1
|
Basak F, Kusat T, Kahraman T, Ersan Y. The role of resveratrol in delivering antioxidant, anti-inflammatory, and anti-apoptotic defense against nephrotoxicity generated by titanium dioxide. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03885-7. [PMID: 39992422 DOI: 10.1007/s00210-025-03885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
Titanium dioxide is a prevalent food ingredient for human ingestion. We investigated the nephrotoxic effects of titanium dioxide in Wistar albino rats subjected to oral exposure for 14 days. The rats were categorized into four groups (n = 8): (1) control (saline solution), (2) exposure to titanium dioxide (30 mg/kg), (3) exposure to resveratrol (100 mg/kg), and (4) exposure to both titanium dioxide and resveratrol. The investigations revealed that the administration of titanium dioxide resulted in considerable histological abnormalities and a significant prevalence of apoptotic cells marked by caspase-3 in the titanium dioxide group, with a markedly elevated quantity and strong staining of cells reacting with 4-HN across the tissue in the kidney. Blood serum assessments revealed that BUN and creatinine levels were elevated in the titanium group relative to the other three groups, with a reduction in these levels observed in the group receiving both titanium and resveratrol (P < 0.05). The assessment of oxidative stress markers in kidney tissue revealed that GSH-Px and SOD activity considerably decreased in the titanium dioxide group relative to the other experimental groups. In contrast, MDA levels increased markedly (P < 0.05). The activities of GSH-Px and SOD were significantly elevated in the group receiving both titanium dioxide and resveratrol compared to the titanium dioxide-only group (P < 0.05). The analysis of inflammation markers TNF-α and IL-6 revealed a substantial rise in their levels in the titanium dioxide group compared to the other groups (P < 0.05).
Collapse
Affiliation(s)
- Feyza Basak
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Tansu Kusat
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Tahir Kahraman
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Yusuf Ersan
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| |
Collapse
|
2
|
Rajan SS, Chandran R, Abrahamse H. Overcoming challenges in cancer treatment: Nano-enabled photodynamic therapy as a viable solution. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1942. [PMID: 38456341 DOI: 10.1002/wnan.1942] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Cancer presents a formidable challenge, necessitating innovative therapies that maximize effectiveness while minimizing harm to healthy tissues. Nanotechnology has emerged as a transformative force in cancer treatment, particularly through nano-enabled photodynamic therapy (NE-PDT), which leverages precise and targeted interventions. NE-PDT capitalizes on photosensitizers activated by light to generate reactive oxygen species (ROS) that initiate apoptotic pathways in cancer cells. Nanoparticle enhancements optimize this process, improving drug delivery, selectivity, and ROS production within tumors. This review dissects NE-PDT's mechanistic framework, showcasing its potential to harness apoptosis as a potent tool in cancer therapy. Furthermore, the review explores the synergy between NE-PDT and complementary treatments like chemotherapy, immunotherapy, and targeted therapies, highlighting the potential to amplify apoptotic responses, enhance immune recognition of cancer cells, and inhibit resistance mechanisms. Preclinical and clinical advancements in NE-PDT demonstrate its efficacy across various cancer types. Challenges in translating NE-PDT into clinical practice are also addressed, emphasizing the need for optimizing nanoparticle design, refining dosimetry, and ensuring long-term safety. Ultimately, NE-PDT represents a promising approach in cancer therapy, utilizing the intricate mechanisms of apoptosis to address therapeutic hurdles. The review underscores the importance of understanding the interplay between nanoparticles, ROS generation, and apoptotic pathways, contributing to a deeper comprehension of cancer biology and novel therapeutic strategies. As interdisciplinary collaborations continue to thrive, NE-PDT offers hope for effective and targeted cancer interventions, where apoptosis manipulation becomes central to conquering cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
3
|
Das K, Meena R, Gaharwar US, Priyadarshini E, Rawat K, Paulraj R, Mohanta YK, Saravanan M, Bohidar HB. Bioaccumulation of CdSe Quantum Dots Show Biochemical and Oxidative Damage in Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7707452. [PMID: 37064800 PMCID: PMC10101743 DOI: 10.1155/2023/7707452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/24/2022] [Accepted: 01/19/2023] [Indexed: 04/09/2023]
Abstract
Cadmium selenium quantum dots (CdSe QDs) with modified surfaces exhibit superior dispersion stability and high fluorescence yield, making them desirable biological probes. The knowledge of cellular and biochemical toxicity has been lacking, and there is little information on the correlation between in vitro and in vivo data. The current study was carried out to assess the toxicity of CdSe QDs after intravenous injection in Wistar male rats (230 g). The rats were given a single dose of QDs of 10, 20, 40, and 80 mg/kg and were kept for 30 days. Following that, various biochemical assays, hematological parameters, and bioaccumulation studies were carried out. Functional as well as clinically significant changes were observed. There was a significant increase in WBC while the RBC decreased. This suggested that CdSe quantum dots had inflammatory effects on the treated rats. The various biochemical assays clearly showed that high dose induced hepatic injury. At a dose of 80 mg/kg, bioaccumulation studies revealed that the spleen (120 g/g), liver (78 g/g), and lungs (38 g/g) accumulated the most. In treated Wistar rats, the bioretention profile of QDs was in the following order: the spleen, liver, kidney, lungs, heart, brain, and testis. The accumulation of these QDs induced the generation of intracellular reactive oxygen species, resulting in an alteration in antioxidant activity. It is concluded that these QDs caused oxidative stress, which harmed cellular functions and, under certain conditions, caused partial brain, kidney, spleen, and liver dysfunction. This is one of the most comprehensive in vivo studies on the nanotoxicity of CdSe quantum dots.
Collapse
Affiliation(s)
- Kishan Das
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramovatar Meena
- School of Environment Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Usha Singh Gaharwar
- School of Environment Sciences, Jawaharlal Nehru University, New Delhi, India
- Swami Shraddhanand College, University of Delhi, Delhi, India
| | | | - Kamla Rawat
- Department of Chemistry, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi, India
| | - R. Paulraj
- School of Environment Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Baridua-793101, Ri-Bhoi Dist., Meghalaya, India
| | - Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University, Tigray, Ethiopia
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077 Chennai, India
| | - Himadri B. Bohidar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Habibi P, Ostad SN, Monazzam MR, Foroushani AR, Ghazi-Khansari M, Aliebrahimi S, Montazeri V, Golbabaei F. Thermal stress and TiO 2 nanoparticle-induced oxidative DNA damage and apoptosis in mouse hippocampus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90128-90139. [PMID: 35864393 DOI: 10.1007/s11356-022-21796-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide (nano-TiO2) is used abundantly in various industrial products and novel medical therapies. In addition, the impact of climate change on the health and safety will undoubtedly increase in the future. However, the effects of exposure to these nanoparticles and heat stress on hippocampal DNA damage and apoptosis remain unclear. This study was conducted to evaluate the DNA damage and apoptosis in the hippocampal tissue and the physiological responses in mice induced by intraperitoneal (i.p.) administration of TiO2 nanoparticles (NPs) and heat stress for 14 consecutive days. The results showed that heat stress and TiO2-NPs were induced in the mouse hippocampus that led to hippocampal reactive oxygen species generation, oxidative damage of DNA, and apoptosis in a partly dose-dependent manner, especially at very hot temperature. High doses of nanosized TiO2 and severe heat stress significantly damaged the function of the hippocampus, as shown in the comet assay and apoptosis tests. The results of this study may provide data for appropriate measures to control and assess the risk of nano-TiO2 and thermal stress hazards to human health, especially workers. Safety guidelines and policies should be considered when handling nanomaterials in a hot environment.
