1
|
Han D, Yang Y, Guo Z, Dai S, Jiang M, Zhu Y, Wang Y, Yu Z, Wang K, Rong C, Yu Y. A Review on the Interaction of Acetic Acid Bacteria and Microbes in Food Fermentation: A Microbial Ecology Perspective. Foods 2024; 13:2534. [PMID: 39200461 PMCID: PMC11353490 DOI: 10.3390/foods13162534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
In fermented foods, acetic acid bacteria (AAB), kinds of bacteria with a long history of utilization, contribute to safety, nutritional, and sensory properties primarily through acetic acid fermentation. AAB are commonly found in various fermented foods such as vinegar, sour beer, fermented cocoa and coffee beans, kefir beverages, kombucha, and sourdough. They interact and cooperate with a variety of microorganisms, resulting in the formation of diverse metabolites and the production of fermented foods with distinct flavors. Understanding the interactions between AAB and other microbes is crucial for effectively controlling and utilizing AAB in fermentation processes. However, these microbial interactions are influenced by factors such as strain type, nutritional conditions, ecological niches, and fermentation duration. In this review, we examine the relationships and research methodologies of microbial interactions and interaction studies between AAB and yeasts, lactic acid bacteria (LAB), and bacilli in different food fermentation processes involving these microorganisms. The objective of this review is to identify key interaction models involving AAB and other microorganisms. The insights gained will provide scientific guidance for the effective utilization of AAB as functional microorganisms in food fermentation processes.
Collapse
Affiliation(s)
- Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yunsong Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Zhantong Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Shuwen Dai
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Mingchao Jiang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Chunchi Rong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| |
Collapse
|
2
|
Mukherjee A, Breselge S, Dimidi E, Marco ML, Cotter PD. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 2024; 21:248-266. [PMID: 38081933 DOI: 10.1038/s41575-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
3
|
Phung LT, Kitwetcharoen H, Chamnipa N, Boonchot N, Thanonkeo S, Tippayawat P, Klanrit P, Yamada M, Thanonkeo P. Changes in the chemical compositions and biological properties of kombucha beverages made from black teas and pineapple peels and cores. Sci Rep 2023; 13:7859. [PMID: 37188725 DOI: 10.1038/s41598-023-34954-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Several raw materials have been used as partial supplements or entire replacements for the main ingredients of kombucha to improve the biological properties of the resulting kombucha beverage. This study used pineapple peels and cores (PPC), byproducts of pineapple processing, as alternative raw materials instead of sugar for kombucha production. Kombuchas were produced from fusions of black tea and PPC at different ratios, and their chemical profiles and biological properties, including antioxidant and antimicrobial activities, were determined and compared with the control kombucha without PPC supplementation. The results showed that PPC contained high amounts of beneficial substances, including sugars, polyphenols, organic acids, vitamins, and minerals. An analysis of the microbial community in a kombucha SCOBY (Symbiotic Cultures of Bacteria and Yeasts) using next-generation sequencing revealed that Acetobacter and Komagataeibacter were the most predominant acetic acid bacteria. Furthermore, Dekkera and Bacillus were also the prominent yeast and bacteria in the kombucha SCOBY. A comparative analysis was performed for kombucha products fermented using black tea and a fusion of black tea and PPC, and the results revealed that the kombucha made from the black tea and PPC infusion exhibited a higher total phenolic content and antioxidant activity than the control kombucha. The antimicrobial properties of the kombucha products made from black tea and the PPC infusion were also greater than those of the control. Several volatile compounds that contributed to the flavor, aroma, and beneficial health properties, such as esters, carboxylic acids, phenols, alcohols, aldehydes, and ketones, were detected in kombucha products made from a fusion of black tea and PPC. This study shows that PPC exhibits high potential as a supplement to the raw material infusion used with black tea for functional kombucha production.
