1
|
Soleimani A, Alizadeh H. Unlocking the potential of Extensin Signal peptide and Elastin-like polypeptide tag fused to Shigella dysenteriae's IpaDSTxB to improve protein expression and purification in Nicotiana tabacum and Medicagosativa. Protein Expr Purif 2024; 222:106521. [PMID: 38852714 DOI: 10.1016/j.pep.2024.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Plants are often seen as a potent tool in the recombinant protein production industry. However, unlike bacterial expression, it is not a popular method due to the low yield and difficulty of protein extraction and purification. Therefore, developing a new high efficient and easy to purify platform is crucial. One of the best approaches to make extraction easier is to utilize the Extensin Signal peptide (EXT) to translocate the recombinant protein to the outside of the cell, along with incorporating an Elastin-like polypeptide tag (ELP) to enhance purification and accumulation rates. In this research, we transiently expressed Shigella dysenteriae's IpaDSTxB fused to both NtEXT and ELP in both Nicotiana tabacum and Medicago sativa. Our results demonstrated that N. tabacum, with an average yield of 6.39 ng/μg TSP, outperforms M. sativa, which had an average yield of 3.58 ng/μg TSP. On the other hand, analyzing NtEXT signal peptide indicated that merging EXT to the constructs facilitates translocation of IpaDSTxB to the apoplast by 78.4% and 65.9% in N. tabacum and M. sativa, respectively. Conversely, the mean level for constructs without EXT was below 25% for both plants. Furthermore, investigation into the orientation of ELP showed that merging it to the C-terminal of IpaDSTxB leads to a higher accumulation rate in both N. tabacum and M. sativa by 1.39 and 1.28 times, respectively. It also facilitates purification rate by over 70% in comparison to 20% of the 6His tag. The results show a highly efficient and easy to purify platform for the expression of heterologous proteins in plant.
Collapse
Affiliation(s)
- AmirMohammad Soleimani
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Houshang Alizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
2
|
Izadi S, Jalali Javaran M, Rashidi Monfared S, Castilho A. Reteplase Fc-fusions produced in N. benthamiana are able to dissolve blood clots ex vivo. PLoS One 2021; 16:e0260796. [PMID: 34847186 PMCID: PMC8631678 DOI: 10.1371/journal.pone.0260796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
Thrombolytic and fibrinolytic therapies are effective treatments to dissolve blood clots in stroke therapy. Thrombolytic drugs activate plasminogen to its cleaved form plasmin, a proteolytic enzyme that breaks the crosslinks between fibrin molecules. The FDA-approved human tissue plasminogen activator Reteplase (rPA) is a non-glycosylated protein produced in E. coli. rPA is a deletion mutant of the wild-type Alteplase that benefits from an extended plasma half-life, reduced fibrin specificity and the ability to better penetrate into blood clots. Different methods have been proposed to improve the production of rPA. Here we show for the first time the transient expression in Nicotiana benthamiana of rPA fused to the immunoglobulin fragment crystallizable (Fc) domain on an IgG1, a strategy commonly used to improve the stability of therapeutic proteins. Despite our success on the expression and purification of dimeric rPA-Fc fusions, protein instability results in high amounts of Fc-derived degradation products. We hypothesize that the "Y"- shape of dimeric Fc fusions cause steric hindrance between protein domains and leads to physical instability. Indeed, mutations of critical residues in the Fc dimerization interface allowed the expression of fully stable rPA monomeric Fc-fusions. The ability of rPA-Fc to convert plasminogen into plasmin was demonstrated by plasminogen zymography and clot lysis assay shows that rPA-Fc is able to dissolve blood clots ex vivo. Finally, we addressed concerns with the plant-specific glycosylation by modulating rPA-Fc glycosylation towards serum-like structures including α2,6-sialylated and α1,6-core fucosylated N-glycans completely devoid of plant core fucose and xylose residues.