Collapse
Affiliation(s)
- Peymaneh Habibi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Toxicology and Poisoning Research Centre, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Monazzam
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Aliebrahimi
- Department of Medical Education, Virtual University of Medical Sciences, Tehran, Iran
| | - Vahideh Montazeri
- Department of Clinical Pharmacy, Virtual University of Medical Sciences, Tehran, Iran
| | - Farideh Golbabaei
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regul Toxicol Pharmacol 2022; 136:105263. [DOI: 10.1016/j.yrtph.2022.105263] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
|
6
|
Sathiyaseelan A, Saravanakumar K, Naveen KV, Han KS, Zhang X, Jeong MS, Wang MH. Combination of Paraconiothyrium brasiliense fabricated titanium dioxide nanoparticle and antibiotics enhanced antibacterial and antibiofilm properties: A toxicity evaluation. ENVIRONMENTAL RESEARCH 2022; 212:113237. [PMID: 35405134 DOI: 10.1016/j.envres.2022.113237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance (AMR) causes global consequences through increased mortality and economic loss. Antimicrobial drugs including nanomaterials are an emerging environmental impact. Hence, this work aimed to synthesize and characterize the titanium dioxide nanoparticles (TiO2 NPs) using the aqueous extract of endophytic fungus Paraconiothyrium brasiliense (Pb) for enhancing the antibacterial efficiency of existing standard antibiotics at minimum concentration. The FTIR and XRD results confirmed the capping of functional molecules and the crystalline nature of Pb-TiO2 NPs. The spherical-shaped TiO2 NPs with the size of 57.39 ± 13.65 nm were found in TEM analysis. The average hydrodynamic size (68.43 ± 1.49 d. nm) and the zeta potential (-19.6 ± 1.49 mV) was confirmed the stability of Pb-TiO2 NPs. Antibacterial studies revealed that bare Pb-TiO2 NPs (20 μg/mL) did not exhibit significant antibacterial activity while combination of TCH + Pb-TiO2 NPs considerably increased the inhibition of E. coli biofilm evidenced by CLSM and SEM analysis. Further, Pb-TiO2 NPs (100 μg/mL) were found to be moderately toxic to cell line (NIH3T3), red blood cells (RBC), and egg embryos. Hence, this study concluded that <50 μg/mL of TiO2 NPs can be mixed with antibiotics for enhanced antibacterial application thereby minimizing the AMR and the environmental toxicity.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Ki-Seok Han
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Myeong Seon Jeong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea; Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
7
|
Gamedze NP, Mthiyane DMN, Babalola OO, Singh M, Onwudiwe DC. Physico-chemical characteristics and cytotoxicity evaluation of CuO and TiO 2 nanoparticles biosynthesized using extracts of Mucuna pruriens utilis seeds. Heliyon 2022; 8:e10187. [PMID: 36033256 PMCID: PMC9404262 DOI: 10.1016/j.heliyon.2022.e10187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
The green synthesis approach to nanoparticles has been widely received as an alternative to the conventional methods, specifically for applications in areas such as biology, agriculture and medicine, where toxicity is of great concern. In this study, copper oxide (CuO) and titanium oxide (TiO2) nanoparticles (NPs) were synthesized using an aqueous extract of Mucuna pruriens utilis seed. The morphology and structural characterization of the NPs were achieved by using scanning and transmission electron microscopy (SEM and TEM), and X-ray diffraction (XRD) measurement, while the elemental composition was studied using electron diffraction X-ray spectroscopy (EDS). A monoclinic phase of CuO and anatase phases of TiO2 with high crystallinity were confirmed from the diffraction patterns of the XRD. Both TEM and SEM micrographs of the CuO confirmed short rod-shaped nanostructure, while spherical morphologies were obtained for the TiO2 NPs. The EDS study indicated that the composition of the samples conformed with the identified products in the XRD and attest to the purity of the NPs. The nanoparticles exhibited a dose-dependent profile in MTT cytotoxicity assay with some cell specificity. However, the anticancer potential of these NPs was still lower than that of the standard anticancer drug, 5-fluorouracil.
Collapse
Affiliation(s)
- Nozipho P Gamedze
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.,Food Security and Safety Focus area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Doctor Mziwenkosi Nhlanhla Mthiyane
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.,Food Security and Safety Focus area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Department of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Damian C Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.,Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| |
Collapse
|
8
|
Du YD, Zhang XQ, Shu L, Feng Y, Lv C, Liu HQ, Xu F, Wang Q, Zhao CC, Kong Q. Safety evaluation and ibuprofen removal via an Alternanthera philoxeroides-based biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40568-40586. [PMID: 32564323 DOI: 10.1007/s11356-020-09714-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) are a representative class of emerging contaminants. This study aimed to investigate the PPCP removal performance and application safety of a biochar fabricated using the invasive plant Alternanthera philoxeroides (APBC). According to scanning electron microscopy and pore size analyses, APBC exhibited a porous structure with a specific surface area of 857.5 m2/g. A Fourier transform infrared spectroscopy analysis indicated the presence of surface functional groups, including phosphorus-containing groups, C=O, C=C, and -OH. The adsorption experiment showed that the maximum removal efficiency of ibuprofen was 97% at an initial concentration of 10 mg/L and APBC dosage of 0.8 g/L. The adsorption kinetics were fitted by the pseudo-second-order model with the highest correlation coefficient (R2 = 0.9999). The adsorption isotherms were well described by the Freundlich model (R2 = 0.9896), which indicates a dominant multilayer adsorption. The maximum adsorption capacity of APBC was 172 mg/g. A toxicity evaluation, based on Chlorella pyrenoidosa and human epidermal BEAS-2B cells, was carried out using a spectrum analysis, thiazolyl blue tetrazolium bromide assay, and flow cytometry. The results of the above showed the low cytotoxicity of APBC and demonstrated its low toxicity in potential environmental applications.
Collapse
Affiliation(s)
- Yuan-da Du
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xin-Qian Zhang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Li Shu
- School of Engineering, RMIT University, 402 Swanston Street, Melbourne, VIC, 3000, Australia
| | - Yu Feng
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cui Lv
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Hong-Qiang Liu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Fei Xu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cong-Cong Zhao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China.
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
9
|
Wani MR, Maheshwari N, Shadab G. Eugenol attenuates TiO 2 nanoparticles-induced oxidative damage, biochemical toxicity and DNA damage in Wistar rats: an in vivo study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22664-22678. [PMID: 33420693 DOI: 10.1007/s11356-020-12139-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in food, edible dyes, and other commercial products. Human exposure to TiO2 NPs has raised concerns regarding their toxic potential. Various studies have evaluated the TiO2 NPs-induced toxicity, oxidative damage to the cellular components, and genotoxicity. In the present study, we examined whether co-treatment with the dietary antioxidant eugenol can attenuate or protect against TiO2 NPs-induced toxicity. We exposed the adult male Wistar rats to TiO2 NPs (150 mg/kg body weight) by intraperitoneal injection (i.p.) either alone or as co-treatment with eugenol (1-10 mg/kg body weight) once a day for 14 days. The untreated rats were supplied saline and served as control. Titanium (Ti) accumulation in various tissues was analyzed by inductively coupled plasma mass spectrometry. Serum levels of liver and kidney biomarkers and oxidative stress markers in the liver, kidney, and spleen were determined. A significant increase in hydrogen peroxide level confirmed that oxidative stress occurred in these tissues. TiO2 NPs induced oxidation of lipids, and decreased glutathione level and antioxidant enzyme activity in the kidney, liver, and spleen of treated rats. TiO2 NPs also increased the serum levels of alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, albumin, and total cholesterol and decreased the blood urea nitrogen, uric acid, and total bilirubin in serum, which indicates oxidative damage to the liver and kidney. In eugenol and TiO2 NPs co-treated rats, all these changes were mitigated. Single-cell gel electrophoresis (comet assay) of lymphocytes showed longer comet tail length in TiO2 NPs-treated groups, indicating DNA damage while tail length was reduced in eugenol and TiO2 NPs co-treated groups. Thus, it seems that eugenol can be used as a chemoprotective agent against TiO2 NPs-induced toxicity.
Collapse
Affiliation(s)
- Mohammad Rafiq Wani
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Ghulam Shadab
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
10
|
Asghari A, Hosseini M, Khordad E, Alipour F, Marefati N, Ebrahimzadeh Bideskan A. Hippocampal apoptosis of the neonates born from TiO 2nanoparticles-exposed rats is mediated by inducible nitric oxide synthase. TOXIN REV 2021; 40:162-171. [DOI: 10.1080/15569543.2019.1570269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Amir Asghari
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Khordad
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
11
|
Adhikari A, Mondal S, Das M, Biswas P, Pal U, Darbar S, Bhattacharya SS, Pal D, Saha‐Dasgupta T, Das AK, Mallick AK, Pal SK. Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model. Adv Healthc Mater 2021; 10:e2001736. [PMID: 33326181 DOI: 10.1002/adhm.202001736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Indexed: 12/11/2022]
Abstract
The potentiality of nano-enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese-based biocompatible nanoscale material (C-Mn3 O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2 O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C-Mn3 O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non-toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Susmita Mondal
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Monojit Das
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
- Department of Zoology Vidyasagar University Rangamati 721102 India
| | - Pritam Biswas
- Department of Microbiology St. Xavier's College 30, Mother Teresa Sarani Kolkata 700016 India
| | - Uttam Pal
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Soumendra Darbar
- Research & Development Division Dey's Medical Stores (Mfg.) Ltd 62, Bondel Road, Ballygunge Kolkata 700019 India
| | | | - Debasish Pal
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
| | - Tanusri Saha‐Dasgupta
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
- Department of Condensed Matter Physics and Material Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Anjan Kumar Das
- Department of Pathology Coochbehar Govt. Medical College and Hospital Silver Jubilee Road Cooch Behar 736101 India
| | - Asim Kumar Mallick
- Department of Pediatric Medicine Nil Ratan Sircar Medical College and Hospital 138, Acharya Jagadish Chandra Bose Road, Sealdah Kolkata 700014 India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| |
Collapse
|
12
|
Application of Selected Nanomaterials and Ozone in Modern Clinical Dentistry. NANOMATERIALS 2021; 11:nano11020259. [PMID: 33498453 PMCID: PMC7909445 DOI: 10.3390/nano11020259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
This review is an attempt to summarize current research on ozone, titanium dioxide (TiO2), silver (Ag), copper oxide CuO and platinum (Pt) nanoparticles (NPs). These agents can be used in various fields of dentistry such as conservative dentistry, endodontic, prosthetic or dental surgery. Nanotechnology and ozone can facilitate the dentist’s work by providing antimicrobial properties to dental materials or ensuring a decontaminated work area. However, the high potential of these agents for use in medicine should be confirmed in further research due to possible side effects, especially in long duration of observation so that the best way to apply them can be obtained.