Collapse
Affiliation(s)
- Ly Tu Phung
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Haruthairat Kitwetcharoen
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nuttaporn Chamnipa
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nongluck Boonchot
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sudarat Thanonkeo
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | | | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8315, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8315, Japan
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Gülhan MF. A New Substrate and Nitrogen Source for Traditional Kombucha Beverage: Stevia rebaudiana Leaves. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04323-1. [PMID: 36656538 DOI: 10.1007/s12010-023-04323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
Recently, the use of different herbal products as carbon sources instead of black and green tea in the preparation of traditional kombucha has been investigated. In this study, functional kombucha was prepared by adding Stevia rebaudiana Bertoni leaves, which have special organoleptic properties, to kombucha medium, and some properties of the beverage were analyzed. Tea blends were determined as 100% green tea (control = C), 75% green tea (GT) + 25% Stevia (ST), 50% GT + 50% ST, and 100% ST. On the 15th day of fermentation, gluconic acid (43.12 ± 0.01 g/L) was detected as dominant organic acid in GT75 + ST25 samples compared to group C (p < 0.05). According to physicochemical parameters that determine the drinkability properties of prepared teas, the best results were in GT25 + ST75 compared to group C (p < 0.05). It proved that the highest activity was in GT25 + ST75 on the 10th day in the groups that applied different antioxidant tests (DPPH, MCA, and CUPRAC). The antimicrobial activities of kombucha at 25, 50, 75, and 100% concentrations of GT and ST reached the highest levels in the GT25 + ST75 group in samples after 10 days of fermentation for all selected microorganisms. The results prove that GT25 + ST75 kombucha is a functional product with high drinkability on the 10th day of fermentation and also more beneficial for health due to the phenolic compounds from both green tea and Stevia. Stevia rebaudiana leaves can be suggested that be used as a new substrate and nitrogen source for kombucha production.
Collapse
Affiliation(s)
- Mehmet Fuat Gülhan
- Department of Medicinal and Aromatic Plants, Vocational School of Technical Sciences, Aksaray University, Aksaray, Turkey.
| |
Collapse
|
5
|
Freitas A, Sousa P, Wurlitzer N. Alternative raw materials in kombucha production. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Wang B, Rutherfurd-Markwick K, Zhang XX, Mutukumira AN. Kombucha: Production and Microbiological Research. Foods 2022; 11:3456. [PMID: 36360067 PMCID: PMC9658962 DOI: 10.3390/foods11213456] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Kombucha is a sparkling sugared tea commonly prepared using a sugared tea infusion and fermented at ambient temperature for several days using a cellulose pellicle also called tea fungus that is comprised of acetic acid bacteria and yeast. Consumption of Kombucha has been reported as early as 220 B.C. with various reported potential health benefits and appealing sensory properties. During Kombucha fermentation, sucrose is hydrolysed by yeast cells into fructose and glucose, which are then metabolised to ethanol. The ethanol is then oxidised by acetic acid bacteria (AAB) to produce acetic acid which is responsible for the reduction of the pH and also contributes to the sour taste of Kombucha. Characterisation of the AAB and yeast in the Kombucha starter culture can provide a better understanding of the fermentation process. This knowledge can potentially aid in the production of higher quality products as these microorganisms affect the production of metabolites such as organic acids which are associated with potential health benefits, as well as sensory properties. This review presents recent advances in the isolation, enumeration, biochemical characteristics, conventional phenotypic identification system, and modern genetic identification techniques of AAB and yeast present in Kombucha to gain a better understanding of the microbial diversity of the beverage.
