating multiple biomolecular signals into a biomimetic scaffold provide a platform to simultaneously control multiple cell activities, such as motility, proliferation, phenotype, and regenerative potential. Here we describe an investigation elucidating the influence of the dose and mode of presentation (soluble, sequestered) of five biomolecules (stromal cell-derived factor 1α [SDF-1α], platelet-derived growth factor BB [PDGF-BB], insulin-like growth factor 1 [IGF-1], basic fibroblast growth factor [bFGF], and growth/differentiation factor 5 [GDF-5]) on the recruitment, proliferation, collagen synthesis, and genomic stability of equine tenocytes within an anisotropic collagen-GAG scaffold for tendon regeneration applications. Critically, we found that single factors led to a dose-dependent trade-off between driving tenocyte proliferation (PDGF-BB, IGF-1) versus maintenance of a tenocyte phenotype (GDF-5, bFGF). We identified supplementation schemes using factor pairs (IGF-1, GDF-5) to rescue the tenocyte phenotype and gene expression profiles while simultaneously driving proliferation. These results suggest coincident application of multi-biomolecule cocktails has a significant value in regenerative medicine applications where control of cell proliferation and phenotype are required. Finally, we demonstrated an immobilization strategy that allows efficient sequestration of bioactive levels of these factors within the scaffold network. We showed sequestration can lead to a greater sustained bioactivity than soluble supplementation, making this approach particularly amenable to in vivo translation where diffusive loss is a concern and continuous biomolecule supplementation is not feasible.
Collapse
Affiliation(s)
- Steven R Caliari
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
15
|
Common threads in cardiac fibrosis, infarct scar formation, and wound healing. FIBROGENESIS & TISSUE REPAIR 2012; 5:19. [PMID: 23114500 PMCID: PMC3534582 DOI: 10.1186/1755-1536-5-19] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/04/2012] [Indexed: 12/19/2022]
Abstract
Wound healing, cardiac fibrosis, and infarct scar development, while possessing distinct features, share a number of key functional similarities, including extracellular matrix synthesis and remodeling by fibroblasts and myofibroblasts. Understanding the underlying mechanisms that are common to these processes may suggest novel therapeutic approaches for pathologic situations such as fibrosis, or defective wound healing such as hypertrophic scarring or keloid formation. This manuscript will briefly review the major steps of wound healing, and will contrast this process with how cardiac infarct scar formation or interstitial fibrosis occurs. The feasibility of targeting common pro-fibrotic growth factor signaling pathways will be discussed. Finally, the potential exploitation of novel regulators of wound healing and fibrosis (ski and scleraxis), will be examined.
Collapse
|
16
|
Chaudhury S. Mesenchymal stem cell applications to tendon healing. Muscles Ligaments Tendons J 2012; 2:222-9. [PMID: 23738300 PMCID: PMC3666516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tendons are often subject to age related degenerative changes that coincide with a diminished regenerative capacity. Torn tendons often heal by forming scar tissue that is structurally weaker than healthy native tendon tissue, predisposing to mechanical failure. There is increasing interest in providing biological stimuli to increase the tendon reparative response. Stem cells in particular are an exciting and promising prospect as they have the potential to provide appropriate cellular signals to encourage neotendon formation during repair rather than scar tissue. Currently, a number of issues need to be investigated further before it can be determined whether stem cells are an effective and safe therapeutic option for encouraging tendon repair. This review explores the in-vitro and invivo evidence assessing the effect of stem cells on tendon healing, as well as the potential clinical applications.
Collapse
Affiliation(s)
- Salma Chaudhury
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| |
Collapse
|
17
|
Nixon AJ, Watts AE, Schnabel LV. Cell- and gene-based approaches to tendon regeneration. J Shoulder Elbow Surg 2012; 21:278-94. [PMID: 22244071 DOI: 10.1016/j.jse.2011.11.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 02/06/2023]
Abstract
Repair of rotator cuff tears in experimental models has been significantly improved by the use of enhanced biologic approaches, including platelet-rich plasma, bone marrow aspirate, growth factor supplements, and cell- and gene-modified cell therapy. Despite added complexity, cell-based therapies form an important part of enhanced repair, and combinations of carrier vehicles, growth factors, and implanted cells provide the best opportunity for robust repair. Bone marrow-derived mesenchymal stem cells provide a stimulus for repair in flexor tendons, but application in rotator cuff repair has not shown universally positive results. The use of scaffolds such as platelet-rich plasma, fibrin, and synthetic vehicles and the use of gene priming for stem cell differentiation and local anabolic and anti-inflammatory impact have both provided essential components for enhanced tendon and tendon-to-bone repair in rotator cuff disruption. Application of these research techniques in human rotator cuff injury has generally been limited to autologous platelet-rich plasma, bone marrow concentrate, or bone marrow aspirates combined with scaffold materials. Cultured mesenchymal progenitor therapy and gene-enhanced function have not yet reached clinical trials in humans. Research in several animal species indicates that the concept of gene-primed stem cells, particularly embryonic stem cells, combined with effective culture conditions, transduction with long-term integrating vectors carrying anabolic growth factors, and development of cells conditioned by use of RNA interference gene therapy to resist matrix metalloproteinase degradation, may constitute potential advances in rotator cuff repair. This review summarizes cell- and gene-enhanced cell research for tendon repair and provides future directions for rotator cuff repair using biologic composites.
Collapse
Affiliation(s)
- Alan J Nixon
- Comparative Orthopaedics Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
18
|
Chaudhury S, Carr AJ. Lessons we can learn from gene expression patterns in rotator cuff tears and tendinopathies. J Shoulder Elbow Surg 2012; 21:191-9. [PMID: 22244062 DOI: 10.1016/j.jse.2011.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/22/2011] [Accepted: 10/23/2011] [Indexed: 02/06/2023]
Abstract
Persistently high failure rates that are reported after rotator cuff repairs have encouraged greater understanding of the pathophysiology that underlies rotator cuff tears. Biologic changes that contribute to the pathogenesis of rotator cuff tears and tendinopathies, as well as adaptation after these changes, have been well described. A subset of patients with a genetic predisposition to early onset of rotator cuff tears and earlier symptom and disease progression have been identified. Many biologic changes occurring at the gene level have been identified. Pathways that are believed to contribute to rotator cuff tendinopathies include extracellular matrix remodeling, angiogenesis, changes in metabolism, apoptosis, and stress-related genes. Metaplasia of rotator cuff cells is contributed to by changes in gene expression. Modification of these gene changes may be possible through mechanical loading, drugs, or cellular manipulation. Gene changes may offer greater insight into why certain tears fail to heal and help to identify therapeutic targets.
Collapse
Affiliation(s)
- Salma Chaudhury
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Musculoskeletal Biomedical Research Unit, National Institute for Health Research, University of Oxford, Oxford, UK.
| | | |
Collapse
|
19
|
Healing of the rotator cuff. CURRENT ORTHOPAEDIC PRACTICE 2012. [DOI: 10.1097/bco.0b013e3182410e91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|