Collapse
|
13
|
Ji J, Zhou Y, Hong F, Ze Y, Fan D, Zhang X. Molecular mechanism of mice gastric oxidative damage induced by nanoparticulate titanium dioxide. Toxicol Res (Camb) 2021; 10:60-67. [PMID: 33613973 DOI: 10.1093/toxres/tfaa086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022] Open
Abstract
Background Nanoparticulate titanium dioxide (Nano-TiO2) has been widely used in food industry, and it has been demonstrated to have adverse effects on mice and human stomach, but its mechanism is rarely concerned. The aim of this study is to determine the effects of nano-TiO2 on the stomach and confirm the role of oxidative stress and apoptosis in the mice gastric damage caused by nano-TiO2, as well as its molecular mechanisms. Methods Mice were continuously exposed to nano-TiO2 with 1.25, 2.5 and 5 mg/kg bw by intragastric administration for 9 months in the present study. The ultrastructure, levels of reactive oxygen species (ROS) and peroxides, activities of antioxidant enzymes and mitochondria-related enzymes, ATP contents as well as apoptosis-related factors expression in mice stomach were examined. Results Oxidative stress, apoptosis and nano-TiO2 aggregation were found in gastric mucosal smooth muscle cells after nano-TiO2 exposure. Nano-TiO2 exposure also resulted in the over-production of ROS and peroxides, decrease of ATP production and activities of antioxidant enzymes and mitochondria-related ATPases, upregulation of apoptosis-related factors including γH2AX, Cyt c, caspase 3, and p-JNK expression, and down-regulation of Bcl-2 expression in mice stomach. Conclusions The gastric toxicity of mice induced by chronic exposure to low dose nano-TiO2 may be associated with oxidative stress and mitochondria-mediated apoptosis in mice.
Collapse
Affiliation(s)
- Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Yuguan Ze
- School of Basic Medicine and Biological Sciences of Soochow University, Suzhou 215123, China
| | - Dongxue Fan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Xingxiang Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| |
Collapse
|
14
|
Anticancer Properties of Platinum Nanoparticles and Retinoic Acid: Combination Therapy for the Treatment of Human Neuroblastoma Cancer. Int J Mol Sci 2020; 21:ijms21186792. [PMID: 32947930 PMCID: PMC7554966 DOI: 10.3390/ijms21186792] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. The different treatments available for neuroblastoma are challenged by high rates of resistance, recurrence, and progression, most notably in advanced cases and highly malignant tumors. Therefore, the development of more targeted therapies, which are biocompatible and without undesired side effects, is highly desirable. The mechanisms of actions of platinum nanoparticles (PtNPs) and retinoic acid (RA) in neuroblastoma have remained unclear. In this study, the anticancer effects of PtNPs and RA on neuroblastoma were assessed. We demonstrated that treatment of SH-SY5Y cells with the combination of PtNPs and RA resulted in improved anticancer effects. The anticancer effects of the two compounds were mediated by cytotoxicity, oxidative stress (OS), mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and apoptosis-associated networks. Cytotoxicity was confirmed by leakage of lactate dehydrogenase (LDH) and intracellular protease, and oxidative stress increased the level of reactive oxygen species (ROS), 4-hydroxynonenal (HNE), malondialdehyde (MDA), and nitric oxide (NO), and protein carbonyl content (PCC). The combination of PtNPs and RA caused mitochondrial dysfunction by decreasing the mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, number of mitochondria, and expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Endoplasmic reticulum-mediated stress and apoptosis were confirmed by upregulation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), activating transcription factor 4 (ATF4), p53, Bax, and caspase-3 and down regulation of B-cell lymphoma 2 (BCl-2). PtNPs and RA induced apoptosis, and oxidative DNA damage was evident by the accumulation of 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG). Finally, PtNPs and RA increased the differentiation and expression of differentiation markers. Differentiated SH-SY5Y cells pre-treated with PtNPs or RA or the combination of both were more sensitive to the cytotoxic effect of cisplatin than undifferentiated cells. To our knowledge, this is the first study to demonstrate the effect of the combination of PtNPs and RA in neuroblastoma cells. PtNPs may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. The results of this study provide a rationale for clinical evaluation of the combination of PtNPs and RA for the treatment of children suffering from high-risk neuroblastoma.
Collapse
|
15
|
Han B, Pei Z, Shi L, Wang Q, Li C, Zhang B, Su X, Zhang N, Zhou L, Zhao B, Niu Y, Zhang R. TiO 2 Nanoparticles Caused DNA Damage in Lung and Extra-Pulmonary Organs Through ROS-Activated FOXO3a Signaling Pathway After Intratracheal Administration in Rats. Int J Nanomedicine 2020; 15:6279-6294. [PMID: 32904047 PMCID: PMC7449758 DOI: 10.2147/ijn.s254969] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/17/2020] [Indexed: 01/01/2023] Open
Abstract
Introduction Because of the increased production and application of manufactured Nano-TiO2 in the past several years, it is important to investigate its potential hazards. TiO2 is classified by IARC as a possible human carcinogen; however, the potential mechanism of carcinogenesis has not been studied clearly. The present study aimed to investigate the mechanism of DNA damage in rat lung and extra-pulmonary organs caused by TiO2nanoparticles. Methods In the present study, SD rats were exposed to Nano-TiO2 by intratracheal injection at a dose of 0, 0.2, or 1 g/kg body weight. The titanium levels in tissues were detected by ICP-MS. Western blot was used to detect the protein expression levels. The DNA damage and oxidative stress were detected by comet assay and ROS, MDA, SOD, and GSH-Px levels, respectively. Results The titanium levels of the 1 g/kg group on day-3 and day-7 were significantly increased in liver and kidney as well as significantly decreased in lung compared to day-1. ROS and MDA levels were statistically increased, whereas SOD and GSH-Px levels were statistically decreased in tissues of rats in dose-dependent manners after Nano-TiO2 treatment. PI3K, p-AKT/AKT, and p-FOXO3a/FOXO3a in lung, liver, and kidney activated in dose-dependent manners. The levels of DNA damage in liver, kidney, and lung in each Nano-TiO2 treatment group were significantly increased and could not recover within 7 days. GADD45α, ChK2, and XRCC1 in liver, kidney, and lung of rats exposed to Nano-TiO2 statistically increased, which triggered DNA repair. Conclusion This work demonstrated that Ti could deposit in lung and enter extra-pulmonary organs of rats and cause oxidative stress, then trigger DNA damage through activating the PI3K-AKT-FOXO3a pathway and then promoting GADD45α, ChK2, and XRCC1 to process the DNA repair.
Collapse
Affiliation(s)
- Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Zijie Pei
- Department of Pathology, Medical School, China Three Gorge University, Yichang 443002, People's Republic of China
| | - Lei Shi
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Qian Wang
- Experimental Center, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Chen Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Boyuan Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Xuan Su
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Ning Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Lixiao Zhou
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Bo Zhao
- Department of Laboratory Diagnosis, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| |
Collapse
|
16
|
Biola-Clier M, Gaillard JC, Rabilloud T, Armengaud J, Carriere M. Titanium Dioxide Nanoparticles Alter the Cellular Phosphoproteome in A549 Cells. NANOMATERIALS 2020; 10:nano10020185. [PMID: 31973118 PMCID: PMC7074930 DOI: 10.3390/nano10020185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/02/2022]
Abstract
TiO2 nanoparticles (NPs) are one of the most produced NPs worldwide and are used in many consumer products. Their impact on human health, especially through inhalation, has been studied for more than two decades. TiO2 is known for its strong affinity towards phosphates, and consequently interaction with cellular phosphates may be one of the mechanisms driving its toxicity. In the present study, we used a phosphoproteomics approach to document the interaction of TiO2-NP with phosphoproteins from A549 human pulmonary alveolar epithelial cells. Cells were exposed to 21 nm anatase/rutile TiO2-NPs, then their phosphopeptides were extracted and analyzed using shotgun proteomics. By comparing the phosphoprotein content, phosphorylation status and phosphorylation sites of exposed cells with that of control cells, our results show that by affecting the phosphoproteome, TiO2-NPs affect cellular processes such as apoptosis, linked with cell cycle and the DNA damage response, TP53 being central to these pathways. Other pathways including inflammation and molecular transport are also affected. These molecular mechanisms of TiO2-NP toxicity have been reported previously, our study shows for the first time that they may derive from phosphoproteome modulation, which could be one of their upstream regulators.