Collapse
Affiliation(s)
- Boying Wang
- School of Food and Advanced Technology, Massey University, Auckland 0745, New Zealand
| | | | - Xue-Xian Zhang
- School of Natural Sciences, Massey University, Auckland 0745, New Zealand
| | - Anthony N. Mutukumira
- School of Food and Advanced Technology, Massey University, Auckland 0745, New Zealand
| |
Collapse
|
7
|
Li R, Xu Y, Chen J, Wang F, Zou C, Yin J. Enhancing the proportion of gluconic acid with a microbial community reconstruction method to improve the taste quality of Kombucha. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
LEE KR, JO K, RA KS, SUH HJ, HONG KB. Kombucha fermentation using commercial kombucha pellicle and culture broth as starter. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.70020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Pihurov M, Păcularu-Burada B, Cotârleţ M, Vasile MA, Bahrim GE. Novel Insights for Metabiotics Production by Using Artisanal Probiotic Cultures. Microorganisms 2021; 9:2184. [PMID: 34835310 PMCID: PMC8624174 DOI: 10.3390/microorganisms9112184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/15/2023] Open
Abstract
Wild probiotic consortia of microorganisms (bacteria and yeasts) associated in the artisanal cultures' microbiota (milk kefir grains, water kefir grains and kombucha) are considered valuable promoters for metabiotics (prebiotics, probiotics, postbiotics and paraprobiotics) production. The beneficial effects of the fermented products obtained with the artisanal cultures on human well-being are described by centuries and the interest for them is continuously increasing. The wild origin and microbial diversity of these above-mentioned consortia give them extraordinary protection capacity against microbiological contaminants in unusual physico-chemical conditions and unique fermentative behaviour. This review summarizes the state of the art for the wild artisanal cultures (milk and water kefir grains, respectively, kombucha-SCOBY), their symbiotic functionality, and the ability to ferment unconventional substrates in order to obtain valuable bioactive compounds with in vitro and in vivo beneficial functional properties. Due to the necessity of the bioactives production and their use as metabiotics in the modern consumer's life, artisanal cultures are the perfect sources able to biosynthesize complex functional metabolites (bioactive peptides, antimicrobials, polysaccharides, enzymes, vitamins, cell wall components). Depending on the purposes of the biotechnological fermentation processes, artisanal cultures can be used as starters on different substrates. Current studies show that the microbial synergy between bacteria-yeast and/or bacteria-offers new perspectives to develop functional products (food, feeds, and ingredients) with a great impact on life quality.
Collapse
Affiliation(s)
| | | | | | | | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (M.P.); (B.P.-B.); (M.C.); (M.A.V.)
| |
Collapse
|
10
|
Antolak H, Piechota D, Kucharska A. Kombucha Tea-A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants (Basel) 2021; 10:antiox10101541. [PMID: 34679676 PMCID: PMC8532973 DOI: 10.3390/antiox10101541] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
Kombucha is a low alcoholic beverage with high content of bioactive compounds derived from plant material (tea, juices, herb extracts) and metabolic activity of microorganisms (acetic acid bacteria, lactic acid bacteria and yeasts). Currently, it attracts an increasing number of consumers due to its health-promoting properties. This review focuses on aspects significantly affecting the bioactive compound content and biological activities of Kombucha tea. The literature review shows that the drink is characterized by a high content of bioactive compounds, strong antioxidant, and antimicrobial properties. Factors that substantially affect these activities are the tea type and its brewing parameters, the composition of the SCOBY, as well as the fermentation parameters. On the other hand, Kombucha fermentation is characterized by many unknowns, which result, inter alia, from different methods of tea extraction, diverse, often undefined compositions of microorganisms used in the fermentation, as well as the lack of clearly defined effects of microorganisms on bioactive compounds contained in tea, and therefore the health-promoting properties of the final product. The article indicates the shortcomings in the current research in the field of Kombucha, as well as future perspectives on improving the health-promoting activities of this fermented drink.
Collapse
|
11
|
Soares MG, de Lima M, Reolon Schmidt VC. Technological aspects of kombucha, its applications and the symbiotic culture (SCOBY), and extraction of compounds of interest: A literature review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Kruk M, Trząskowska M, Ścibisz I, Pokorski P. Application of the "SCOBY" and Kombucha Tea for the Production of Fermented Milk Drinks. Microorganisms 2021; 9:123. [PMID: 33430207 PMCID: PMC7825737 DOI: 10.3390/microorganisms9010123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022] Open
Abstract
For the production of fermented milk drinks, cultures of microorganisms other than traditionally applied can be used. Such possibilities are created by the symbiotic culture of bacteria and yeast (SCOBY), which is used to produce kombucha. The aim of the study was to evaluate the possibility of using kombucha and the SCOBY for fermented milk drink products. The drinks were developed with a lactose-free variant and traditional milk. For the analysis of the obtained beverages, microbiological methods (CFU method), chemical methods (pH method and HPLC method) and the quantitative descriptive analysis (QDA) sensory method were used. As a result of the research, a recipe and the fermentation parameters for fermented milk drinks were developed. In the developed lactose milk drinks, the average lactose content was 4.25 g/100 g. In lactose-free milk drinks, the average glucose content was 2.26 g/100 g. Lactic acid in both types of products was at the highest average level of 0.68 g/100 g. The products had a characteristic pH value for fermented milk drinks and a very good microbiological quality, which followed the FAO/WHO guidelines. Drinks also had a typical sensory profile for this products group. However, slight sensory defects were detected. The developed fermented milk drinks have a potential health-promoting value, thanks to the content of active microflora and organic acids, which have a confirmed positive effect on the human body. The drinks produced require further testing to optimize their cost of production, possible health benefits and sensory quality.