Collapse
Affiliation(s)
| | - Jean-Charles Gaillard
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France;
| | - Thierry Rabilloud
- Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, IRIG-DIESE-LCBM-ProMD, F-38054 Grenoble, France;
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France;
- Correspondence: (J.A.); (M.C.)
| | - Marie Carriere
- Univ. Grenoble-Alpes, IRIG, SyMMES, CIBEST, F-38000 Grenoble, France;
- Correspondence: (J.A.); (M.C.)
| |
Collapse
|
17
|
Yu S, Mu Y, Zhang X, Li J, Lee C, Wang H. Molecular mechanisms underlying titanium dioxide nanoparticles (TiO 2NP) induced autophagy in mesenchymal stem cells (MSC). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:997-1008. [PMID: 31718501 DOI: 10.1080/15287394.2019.1688482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The bone marrow is one of the target tissues for titanium dioxide nanoparticles (TiO2NP) following environmental exposure. At present, the consequences of TiO2NP exposure in bone are not well known. The aim of this study was to investigate the effects of TiO2NP on mesenchymal stem cells (MSCs) and potential underlying mechanisms. Mesenchymal bone marrow-derived cells were cultured and treated with various concentrations of TiO2NP. Results showed that TiO2NP incubation produced cytotoxicity as evidenced by reduced cell viability. Using Western blotting TiO2NP was found to increase autophagy as determined by elevation in ratio of LC3-II from LC3-I without evidence of necrotic cell death as estimated by lactic dehydrogenase (LDH) level. TiO2NP produced a rise in intracellular reactive oxygen species (ROS) levels. The observed alterations in autophagy and oxidant stress were associated with upregulation of protein expression of p38, JNK, and ERK. Data indicate that TiO2NP-mediated decrease in MSC survival involves a complex series of events associated stimulation of mitogen-activated protein kinase (MAPK) pathway and consequent autophagy and oxidative damage.
Collapse
Affiliation(s)
- Shunbang Yu
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Yongping Mu
- Tumor Molecular Diagnostic Laboratory, Department of Clinical Laboratory Centre, The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xudong Zhang
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Jian Li
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, US
| | - Charles Lee
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Singapore
| | - He Wang
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| |
Collapse
|
18
|
Ishida N, Hosokawa Y, Imaeda T, Hatanaka T. Reduction of the Cytotoxicity of Copper (II) Oxide Nanoparticles by Coating with a Surface-Binding Peptide. Appl Biochem Biotechnol 2019; 190:645-659. [PMID: 31422560 DOI: 10.1007/s12010-019-03108-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
Copper (II) oxide nanoparticles (CuO-NPs) have been studied as potential antimicrobial agents, similar to silver or platinum nanoparticles. However, the use of excess NPs is limited by their safety and toxicity in beneficial microflora and human cells. In this study, we evaluated the cytotoxicity of CuO-NPs by coating with a novel cyclic peptide, CuO binding peptide 1 (CuBP1), cyclic-SCATPFSPQVCS, which binds to the surface of CuO-NPs. CuBP1 was identified using biopanning of a T7 phage display system and was found to promote the aggregation of CuO-NPs under mild conditions. The treated CuO-NPs with CuBP1 caused the reduction of the cytotoxicity against Escherichia coli, Lactobacillus helveticus, and five other microorganisms, including bacteria and eukaryotes. Similar effects were also demonstrated against human embryonic kidney (HEK293) cells in vitro. Our findings suggested that the CuO-NPs coated with a surface-binding peptide may have applications as a safe antimicrobial agent without excessive cytotoxic activity against beneficial microflora and human cells. Moreover, a similar tendency may be achieved with other metal particles, such as silver or platinum NPs, by using optimal metal binding peptides.
Collapse
Affiliation(s)
- Nobuhiro Ishida
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Yoichi Hosokawa
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Takao Imaeda
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Takaaki Hatanaka
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
19
|
Kim H, Jeon D, Oh S, Nam K, Son S, Gye MC, Shin I. Titanium dioxide nanoparticles induce apoptosis by interfering with EGFR signaling in human breast cancer cells. ENVIRONMENTAL RESEARCH 2019; 175:117-123. [PMID: 31112848 DOI: 10.1016/j.envres.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Titanium dioxide nanoparticles, due to their smaller size and increased surface area comparted to the bulk form, are known to be bioreactive and have unexpected toxicological outcomes. Previous studies have shown that nanoscale titanium dioxide induces reactive oxygen species (ROS)-mediated cytotoxicity and genotoxicity. Although many reports have discussed the ROS-mediated cytotoxic effects of titanium dioxide nanoparticles (TiO2-NPs), their effects on the receptor-ligand association are unknown. In this study, the possibility that TiO2-NPs can interfere with the receptor-ligand binding was assessed by monitoring alterations in the phosphorylation status of proteins downstream of the epidermal growth factor receptor (EGFR) signaling cascade. TiO2-NPs blocked ligand-induced EGFR autophosphorylation, leading to the deactivation of EGFR downstream effectors such as Akt and extracellular signal-regulated kinase signaling, inducing cell death.
Collapse
Affiliation(s)
- Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Donghwan Jeon
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sunhwa Oh
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - KeeSoo Nam
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea; Natural Science Institute, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
20
|
Li C, Zhang W, Yang N, Zhang QS. Fabrication of Organic Hec Nanocomposites Modified with Lysine as a Potential Adsorbent for Bilirubin Removal. Appl Biochem Biotechnol 2019; 188:769-786. [PMID: 30684241 DOI: 10.1007/s12010-019-02959-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
As one of the typical phyllosilicate clays, hectorite (Hec) has some excellent characteristics and has been greatly applied in adsorption field for the removal of dye, endotoxin, etc. In this study, organic Hec nanocomposites modified with L-Lysine (Lys/Hec NCs) were prepared via solution intercalation method for BR removal. The effects of ionic strength, pH values, initial concentration of BR, and BSA concentration on the adsorption capacity for BR of Lys/Hec NCs were investigated. Results indicated that the adsorption capacity for BR of nanocomposites could reach 40 mg/g when the initial bilirubin concentration was 200 mg/L. However, the adsorption amount of Lys/Hec NCs decreased with increasing the concentration of BSA, but Lys/Hec NCs could still maintain a higher adsorption rate. The adsorption kinetics and adsorption isotherms indicated that the adsorption process of Lys/Hec NCs agreed well with the pseudo-second-order model and the Langmuir isotherm, respectively. Moreover, Lys/Hec NCs also exhibited excellent cytocompatibility. These obtained results demonstrate that Lys/Hec NCs prepared in this study had great potential to be used in hemoperfusion.
Collapse
Affiliation(s)
- Chan Li
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Wen Zhang
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, China.
| | - Ning Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF, Tianjin, 300162, China
| | - Qing Song Zhang
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, China
| |
Collapse
|
21
|
Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DÖ, Hosseini A, Rahmati M, Dini L, Hussain S, Mandegary A, Klionsky DJ. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 2019; 15:4-33. [PMID: 30160607 PMCID: PMC6287681 DOI: 10.1080/15548627.2018.1509171] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022] Open
Abstract
Nanomaterials have gained a rapid increase in use in a variety of applications that pertain to many aspects of human life. The majority of these innovations are centered on medical applications and a range of industrial and environmental uses ranging from electronics to environmental remediation. Despite the advantages of NPs, the knowledge of their toxicological behavior and their interactions with the cellular machinery that determines cell fate is extremely limited. This review is an attempt to summarize and increase our understanding of the mechanistic basis of nanomaterial interactions with the cellular machinery that governs cell fate and activity. We review the mechanisms of NP-induced necrosis, apoptosis and autophagy and potential implications of these pathways in nanomaterial-induced outcomes. Abbreviations: Ag, silver; CdTe, cadmium telluride; CNTs, carbon nanotubes; EC, endothelial cell; GFP, green fluorescent protein; GO, graphene oxide; GSH, glutathione; HUVECs, human umbilical vein endothelial cells; NP, nanoparticle; PEI, polyethylenimine; PVP, polyvinylpyrrolidone; QD, quantum dot; ROS, reactive oxygen species; SiO2, silicon dioxide; SPIONs, superparamagnetic iron oxide nanoparticles; SWCNT, single-walled carbon nanotubes; TiO2, titanium dioxide; USPION, ultra-small super paramagnetic iron oxide; ZnO, zinc oxide.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Deniz Özkan Vardar
- Sungurlu Vocational High School, Health Programs, Hitit University, Corum, Turkey
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Salik Hussain
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, School of Medicine, Morgantown, WV, USA
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
22
|
Gabelova A, Kozics K, Kapka-Skrzypczak L, Kruszewski M, Sramkova M. Nephrotoxicity: Topical issue. Mutat Res 2018; 845:402988. [PMID: 31561894 DOI: 10.1016/j.mrgentox.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022]
Abstract
Drug-induced kidney injury is one of the most significant adverse events and dose limiting factor in chemotherapy as well a major cause of prospective drug attrition during pharmaceutical development. Moreover, kidney injury can also occur as a consequence of exposures to environmental xenobiotics such as heavy metals, fungal toxins and nanomaterials. The lack of adequate in vitro human kidney models that mimic more realistically the in vivo conditions and the absence of suitable and robust, cost-effective and predictive cell-based in vitro assays contribute to an underestimation of the kidney toxic potential of new drugs and xenobiotics. Therefore, a rapid screening system capable to detect potential nephrotoxicity at early stages of drug discovery is an urgent need. Here we provide an overview of human cell lines currently used as a surrogate in vitro kidney models in nephrotoxicity studies, including their advantages and limitations. In addition, the capacity of the single cell gel electrophoresis (SCGE)/comet assay as a potential tool in kidney toxicants screening is discussed. Despite a limited number of studies using the comet assay to evaluate the drug-induced kidney damage potential, a considerable variability in SCGE methodology (e.g. lysis, unwinding, and electrophoresis conditions) has been observed. Before the comet assay can be included in nephrotoxicity testing, a basic guideline has to be developed. To test its feasibility, additional in vitro experiments including inter-laboratory validation studies based on this guideline have to be performed.