Collapse
Affiliation(s)
- Marcin Kruk
- Faculty of Human Nutrition, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (M.K.); (P.P.)
| | - Monika Trząskowska
- Chair of Food Hygiene and Quality Management, Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Iwona Ścibisz
- Department of Food Technology and Assessment, Division of Fruit and Vegetable Technology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Patryk Pokorski
- Faculty of Human Nutrition, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (M.K.); (P.P.)
| |
Collapse
|
13
|
|
14
|
Egea MB, Santos DCD, Oliveira Filho JGD, Ores JDC, Takeuchi KP, Lemes AC. A review of nondairy kefir products: their characteristics and potential human health benefits. Crit Rev Food Sci Nutr 2020; 62:1536-1552. [PMID: 33153292 DOI: 10.1080/10408398.2020.1844140] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Functional foods are foods that, in addition to having nutrients, contain in their composition ingredients that act specifically on body functions associated with the control and reduction of the risk of developing some diseases. In this sense, kefir, a group of microorganisms in symbiosis, mainly yeasts and lactic acid bacteria, stands out. The trend of ingesting kefir has been focused on the development of products that serve specific consumers, such as those who are lactose-intolerant, vegans and vegetarians, and consumers in general who seek to combine the consumption of functional products with the improvement of their health and lifestyle. This overview provides an insight into kefir, presenting the technological process to produce a nondairy beverage and evidence of the benefits of its use to reduce the risk of disease. We also discuss regulatory aspects of products fermented using kefir. Until now, the use of kefir (isolated microorganism, kefiran, or fermented product) has demonstrated the potential to promote an increase in the number of bifidobacteria in the colon and an increase in the glycemic control while reducing the blood cholesterol and balancing the intestinal microbiota, which helps in reducing constipation and diarrhea, improving intestinal permeability, and stimulating and balancing the immune system. However, the literature still has gaps that need to be clarified, such as the consumption dose of kefir or its products to cause some health benefit.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil
| | - Daiane Costa Dos Santos
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil
| | | | - Joana da Costa Ores
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil
| | - Katiuchia Pereira Takeuchi
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil.,Faculty of Nutrition, Department of Food and Nutrition, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Ailton Cesar Lemes
- School of Chemistry, Department of Biochemical Engineering, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Bacterial Populations in International Artisanal Kefirs. Microorganisms 2020; 8:microorganisms8091318. [PMID: 32872546 PMCID: PMC7565184 DOI: 10.3390/microorganisms8091318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Artisanal kefir is a traditional fermented dairy product made using kefir grains. Kefir has documented natural antimicrobial activity and health benefits. A typical kefir microbial community includes lactic acid bacteria (LAB), acetic acid bacteria, and yeast among other species in a symbiotic matrix. In the presented work, the 16S rRNA gene sequencing was used to reveal bacterial populations and elucidate the diversity and abundance of LAB species in international artisanal kefirs from Fusion Tea, Britain, the Caucuses region, Ireland, Lithuania, and South Korea. Bacterial species found in high abundance in most artisanal kefirs included Lactobacillus kefiranofaciens, Lentilactobacillus kefiri,Lactobacillus ultunensis, Lactobacillus apis, Lactobacillus gigeriorum, Gluconobacter morbifer, Acetobacter orleanensis, Acetobacter pasteurianus, Acidocella aluminiidurans, and Lactobacillus helveticus. Some of these bacterial species are LAB that have been reported for their bacteriocin production capabilities and/or health promoting properties.
Collapse
|
16
|
Laureys D, Britton SJ, De Clippeleer J. Kombucha Tea Fermentation: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1734150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- David Laureys
- Innovation centre for Brewing & Fermentation, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Scott J. Britton
- Department of Research & Development, Brewery Duvel Moortgat, Puurs-Sint-Amands, Belgium
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Jessika De Clippeleer
- Innovation centre for Brewing & Fermentation, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Innovation centre for Brewing & Fermentation, School of Bioscience and Industrial Technology, HOGENT University of Applied Sciences and Arts, Ghent, Belgium
| |
Collapse
|
17
|
Xia X, Dai Y, Wu H, Liu X, Wang Y, Yin L, Wang Z, Li X, Zhou J. Kombucha fermentation enhances the health-promoting properties of soymilk beverage. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103549] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Emiljanowicz KE, Malinowska-Pańczyk E. Kombucha from alternative raw materials - The review. Crit Rev Food Sci Nutr 2019; 60:3185-3194. [PMID: 31657623 DOI: 10.1080/10408398.2019.1679714] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nowadays, people's awareness about the role of diet in maintaining well-being and good health has increased. Consumers expect that the products not only provide them with essential nutrients but will also be a source of biologically active substances, which are beneficial to their health. One of the "healthy trends," which has appeared among the consumers worldwide is kombucha, a tea drink with high antioxidant potential, obtained through the activity of a consortium of acetic acid bacteria and osmophilic yeast, which is also called "tea fungus." Kombucha obtained from tea is characterized by its health-promoting properties. Promising results in in vitro and in vivo studies have prompted research groups from around the world to search for alternative raw materials for tea fungus fermentation. Attempts are made to obtain functional beverages from leaves, herb infusions, vegetable pulp, fruit juices, or milk. This review focuses on describing the progress in obtaining a fermented beverage and bacterial cellulose using tea fungus on alternative raw materials.
Collapse
Affiliation(s)
- Katarzyna Ewa Emiljanowicz
- Department of Chemistry, Technology and Biotechnology of Food, Gdańsk University of Technology, Chemical Faculty, Gdańsk, Poland
| | - Edyta Malinowska-Pańczyk
- Department of Chemistry, Technology and Biotechnology of Food, Gdańsk University of Technology, Chemical Faculty, Gdańsk, Poland
| |
Collapse
|
19
|
Ivanišová E, Meňhartová K, Terentjeva M, Godočíková L, Árvay J, Kačániová M. Kombucha tea beverage: Microbiological characteristic, antioxidant activity, and phytochemical composition. ACTA ALIMENTARIA 2019. [DOI: 10.1556/066.2019.48.3.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- E. Ivanišová
- Department of Plant Storage and Processing, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-949 76. Slovakia
| | - K. Meňhartová
- Department of Plant Storage and Processing, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-949 76. Slovakia
| | - M. Terentjeva
- Institute of Food, Environmental Hygiene, Faculty of Veterinary Medicine, University of Life Sciences and Technology, Jelgava, 8 K. Helmaņa iela, Jelgava, LV-3004. Latvia
| | - L. Godočíková
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-949 76. Slovakia
| | - J. Árvay
- Department of Chemistry, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-949 76. Slovakia
| | - M. Kačániová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-949 76. Slovakia
- Department of Bioenergetics and Food Analysis, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza St. 4, 35-601 Rzeszow. Poland
| |
Collapse
|
20
|
Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Renard T, Rollan S, Taillandier P. Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
García C, Rendueles M, Díaz M. Liquid-phase food fermentations with microbial consortia involving lactic acid bacteria: A review. Food Res Int 2019; 119:207-220. [DOI: 10.1016/j.foodres.2019.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/27/2022]
|
22
|
Anastasova L, Petreska Ivanovska T, Petkovska R, Petrusevska-Tozi L. Concepts, benefits and perspectives of functional dairy food products. MAKEDONSKO FARMACEVTSKI BILTEN 2019. [DOI: 10.33320/maced.pharm.bull.2018.64.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rising awareness of the consumers towards the health benefits of food has resulted in the development of the so-called functional foods. These added value products which refer to prevention and/or therapeutic effects of food beyond its nutritional value, are especially useful for health improvement and reduction of medical care costs. The combination between health and nutrition and its potential to improve the quality of life has become one of the key attention points of consumers who are aware of and are seeking nutritional solutions to their health concerns.
Milk and dairy products have been used in human nutrition for thousands of years, providing important nutrients for the human body such as proteins, fats and calcium. It is now widely recognized that in addition to their basic nutritive role they also exert functional properties beneficial for human health, so the development of functional dairy products is one of the fastest growing areas in the dairy industry as well as one of the largest sectors in the global market of functional foods.