Collapse
Affiliation(s)
- Alena Gabelova
- Cancer Research Institute, Biomedical Research Center SAS, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Katarina Kozics
- Cancer Research Institute, Biomedical Research Center SAS, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, Sucharskiego 2, 35-225, Rzeszów, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, Sucharskiego 2, 35-225, Rzeszów, Poland; Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Monika Sramkova
- Cancer Research Institute, Biomedical Research Center SAS, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
23
|
Chen L, Wu LY, Yang WX. Nanoparticles induce apoptosis via mediating diverse cellular pathways. Nanomedicine (Lond) 2018; 13:2939-2955. [DOI: 10.2217/nnm-2018-0167] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With a special size and structure, nanoparticles (NPs) have excellent application prospects in various fields and are widely used in the biomedicine, cosmetics and chemical industries nowadays. However, there have been some reports on the biosafety of this new type of material, pointing out its cytotoxicity in inducing apoptosis. With different physicochemical properties in size, shape, surface charge, and ligand, NPs exhibit different biocompatibilities when interacting with different cells. Therefore, a comprehensive and deep study into the proapoptotic mechanism of NPs is necessary. In the present review, we summarize the NP-triggered apoptotic signal pathways in detail and highlight some important functional molecules involved. We hope our findings and perspectives provide a new direction for the sound development of nanotechnology in the future.
Collapse
Affiliation(s)
- Liang Chen
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liu-Yun Wu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Dai X, Liu R, Li N, Yi J. Titanium dioxide nanoparticles induce in vitro autophagy. Hum Exp Toxicol 2018; 38:56-64. [DOI: 10.1177/0960327118777849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aim: Concerns about the possible toxicity to environment and human health of titanium dioxide nanoparticles (TiO2 NPs) are increasing. The aim of this study was to investigate the relationship between toxicology and autophage in vitro. Methods: RAW 264.7 cells were exposed to five concentrations (50, 100, 200, 300, and 400 μg/mL) and two particle size of TiO2 NPs (30 and 100 nm) for 24 h. Results: The results showed that TiO2 NPs decreased cell viability, phagocytic rate, and phagocytic index in a concentration-dependent manner, thereby inducing autophagy. TiO2 NPs-induced autophagy was indicated by monodansyl cadaverine staining and transmission electron microscopy. TiO2 NPs-induced messenger RNA expression of autophagy-related proteins LC3 and Beclin-1 was also significantly increased compared with those of the unexposed control cells. LC3 and Beclin-1 protein expression levels were markedly increased with the increase of TiO2 NPs concentrations. Conclusion: These results suggest the possibility that TiO2 NPs-induced toxicology probably plays a key role in autophagy in RAW 264.7 cells, and further exhaustive research on the harmful effects of these NPs in relevant organisms is needed for their safe application.
Collapse
Affiliation(s)
- X Dai
- Department of Environment and Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| | - R Liu
- Department of Environment and Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| | - N Li
- Department of Environment and Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| | - J Yi
- Department of Environment and Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
25
|
Charles S, Jomini S, Fessard V, Bigorgne-Vizade E, Rousselle C, Michel C. Assessment of the in vitro genotoxicity of TiO2 nanoparticles in a regulatory context. Nanotoxicology 2018; 12:357-374. [DOI: 10.1080/17435390.2018.1451567] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sandrine Charles
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Stéphane Jomini
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Valérie Fessard
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Laboratoire de Fougères, Unité Toxicologie des Contaminants, Javené, France
| | - Emilie Bigorgne-Vizade
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Christophe Rousselle
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Cécile Michel
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| |
Collapse
|
26
|
Cytotoxicity and immunomodulatory effects of sol-gel combustion based titanium dioxide (TiO 2 ) particles of large surface area on RAW 264.7 macrophages. Toxicol In Vitro 2017; 43:92-103. [DOI: 10.1016/j.tiv.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 01/23/2023]
|
27
|
Gaharwar US, Meena R, Rajamani P. Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. J Appl Toxicol 2017; 37:1232-1244. [PMID: 28585739 DOI: 10.1002/jat.3485] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/26/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022]
Abstract
Over the past few decades nanotechnology and material science has progressed extremely rapidly. Iron oxide nanoparticles (IONPs) owing to their unique magnetic properties have a great potential for their biomedical and bioengineering applications. However, there is an inevitable need to address the issue of safety and health effects of these nanoparticles. Hence, the present study was aimed to assess the cytotoxic effects of IONPs on rats' lymphocytes. Using different assays, we studied diverse parameters including mitochondrial membrane potential, intracellular accumulation of reactive oxygen species (ROS), lactate dehydrogenase activity, antioxidant enzymes activity and DNA damage measurements. Intracellular metal uptake and ultrastructure analysis were also carried out through inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy respectively. The results show that the IONP-induced oxidative stress was concentration-dependent in nature, with significant (P < 0.05) increase in ROS levels, lipid peroxidation level as well as depletion of antioxidant enzymes and glutathione. Moreover, we observed morphological changes in the cell after intracellular uptake and localization of nanoparticles in cells. From the findings of the study, it may be concluded that IONPs induce ROS-mediated cytotoxicity in lymphocytes. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Usha Singh Gaharwar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramovatar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
The oxidative induction of DNA lesions in cancer cells by 5-thio-d-glucose and 6-thio-d-fructopyranose and their genotoxic effects. Part 3. Bioorg Med Chem Lett 2017; 27:1210-1214. [DOI: 10.1016/j.bmcl.2017.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/26/2023]
|
29
|
He Y, Tan D, Mi Y, Bai B, Jiang D, Zhou X, Ji S. Effect of epigallocatechin-3-gallate on acrylamide-induced oxidative stress and apoptosis in PC12 cells. Hum Exp Toxicol 2017; 36:1087-1099. [PMID: 27920337 DOI: 10.1177/0960327116681648] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acrylamide (ACR) is a chemical intermediate utilized in industry. ACR is also formed during heating of foods containing carbohydrates and amino acids. Therefore, humans are widely exposed to ACR, and ACR neurotoxicity in humans is a significant public health issue attracting wide attention. In this study, we investigated the potential neuroprotective effects of epigallocatechin-3-gallate (EGCG), the most abundant polyphenolic compound in green tea, in PC12 cells treated with ACR. ACR-treated PC12 cells pretreated with various concentrations of EGCG (2.5, 5 and 10 μM) for 24 h had increased viability and acetylcholinesterase activity and reduced apoptosis and necrosis compared to cells exposed to ACR alone. EGCG reduced the expression of bax mRNA, decreased cytochrome c release, reduced intracellular calcium levels, inactivated caspase 3 and increased mitochondrial membrane potential, suggesting that EGCG prevents ACR-induced apoptosis through a mitochondrial-mediated pathway. In addition, EGCG inhibited the formation of reactive oxygen species and lipid peroxidation while enhancing superoxide dismutase activity and glutathione levels, thereby reducing oxidative stress. Our results indicate that pretreatment of PC12 cells with EGCG attenuates ACR-induced apoptosis by reducing oxidative stress. Therefore, drinking green tea may reduce nerve injury induced by ACR.
Collapse
Affiliation(s)
- Y He
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - D Tan
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - Y Mi
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - B Bai
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - D Jiang
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - X Zhou
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - S Ji
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| |
Collapse
|
30
|
Song B, Zhou T, Yang W, Liu J, Shao L. Contribution of oxidative stress to TiO 2 nanoparticle-induced toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:130-140. [PMID: 27771506 DOI: 10.1016/j.etap.2016.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
With the rapid development of nanotechnology, titanium dioxide nanoparticles (TNPs) are widely used in many fields. People in such workplaces or researchers in laboratories are at a higher risk of being exposed to TNPs, so are the consumers. Moreover, increasing evidence revealed that the concentrations of TNPs are elevated in animal organs after systematic exposure and such accumulated TNPs could induce organ dysfunction. Although cellular responses such as oxidative stress, inflammatory response, apoptosis, autophagy, signaling pathways, and genotoxic effects contribute to the toxicity of TNPs, the interrelationship among them remains obscure. Given the pivotal role of oxidative stress, we summarized relevant articles covering the involvement of oxidative stress in TNPs' toxicity and found that TNP-induced oxidative stress might play a central role in toxic mechanisms. However, available data are far from being conclusive and more investigations should be performed to further confirm whether the toxicity of TNPs might be attributed in part to the cascades of oxidative stress. Tackling this uncertain issue may help us to comprehensively understand the interrelationship among toxic cellular responses induced by TNPs and might shed some light on methods to alleviate toxicity of TNPs.