This review provides a brief overview of the health benefits and the natural functionality of dairy products as well as the challenges together with the future perspectives of their application as delivery vehicles for beneficial compounds to the human body.
Keywords: functional foods, milk, dairy products
Collapse
Affiliation(s)
- Liljana Anastasova
- Institute of Applied Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 1000 Skopje, Republic of Macedonia
| | - Tanja Petreska Ivanovska
- Institute of Applied Biochemistry, Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 10000 Skopje, Republic of Macedonia
| | - Rumenka Petkovska
- Institute of Applied Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 1000 Skopje, Republic of Macedonia
| | - Lidija Petrusevska-Tozi
- Institute of Applied Biochemistry, Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 10000 Skopje, Republic of Macedonia
| |
Collapse
|
23
|
Shahbazi H, Hashemi Gahruie H, Golmakani M, Eskandari MH, Movahedi M. Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Sci Nutr 2018; 6:2568-2577. [PMID: 30510759 PMCID: PMC6261221 DOI: 10.1002/fsn3.873] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to evaluate the effects of adding various medicinal plants to kombucha medium and to analyze the changes that occur to its physicochemical, antimicrobial, and sensorial properties. In the first part, measurements were made to determine IC 50 value, total phenolic content, total flavonoid content, minimum inhibitory concentration, pH, organic acids, and sensorial properties of kombucha that contained cinnamon, cardamom, or Shirazi thyme. Results showed that kombucha samples containing cinnamon exhibited higher antioxidant and antimicrobial activities, more organic acids, and better sensorial scores. In the second part, properties of kombucha containing 25%-100% concentrations of cinnamon were evaluated. The result showed that by increasing the cinnamon concentration, certain increases were observed in the amounts of organic acids and in the magnitudes of antioxidants and antimicrobial activities. In conclusion, antioxidant and antimicrobial activities of kombucha can be increased by adding medicinal plants, especially at higher concentrations.
Collapse
Affiliation(s)
- Hossein Shahbazi
- Department of Food Science and TechnologySchool of AgricultureShiraz UniversityShirazIran
| | - Hadi Hashemi Gahruie
- Department of Food Science and TechnologySchool of AgricultureShiraz UniversityShirazIran
| | | | - Mohammad H. Eskandari
- Department of Food Science and TechnologySchool of AgricultureShiraz UniversityShirazIran
| | - Matin Movahedi
- Department of Horticultural ScienceSchool of AgricultureShiraz UniversityShirazIran
| |
Collapse
|
24
|
Martínez Leal J, Valenzuela Suárez L, Jayabalan R, Huerta Oros J, Escalante-Aburto A. A review on health benefits of kombucha nutritional compounds and metabolites. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2017.1410499] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jessica Martínez Leal
- Department of Nutrition, University of Monterrey, San Pedro Garza García, NL, México
| | | | - Rasu Jayabalan
- Food Microbiology and Bioprocess Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Joselina Huerta Oros
- Department of Nutrition, University of Monterrey, San Pedro Garza García, NL, México
| | | |
Collapse
|
25
|
De Roos J, De Vuyst L. Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 2018; 49:115-119. [DOI: 10.1016/j.copbio.2017.08.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022]
|
26
|
Salafzoon S, Mahmoodzadeh Hosseini H, Halabian R. Evaluation of the antioxidant impact of ginger-based kombucha on the murine breast cancer model. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 15:/j/jcim.2018.15.issue-1/jcim-2017-0071/jcim-2017-0071.xml. [PMID: 29055172 DOI: 10.1515/jcim-2017-0071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2023]
Abstract
Background Abnormal metabolism is a common event in cancerous cells. For example, the increase of reactive oxygen species (ROS) production, particularly due to aerobic respiration during invasive stage, results in cancer progression. Herein, the impact of kombucha tea prepared from ginger on the alteration of antioxidant agents was assessed in the breast cancer animal model. Methods Two types of kombucha tea with or without ginger were administered to BALB/c mice before and after tumor challenge. Superoxide dismutase (SOD), catalase, glutathione (GSH) and malondialdehyde (MDA) were evaluated in tumor, liver and kidney. Results Administration of kombucha ginger tea significantly decreased catalase activity as well as GSH and MDA level in tumor homogenate (p<0.001). A significant decrease in SOD activity and increase in MDA quantity was determined in the kidney which had received kombucha ginger tea (p<0.01). Conclusions The consumption of kombucha prepared from ginger could exert minor antioxidant impacts by balancing multi antioxidant factors in different tissues in the breast cancer models.