Collapse
Affiliation(s)
- Bin Song
- Guizhou Provincial People's Hospital, Guiyang 550002, China; Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ting Zhou
- Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - WenLong Yang
- Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - LongQuan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
31
|
Association between titanium and silver concentrations in maternal hair and risk of neural tube defects in offspring: A case-control study in north China. Reprod Toxicol 2016; 66:115-121. [PMID: 27989884 DOI: 10.1016/j.reprotox.2016.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 11/22/2022]
Abstract
Increasing uses of titanium and silver in various products raise concerns for their potential adverse effects on pregnancy outcomes. We aimed to examine the associations between titanium and silver concentrations in maternal hair growing during the periconception period and the risk of neural tube defects (NTDs) in offspring. Our case-control study recruited 191 women with NTD-affected pregnancies and 261 women delivering healthy infants. Metal concentrations in maternal hair were measured by inductively coupled plasma-mass spectrometry. The adjusted odds ratios (AOR) of titanium concentration above the median were 1.46 (95% confidence interval (CI), 0.99-2.13) for total NTDs and 2.10 (95% CI, 1.12-3.94) for anencephaly, while OR of silver wasn't statistically significant. Titanium concentration was positively correlated with consumptions of vegetables and fruits. Maternal exposure to titanium during the periconception period was associated with an increased NTD risk in offspring, which may be partly mediated through maternal dietary habits.
Collapse
|
32
|
Ma DD, Yang WX. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget 2016; 7:40882-40903. [PMID: 27056889 PMCID: PMC5130051 DOI: 10.18632/oncotarget.8553] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/28/2016] [Indexed: 01/09/2023] Open
Abstract
Engineered nanoparticles (ENPs) have been widely applied in industry, commodities, biology and medicine recently. The potential for many related threats to human health has been highlighted. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs such as brain, liver, lung, testes, etc, and cause toxic effects. Many references have studied ENP effects on the cells of different organs with related cell apoptosis noted. Understanding such pathways towards ENP induced apoptosis may aid in the design of effective cancer targeting ENP drugs. Such ENPs can either have a direct effect towards cancer cell apoptosis or can be used as drug delivery agents. Characteristics of ENPs, such as sizes, shape, forms, charges and surface modifications are all seen to play a role in determining their toxicity in target cells. Specific modifications of such characteristics can be applied to reduce ENP bioactivity and thus alleviate unwanted cytotoxicity, without affecting the intended function. This provides an opportunity to design ENPs with minimum toxicity to non-targeted cells.
Collapse
Affiliation(s)
- Dan-Dan Ma
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Lettino A, Belviso C, Cavalcante F, Fiore S. Environmental risk induced by TiO2 dispersions in waters and sediments: a case study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2016; 38:73-84. [PMID: 25682128 DOI: 10.1007/s10653-015-9685-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
A southern Italian area that is characterized by large outcrops of rocks that are rich in titanium oxide (TiO2) phases were investigated to determine the mineralogical risk induced by the natural dispersion of TiO2 minerals. Rock, sediment and surface water samples were collected to determine the physicochemical and mineralogical factors (i.e., size distribution, morphology and alteration) indicative of potential TiO2 toxicity. X-ray diffraction data suggested that titanium oxides were present as rutile and anatase. Scanning electron microscopy images showed elongated TiO2 morphologies; fibres were found as either isolated or embedded/enclosed in flake-like phyllosilicates. The concentration of fibres in stream water ranged from 1.7 to 4.6 million fibres per litre. The highest fibre amounts in the sediments were in the <8-µm fraction, while single fibres were primarily concentrated in the <2-µm fraction. The results indicate that titanium oxide minerals represent a natural source of environmental risk and that the geomineralogical characterization of rich TiO2 areas is indispensable for understanding their geoavailability, dispersion and distribution.
Collapse
Affiliation(s)
- Antonio Lettino
- Institute of Methodologies for Environmental Analysis, National Research Council of Italy, Tito Scalo, Potenza, Italy.
| | - Claudia Belviso
- Institute of Methodologies for Environmental Analysis, National Research Council of Italy, Tito Scalo, Potenza, Italy
| | - Francesco Cavalcante
- Institute of Methodologies for Environmental Analysis, National Research Council of Italy, Tito Scalo, Potenza, Italy
| | - Saverio Fiore
- Institute of Methodologies for Environmental Analysis, National Research Council of Italy, Tito Scalo, Potenza, Italy
| |
Collapse
|
34
|
Srikanth K, Pereira E, Duarte AC, Ahmad I, Rao JV. Assessment of cytotoxicity and oxidative stress induced by titanium oxide nanoparticles on Chinook salmon cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15571-15578. [PMID: 26013742 DOI: 10.1007/s11356-015-4740-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have received wide attention in diverse application, but the potential impact of these nanomaterials on the environment, aquatic life and especially on fish cell lines is lacking. The present study aimed to investigate the cytotoxicity and oxidative stress induced by TiO2 NPs on Chinook salmon cells derived from Oncorhynchus tshawytscha embryos (CHSE-214). The The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] and neutral red (NR) assays in CHSE-214 cells exposed to TiO2 NPs revealed concentration-dependent cytotoxic effect in the range of 10 to 60 μg/ml for 24 h. CHSE-214 cells exposed to TiO2 NPs (10-60 μg/ml) exhibited significant decline in superoxide dismutase (SOD), catalase (CAT) glutathione (GSH) content and increased lipid peroxidation (LPO) in a concentration-dependent manner. TiO2 NPs induced cytotoxicity and oxidative stress in CHSE-214 cells which serve as a base line studies for future studies.
Collapse
Affiliation(s)
- Koigoora Srikanth
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
- Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, 500007, India.
| | - Eduarda Pereira
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Armando C Duarte
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Iqbal Ahmad
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Janapala Venkateswara Rao
- Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, 500007, India.
| |
Collapse
|
35
|
Gomes SIL, Caputo G, Pinna N, Scott-Fordsmand JJ, Amorim MJB. Effect of 10 different TiO2 and ZrO2 (nano)materials on the soil invertebrate Enchytraeus crypticus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2409-2416. [PMID: 26013659 DOI: 10.1002/etc.3080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Nearly 80% of all the nano-powders produced worldwide are metal oxides, and among these materials titanium dioxide (TiO2 ) is one of the most produced. Titanium dioxide's toxicity is estimated as low to soil organisms, but some studies have shown that TiO2 nanoparticles can cause oxidative stress. Additionally, it is known that TiO2 is activated by ultraviolet (UV) radiation, which can promote photocatalytic generation of reactive oxygen species, which is seldom taken into account in toxicity testing. In the present study, the authors investigated the effects of different TiO2 and zirconium materials on the soil oligochaete Enchytraeus crypticus, using exposure via soil, water, and soil:water extracts, and studied the effects combined with UV radiation. The results showed that zirconium dioxide (bulk and nano) was not toxic, whereas zirconium tetrachloride reduced enchytraeid reproduction in soil (50% effect concentration = 502 mg/kg). The TiO2 materials were also not toxic via soil exposure or under UV radiation. However, pre-exposure to TiO2 and UV radiation via aqueous media caused a lower reproductive output post-exposure in clean soil (20-50% less but only observed at the lowest concentration tested, 1 mg/L); that is, the effect of TiO2 in water was potentiated by the UV radiation and measurable as a decrease in reproduction in soil media.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Gianvito Caputo
- Department of Chemistry & CICECO, University of Aveiro, Aveiro, Portugal
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicola Pinna
- Department of Chemistry & CICECO, University of Aveiro, Aveiro, Portugal
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
36
|
Zhang X, Li W, Yang Z. Toxicology of nanosized titanium dioxide: an update. Arch Toxicol 2015; 89:2207-17. [DOI: 10.1007/s00204-015-1594-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/02/2015] [Indexed: 01/19/2023]
|
37
|
Møller P, Hemmingsen JG, Jensen DM, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Cao Y, Kermanizadeh A, Klingberg H, Christophersen DV, Hersoug LG, Loft S. Applications of the comet assay in particle toxicology: air pollution and engineered nanomaterials exposure. Mutagenesis 2015; 30:67-83. [PMID: 25527730 DOI: 10.1093/mutage/geu035] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Exposure to ambient air particles is associated with elevated levels of DNA strand breaks (SBs) and endonuclease III, formamidopyrimidine DNA glycosylase (FPG) and oxoguanine DNA glycosylase-sensitive sites in cell cultures, animals and humans. In both animals and cell cultures, increases in SB and in oxidatively damaged DNA are seen after exposure to a range of engineered nanomaterials (ENMs), including carbon black, carbon nanotubes, fullerene C60, ZnO, silver and gold. Exposure to TiO2 has generated mixed data with regard to SB and oxidatively damaged DNA in cell cultures. Nanosilica does not seem to be associated with generation of FPG-sensitive sites in cell cultures, while large differences in SB generation between studies have been noted. Single-dose airway exposure to nanosized carbon black and multi-walled carbon nanotubes in animal models seems to be associated with elevated DNA damage levels in lung tissue in comparison to similar exposure to TiO2 and fullerene C60. Oral exposure has been associated with augmented DNA damage levels in cells of internal organs, although the doses have been typically very high. Intraveneous and intraperitoneal injection of ENMs have shown contradictory results dependent on the type of ENM and dose in each set of experiments. In conclusion, the exposure to both combustion-derived particles and ENMs is associated with increased levels of DNA damage in the comet assay. Particle size, composition and crystal structure of ENM are considered important determinants of toxicity, whereas their combined contributions to genotoxicity in the comet assay are yet to be thoroughly investigated.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Jette Gjerke Hemmingsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Pernille Høgh Danielsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Dorina Gabriela Karottki
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Kim Jantzen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Yi Cao
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Henrik Klingberg
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Daniel Vest Christophersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Lars-Georg Hersoug
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
38
|
Jomini S, Clivot H, Bauda P, Pagnout C. Impact of manufactured TiO2 nanoparticles on planktonic and sessile bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 202:196-204. [PMID: 25839943 DOI: 10.1016/j.envpol.2015.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 05/27/2023]
Abstract
In the present study, we conducted a 2 week microcosm experiment with a natural freshwater bacterial community to assess the effects of titanium dioxide nanoparticles (TiO2-NPs) at various concentrations (0, 1, 10 and 100 mg/L) on planktonic and sessile bacteria under dark conditions. Results showed an increase of planktonic bacterial abundance at the highest TiO2-NP concentration, concomitant with a decrease from that of sessile bacteria. Bacterial assemblages were most affected by the 100 mg/L TiO2-NP exposure and overall diversity was found to be lower for planktonic bacteria and higher for sessile bacteria at this concentration. In both compartments, a 100 mg/L TiO2-NPs exposure induced a decrease in the ratio between the Betaproteobacteria and Bacteroidetes. For planktonic communities, a decrease of Comamonadaceae was observed concomitant with an increase of Oxalobacteraceae and Cytophagaceae (especially Emticicia). For sessile communities, results showed a strong decrease of Betaproteobacteria and particularly of Comamonadaceae.