Collapse
Affiliation(s)
- Samaneh Salafzoon
- Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Halabian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Coton M, Pawtowski A, Taminiau B, Burgaud G, Deniel F, Coulloumme-Labarthe L, Fall A, Daube G, Coton E. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol Ecol 2017; 93:3738478. [DOI: 10.1093/femsec/fix048] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/17/2017] [Indexed: 11/13/2022] Open
|
28
|
Development of a beverage from red grape juice fermented with the Kombucha consortium. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1242-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
29
|
Khoi Nguyen N, Thuy Nguyen H, Le PH. Effects ofLactobacillus caseiand Alterations in Fermentation Conditions on Biosynthesis of Glucuronic Acid by aDekkera bruxellensis-Gluconacetobacter intermediusKombucha Symbiosis Model System. FOOD BIOTECHNOL 2015. [DOI: 10.1080/08905436.2015.1092446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Microbial diversity and their roles in the vinegar fermentation process. Appl Microbiol Biotechnol 2015; 99:4997-5024. [DOI: 10.1007/s00253-015-6659-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
|
31
|
|
32
|
Nguyen NK, Dong NTN, Nguyen HT, Le PH. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha. SPRINGERPLUS 2015; 4:91. [PMID: 25763303 PMCID: PMC4348356 DOI: 10.1186/s40064-015-0872-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/03/2015] [Indexed: 11/10/2022]
Abstract
Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.
Collapse
Affiliation(s)
- Nguyen Khoi Nguyen
- Center of Research and Technology Transfer, International University, Vietnam National University, Ho Chi Minh City, 70000 Vietnam ; School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, 70000 Vietnam
| | - Ngan Thi Ngoc Dong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, 70000 Vietnam
| | - Huong Thuy Nguyen
- Department of Biotechnology, Faculty of Chemical Engineering, University of Technology, Vietnam National University, Ho Chi Minh City, 70000 Vietnam
| | - Phu Hong Le
- Center of Research and Technology Transfer, International University, Vietnam National University, Ho Chi Minh City, 70000 Vietnam ; School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, 70000 Vietnam
| |
Collapse
|
33
|
|
34
|
Jayabalan R, Malbaša RV, Lončar ES, Vitas JS, Sathishkumar M. A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr Rev Food Sci Food Saf 2014; 13:538-550. [DOI: 10.1111/1541-4337.12073] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/07/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Rasu Jayabalan
- Food Microbiology and Bioprocess Laboratory; Dept. of Life Science; Natl. Inst. of Technology; Rourkela 769 008 Odisha India
| | - Radomir V. Malbaša
- Univ. of Novi Sad; Faculty of Technology; Bulevar Cara Lazara 1 21000 Novi Sad Serbia
| | - Eva S. Lončar
- Univ. of Novi Sad; Faculty of Technology; Bulevar Cara Lazara 1 21000 Novi Sad Serbia
| | - Jasmina S. Vitas
- Univ. of Novi Sad; Faculty of Technology; Bulevar Cara Lazara 1 21000 Novi Sad Serbia
| | - Muthuswamy Sathishkumar
- R&D Div; Eureka Forbes Ltd; Schedule No. 42, P-3/C Haralukunte, Kudlu, Bangalore 560068 India
| |
Collapse
|
35
|
Fu C, Yan F, Cao Z, Xie F, Lin J. Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. FOOD SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1590/s0101-20612014005000012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Vīna I, Semjonovs P, Linde R, Deniņa I. Current Evidence on Physiological Activity and Expected Health Effects of Kombucha Fermented Beverage. J Med Food 2014; 17:179-88. [DOI: 10.1089/jmf.2013.0031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ilmāra Vīna
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Microbiology and Biotechnology, University of Latvia, Rīga, Latvia
| | - Pāvels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Microbiology and Biotechnology, University of Latvia, Rīga, Latvia
| | - Raimonds Linde
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Microbiology and Biotechnology, University of Latvia, Rīga, Latvia
| | - Ilze Deniņa
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Microbiology and Biotechnology, University of Latvia, Rīga, Latvia
| |
Collapse
|
37
|