Collapse
Affiliation(s)
- Stéphane Jomini
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France
| | - Hugues Clivot
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France
| | - Pascale Bauda
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Europole de l'Arbois, F-13545 Aix en Provence, France
| | - Christophe Pagnout
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), rue du Général Delestraint, F-57070 Metz, France; International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Europole de l'Arbois, F-13545 Aix en Provence, France.
| |
Collapse
|
39
|
Garvas M, Testen A, Umek P, Gloter A, Koklic T, Strancar J. Protein Corona Prevents TiO2 Phototoxicity. PLoS One 2015; 10:e0129577. [PMID: 26083725 PMCID: PMC4470505 DOI: 10.1371/journal.pone.0129577] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022] Open
Abstract
Background & Aim TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations. Methods & Results Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles’ surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes’ surface. Conclusion These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired – as for efficient photodynamic cancer therapy.
Collapse
Affiliation(s)
- Maja Garvas
- Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Anze Testen
- NAMASTE Center of Excellence, Ljubljana, Slovenia
| | - Polona Umek
- Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
| | - Alexandre Gloter
- Laboratoire de Physique des Solides, Université Paris Sud, CNRS UMR 8502, F-91405, Orsay, France
| | - Tilen Koklic
- Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
- * E-mail: (TK); (JS)
| | - Janez Strancar
- Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
- * E-mail: (TK); (JS)
| |
Collapse
|
40
|
Yingngam B, Brantner AH. Factorial design of essential oil extraction fromFagraea fragransRoxb. flowers and evaluation of its biological activities for perfumery and cosmetic applications. Int J Cosmet Sci 2015; 37:272-81. [DOI: 10.1111/ics.12192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/05/2014] [Indexed: 11/27/2022]
Affiliation(s)
- B. Yingngam
- Department of Pharmacognosy; Institute of Pharmaceutical Sciences; University of Graz; Universitaetsplatz 4/1 A-8010 Graz Austria
- Department of Pharmaceutical Chemistry and Technology; Faculty of Pharmaceutical Sciences; Ubon Ratchathani University; Ubon Ratchathani 34190 Thailand
| | - A. H. Brantner
- Department of Pharmacognosy; Institute of Pharmaceutical Sciences; University of Graz; Universitaetsplatz 4/1 A-8010 Graz Austria
| |
Collapse
|
41
|
Gaharwar US, R P. Iron Oxide Nanoparticles Induced Oxidative Damage in Peripheral Blood Cells of Rat. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbise.2015.84026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:70-83. [PMID: 25242526 DOI: 10.1002/etc.2756] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 09/13/2014] [Indexed: 05/20/2023]
Abstract
The effects of exposure to nanoparticles of titanium dioxide (nano-titanium) and cerium oxide (nano-cerium) on gene expression and growth in Arabidopsis thaliana germinants were studied by using microarrays and quantitative real-time polymerase chain reaction (qPCR), and by evaluating germinant phenotypic plasticity. Exposure to 12 d of either nano-titania or nano-ceria altered the regulation of 204 and 142 genes, respectively. Genes induced by the nanoparticles mainly include ontology groups annotated as stimuli responsive, including both abiotic (oxidative stress, salt stress, water transport) and biotic (respiratory burst as a defense against pathogens) stimuli. Further analysis of the differentially expressed genes indicates that both nanoparticles affected a range of metabolic processes (deoxyribonucleic acid [DNA] metabolism, hormone metabolism, tetrapyrrole synthesis, and photosynthesis). Individual exposures to the nanoparticles increased percentages of seeds with emergent radicles, early development of hypocotyls and cotyledons, and those with fully grown leaves. Although there were distinct differences between the nanoparticles in their affect on molecular mechanisms attributable to enhancing germinant growth, both particles altered similar suites of genes related to various pathways and processes related to enhanced growth.
Collapse
Affiliation(s)
- Laxminath Tumburu
- National Research Council, Western Ecology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Corvallis, Oregon, USA
| | | | | | | |
Collapse
|
43
|
Huerta-García E, Pérez-Arizti JA, Márquez-Ramírez SG, Delgado-Buenrostro NL, Chirino YI, Iglesias GG, López-Marure R. Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radic Biol Med 2014; 73:84-94. [PMID: 24824983 DOI: 10.1016/j.freeradbiomed.2014.04.026] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/25/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in the chemical, electrical, and electronic industries. TiO2 NPs can enter directly into the brain through the olfactory bulb and can be deposited in the hippocampus region; therefore, we determined the toxic effect of TiO2 NPs on rat and human glial cells, C6 and U373, respectively. We evaluated some events related to oxidative stress: (1) redox-signaling mechanisms by oxidation of 2',7'-dichlorodihydrofluorescein diacetate; (2) peroxidation of lipids by cis-parinaric acid; (3) antioxidant enzyme expression by PCR in real time; and (4) mitochondrial damage by MitoTracker Green FM staining and Rh123. TiO2 NPs induced a strong oxidative stress in both glial cell lines by mediating changes in the cellular redox state and lipid peroxidation associated with a rise in the expression of glutathione peroxidase, catalase, and superoxide dismutase 2. TiO2 NPs also produced morphological changes, damage of mitochondria, and an increase in mitochondrial membrane potential, indicating toxicity. TiO2 NPs had a cytotoxic effect on glial cells; however, more in vitro and in vivo studies are required to ascertain that exposure to TiO2 NPs can cause brain injury and be hazardous to health.
Collapse
Affiliation(s)
- Elizabeth Huerta-García
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez," Tlalpan, CP 14080 México DF, Mexico; Departamento de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, México DF, Mexico
| | - José Antonio Pérez-Arizti
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez," Tlalpan, CP 14080 México DF, Mexico
| | - Sandra Gissela Márquez-Ramírez
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez," Tlalpan, CP 14080 México DF, Mexico; Departamento de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, México DF, Mexico
| | - Norma Laura Delgado-Buenrostro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México DF, Mexico
| | - Yolanda Irasema Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México DF, Mexico
| | - Gisela Gutiérrez Iglesias
- Departamento de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, México DF, Mexico
| | - Rebeca López-Marure
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez," Tlalpan, CP 14080 México DF, Mexico.
| |
Collapse
|
44
|
Tilton SC, Karin NJ, Tolic A, Xie Y, Lai X, Hamilton RF, Waters KM, Holian A, Witzmann FA, Orr G. Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns. Nanotoxicology 2014; 8:533-48. [PMID: 23659652 PMCID: PMC4226242 DOI: 10.3109/17435390.2013.803624] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 µg/mL) and high (100 µg/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.
Collapse
Affiliation(s)
- Susan C. Tilton
- Environmental Molecular Sciences Laboratory, and Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Norman J. Karin
- Environmental Molecular Sciences Laboratory, and Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Ana Tolic
- Environmental Molecular Sciences Laboratory, and Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Yumei Xie
- Environmental Molecular Sciences Laboratory, and Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Xianyin Lai
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Raymond F. Hamilton
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812
| | - Katrina M. Waters
- Environmental Molecular Sciences Laboratory, and Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812
| | - Frank A. Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, and Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
| |
Collapse
|
45
|
Lagopati N, Tsilibary EP, Falaras P, Papazafiri P, Pavlatou EA, Kotsopoulou E, Kitsiou P. Effect of nanostructured TiO₂ crystal phase on photoinduced apoptosis of breast cancer epithelial cells. Int J Nanomedicine 2014; 9:3219-30. [PMID: 25061298 PMCID: PMC4086669 DOI: 10.2147/ijn.s62972] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The use of nanoparticles has seen exponential growth in the area of health care, due to the unique physicochemical properties of nanomaterials that make them desirable for medical applications. The aim of this study was to examine the effects of crystal phase-nanostructured titanium dioxide particles on bioactivity/cytotoxicity in breast cancer epithelial cells. Materials and methods Cultured Michigan Cancer Foundation (MCF)-7 and human breast adenocarcinoma (MDA-MB-468) breast cancer epithelial cells were exposed to ultraviolet A light (wavelength 350 nm) for 20 minutes in the presence of aqueous dispersions of two different nanostructured titanium dioxide (TiO2) crystal phases: anatase and an anatase–rutile mixture. Detailed characterization of each titanium dispersion was performed by dynamic light scattering. A 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) colorimetric assay was employed to estimate the percentage of viable cells after each treatment. Western blot analysis of protein expression and characterization, as well as a deoxyribonucleic acid (DNA)-laddering assay, were used to detect cell apoptosis. Results Our results documented that 100% anatase TiO2 nanoparticles (110–130 nm) exhibited significantly higher cytotoxicity in the highly malignant MDA-MB-468 cancer cells than anatase– rutile mixtures (75%/25%) with the same size. On the contrary, MCF-7 cells (characterized by low invasive properties) were not considerably affected. Exposure of MDA-MB-468 cells to pure anatase nanoparticles or anatase–rutile mixtures for 48 hours resulted in increased proapoptotic Bax expression, caspase-mediated poly(adenosine diphosphate ribose) polymerase (PARP) cleavage, DNA fragmentation, and programmed cell death/apoptosis. Conclusion The obtained results indicated that pure anatase TiO2 nanoparticles exhibit superior cytotoxic effects compared to anatase–rutile mixtures of the same size. The molecular mechanism of TiO2 nanoparticle cytotoxicity involved increased Bax expression and caspase-mediated PARP inactivation, thus resulting in DNA fragmentation and cell apoptosis.
Collapse
Affiliation(s)
- Nefeli Lagopati
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece ; Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Effie-Photini Tsilibary
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Polycarpos Falaras
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Panagiota Papazafiri
- Department of Animal and Human Physiology, Faculty of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia A Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Eleni Kotsopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Paraskevi Kitsiou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
46
|
DNA damage caused by inorganic particulate matter on Raji and HepG2 cell lines exposed to ultraviolet radiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 771:6-14. [PMID: 25308436 DOI: 10.1016/j.mrgentox.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 11/22/2022]
Abstract
Epidemiological studies have correlated exposure to ultraviolet-irradiated particulate matter with cardiovascular, respiratory, and lung diseases. This study investigated the DNA damage induced by two major inorganic particulate matter compounds found in diesel exhaust, ammonium nitrate and ammonium sulfate, on Burkitt's lymphoma (Raji) and hepatocellular carcinoma (HepG2) cell lines. We found a dose-dependent positive correlation of accumulated DNA damage at concentrations of ammonium nitrate (25 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml, 400 μg/ml) with ultraviolet exposure (250 J/m(2), 400 J/m(2), 600 J/m(2), 850 J/m(2)), as measured by the comet assay in both cell lines. There was a significant difference between the treated ammonium nitrate samples and negative control samples in Raji and HepG2 cells (p<0.001). Apoptosis was shown in Raji and HepG2 cells when exposed to high concentrations of ammonium nitrate (200 μg/ml and 400 μg/ml) for 1h in samples without ultraviolet exposure, as assessed by the comet assay. However, the level of apoptosis greatly diminished after ultraviolet exposure at these concentrations. Over a 24h period, at intervals of 1, 4, 8, 12, 18, and 24h, we also observed that ammonium nitrate decreased viability in Raji and HepG2 cell lines and inhibited cell growth. Ammonium sulfate-induced DNA damage was minimal in both cell lines, but there remained a significant difference (p<0.05) between the ultraviolet radiation treated and negative control samples. These results indicate that the inorganic particulate compound, ammonium nitrate, induced DNA strand breaks at all concentrations, and indications of apoptosis at high concentrations in Raji and HepG2 cells, with ultraviolet radiation preventing apoptosis at high concentrations. We hypothesize that ultraviolet radiation may inhibit an essential cellular mechanism, possibly involving p53, thereby explaining this phenomenon. Further studies are necessary to characterize the roles of apoptosis inhibition induced by DNA damage caused by inorganic particulate matter.
Collapse
|
47
|
Bazak R, Ressl J, Raha S, Doty C, Liu W, Wanzer B, Salam SA, Elwany S, Paunesku T, Woloschak GE. Cytotoxicity and DNA cleavage with core-shell nanocomposites functionalized by a KH domain DNA binding peptide. NANOSCALE 2013; 5:11394-11399. [PMID: 23824281 PMCID: PMC3825787 DOI: 10.1039/c3nr02203j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This "KH peptide" enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells.
Collapse
Affiliation(s)
- Remon Bazak
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Alexandria Medical School, Azarita medical campus, Champlollion Street, Khartoum Square, Alexandria, Egypt. Tel: 01003810548
- Departments of Radiation Oncology and Radiology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611 USA. Fax: 312-577-0751; Tel: 312-503-4322
| | - Jan Ressl
- Departments of Radiation Oncology and Radiology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611 USA. Fax: 312-577-0751; Tel: 312-503-4322
| | - Sumita Raha
- Departments of Radiation Oncology and Radiology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611 USA. Fax: 312-577-0751; Tel: 312-503-4322
| | - Caroline Doty
- Departments of Radiation Oncology and Radiology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611 USA. Fax: 312-577-0751; Tel: 312-503-4322
| | - William Liu
- Departments of Radiation Oncology and Radiology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611 USA. Fax: 312-577-0751; Tel: 312-503-4322
| | - Beau Wanzer
- Departments of Radiation Oncology and Radiology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611 USA. Fax: 312-577-0751; Tel: 312-503-4322
| | - Seddik Abdel Salam
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Alexandria Medical School, Azarita medical campus, Champlollion Street, Khartoum Square, Alexandria, Egypt. Tel: 01003810548
| | - Samy Elwany
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Alexandria Medical School, Azarita medical campus, Champlollion Street, Khartoum Square, Alexandria, Egypt. Tel: 01003810548
| | - Tatjana Paunesku
- Departments of Radiation Oncology and Radiology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611 USA. Fax: 312-577-0751; Tel: 312-503-4322
| | - Gayle E Woloschak
- Departments of Radiation Oncology and Radiology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611 USA. Fax: 312-577-0751; Tel: 312-503-4322
| |
Collapse
|
48
|
Gunawan C, Sirimanoonphan A, Teoh WY, Marquis CP, Amal R. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:984-992. [PMID: 23892165 DOI: 10.1016/j.jhazmat.2013.06.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
The work investigates the eco-cytoxicity of submicron and nano TiO₂ and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO₂ exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO₂ stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO₂ exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50>100 mg TiO₂/L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50≥0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials.
Collapse
Affiliation(s)
- Cindy Gunawan
- ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
49
|
Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review. Saf Health Work 2013; 4:177-86. [PMID: 24422173 PMCID: PMC3889076 DOI: 10.1016/j.shaw.2013.07.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022] Open
Abstract
The use of nanoparticles (NPs) in industry is increasing, bringing with it a number of adverse health effects on workers. Like other chemical carcinogens, NPs can cause cancer via oxidative DNA damage. Of all the molecules vulnerable to oxidative modification by NPs, DNA has received the greatest attention, and biomarkers of exposure and effect are nearing validation. This review concentrates on studies published between 2000 and 2012 that attempted to detect oxidative DNA damage in humans, laboratory animals, and cell lines. It is important to review these studies to improve the current understanding of the oxidative DNA damage caused by NP exposure in the workplace. In addition to examining studies on oxidative damage, this review briefly describes NPs, giving some examples of their adverse effects, and reviews occupational exposure assessments and approaches to minimizing exposure (e.g., personal protective equipment and engineering controls such as fume hoods). Current recommendations to minimize exposure are largely based on common sense, analogy to ultrafine material toxicity, and general health and safety recommendations.
Collapse
|
50
|
Rach J, Budde J, Möhle N, Aufderheide M. Direct exposure at the air-liquid interface: evaluation of an in vitro approach for simulating inhalation of airborne substances. J Appl Toxicol 2013; 34:506-15. [PMID: 23765558 DOI: 10.1002/jat.2899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/10/2013] [Accepted: 04/22/2013] [Indexed: 11/08/2022]
Abstract
In toxicology, the strategies for testing the hazardous potential of substances are changing as a result of the ongoing progress in the development of in vitro methods and the demand of the authorities to reduce animal testing. Even in the complex field of inhalation toxicology with its high requirements on the technical implementation and cell culture models, the preconditions for using such methods are fulfilled. We here introduce a sophisticated technique that enables the stable and reproducible exposure of cultivated cells to airborne substances at the air-liquid interface by means of the CULTEX(®) Radial Flow System (RFS) module. The feasibility and suitability of the experimental setup is demonstrated by dose-response investigations of mainstream cigarette smoke and particulate matter of four substances in different lung epithelial cell lines. A dose-dependent cytotoxcity of the test substances was verified by applying different exposure times. The high reproducibility of the results indicate the reliability of the presented method and recommend the integration of such in vitro approaches in the field of inhalation toxicology by advancing their regulatory validation.
Collapse
Affiliation(s)
- Jessica Rach
- CULTEX Laboratories GmbH, Feodor-Lynen-Str. 21, 30625, Hannover, Germany
| | | | | | | |
Collapse
|