Bhattacharya S, Gachhui R, Sil PC. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food Chem Toxicol 2013; 60:328-340. [PMID: 23907022 DOI: 10.1016/j.fct.2013.07.051] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 01/07/2023]
Abstract
Diabetic complications associated with increased oxidative stress can be suppressed by antioxidants. In the present study we investigated the antidiabetic and antioxidant effects of Kombucha (KT), a fermented black tea, in comparison to that of unfermented black tea (BT), in ALX-induced diabetic rats. ALX exposure lowered the body weight and plasma insulin by about 28.12% and 61.34% respectively and elevated blood glucose level and glycated Hb by about 3.79 and 3.73 folds respectively. The oxidative stress related parameters like lipid peroxidation end products (increased by 3.38, 1.7, 1.65, 1.94 folds respectively), protein carbonyl content (increased by 2.5, 2.35, 1.8, 3.26 folds respectively), glutathione content (decreased by 59.8%, 47.27%, 53.69%, 74.03% respectively), antioxidant enzyme activities were also altered in the pancreatic, hepatic, renal and cardiac tissues of diabetic animals. Results showed significant antidiabetic potential of the fermented beverage (150 mg lyophilized extract/kg bw for 14 days) as it effectively restored ALX-induced pathophysiological changes. Moreover, it could ameliorate DNA fragmentation and caspase-3 activation in the pancreatic tissue of diabetic rats. Although unfermented black tea is effective in the above pathophysiology, KT was found to be more efficient. This might be due to the formation of some antioxidant molecules during fermentation period.
Collapse
Affiliation(s)
- Semantee Bhattacharya
- Department of Life Sciences & Biotechnology, Jadavpur University, 188, Raja SC Mullick Road, Kolkata 700 032, India
| | | | | |
Collapse
|
38
|
Marsh AJ, O'Sullivan O, Hill C, Ross RP, Cotter PD. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol 2013; 38:171-8. [PMID: 24290641 DOI: 10.1016/j.fm.2013.09.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/03/2013] [Accepted: 09/11/2013] [Indexed: 11/17/2022]
Abstract
Kombucha is a sweetened tea beverage that, as a consequence of fermentation, contains ethanol, carbon dioxide, a high concentration of acid (gluconic, acetic and lactic) as well as a number of other metabolites and is thought to contain a number of health-promoting components. The sucrose-tea solution is fermented by a symbiosis of bacteria and yeast embedded within a cellulosic pellicle, which forms a floating mat in the tea, and generates a new layer with each successful fermentation. The specific identity of the microbial populations present has been the focus of attention but, to date, the majority of studies have relied on culture-based analyses. To gain a more comprehensive insight into the kombucha microbiota we have carried out the first culture-independent, high-throughput sequencing analysis of the bacterial and fungal populations of 5 distinct pellicles as well as the resultant fermented kombucha at two time points. Following the analysis it was established that the major bacterial genus present was Gluconacetobacter, present at >85% in most samples, with only trace populations of Acetobacter detected (<2%). A prominent Lactobacillus population was also identified (up to 30%), with a number of sub-dominant genera, not previously associated with kombucha, also being revealed. The yeast populations were found to be dominated by Zygosaccharomyces at >95% in the fermented beverage, with a greater fungal diversity present in the cellulosic pellicle, including numerous species not identified in kombucha previously. Ultimately, this study represents the most accurate description of the microbiology of kombucha to date.
Collapse
Affiliation(s)
- Alan J Marsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Co. Cork, Ireland; Microbiology Department, University College Cork, Co. Cork, Ireland
| | | | | | | | | |
Collapse
|
39
|
Ahmed Z, Wang Y, Ahmad A, Khan ST, Nisa M, Ahmad H, Afreen A. Kefir and Health: A Contemporary Perspective. Crit Rev Food Sci Nutr 2013; 53:422-34. [DOI: 10.1080/10408398.2010.540360] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Gao J, Gu F, Ruan H, Chen Q, He J, He G. Culture Conditions Optimization of Tibetan Kefir Grains by Response Surface Methodology. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2012.04.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|