Collapse
Affiliation(s)
- Shiva Izadi
- Department of Applied Genetics and Cell Biology, Natural Resources and Life Sciences, Vienna, Austria
- Faculty of Agriculture, Department of Plant Genetics and Breeding, Tarbiat Modares University, Tehran, Iran
| | - Mokhtar Jalali Javaran
- Faculty of Agriculture, Department of Agricultural Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi Monfared
- Faculty of Agriculture, Department of Agricultural Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
3
|
Molecular farming - The slope of enlightenment. Biotechnol Adv 2020; 40:107519. [PMID: 31954848 DOI: 10.1016/j.biotechadv.2020.107519] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
Molecular farming can be defined as the use of plants to produce recombinant protein products. The technology is now >30 years old. The early promise of molecular farming was based on three perceived advantages: the low costs of growing plants, the immense scalability of agricultural production, and the inherent safety of plants as hosts for the production of pharmaceuticals. This resulted in a glut of research publications in which diverse proteins were expressed in equally diverse plant-based systems, and numerous companies were founded hoping to commercialize the new technology. There was a moderate degree of success for companies producing non-pharmaceutical proteins, but in the pharmaceutical sector the anticipation raised by promising early research was soon met by the cold hard reality of industrial pragmatism. Plants did not have a track record of success in pharmaceutical protein manufacturing, lacked a regulatory framework, and did not perform as well as established industry platforms. Negative attitudes towards genetically modified plants added to the mix. By the early 2000s, major industry players started to lose interest and pharmaceutical molecular farming fell from a peak of expectation into a trough of disillusionment, just as predicted by the Gartner hype cycle. But many of the pioneers of molecular farming have refocused their activities and have worked to address the limitations that hampered the first generation of technologies. The field has now consolidated around a smaller number of better-characterized platforms and has started to develop standardized methods and best practices, mirroring the evolution of more mature industry sectors. Likewise, attention has turned from proof-of-principle studies to realistic techno-economic modeling to capture significant niche markets, replicating the success of the industrial molecular farming sector. Here we argue that these recent developments signify that pharmaceutical molecular farming is now climbing the slope of enlightenment and will soon emerge as a mature technology.
Collapse
|
4
|
Rademacher T, Sack M, Blessing D, Fischer R, Holland T, Buyel J. Plant cell packs: a scalable platform for recombinant protein production and metabolic engineering. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1560-1566. [PMID: 30672078 PMCID: PMC6662111 DOI: 10.1111/pbi.13081] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 05/19/2023]
Abstract
Industrial plant biotechnology applications include the production of sustainable fuels, complex metabolites and recombinant proteins, but process development can be impaired by a lack of reliable and scalable screening methods. Here, we describe a rapid and versatile expression system which involves the infusion of Agrobacterium tumefaciens into three-dimensional, porous plant cell aggregates deprived of cultivation medium, which we have termed plant cell packs (PCPs). This approach is compatible with different plant species such as Nicotiana tabacum BY2, Nicotiana benthamiana or Daucus carota and 10-times more effective than transient expression in liquid plant cell culture. We found that the expression of several proteins was similar in PCPs and intact plants, for example, 47 and 55 mg/kg for antibody 2G12 expressed in BY2 PCPs and N. tabacum plants respectively. Additionally, the expression of specific enzymes can either increase the content of natural plant metabolites or be used to synthesize novel small molecules in the PCPs. The PCP method is currently scalable from a microtiter plate format suitable for high-throughput screening to 150-mL columns suitable for initial product preparation. It therefore combined the speed of transient expression in plants with the throughput of microbial screening systems. Plant cell packs therefore provide a convenient new platform for synthetic biology approaches, metabolic engineering and conventional recombinant protein expression techniques that require the multiplex analysis of several dozen up to hundreds of constructs for efficient product and process development.
Collapse
Affiliation(s)
- Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Markus Sack
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
- Present address:
Pro‐SPR GmbHSchulstrasse 3552477AlsdorfGermany
| | - Daniel Blessing
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Present address:
EPFL SV BMI LENAI 2127 (Bâtiment AI), Station 19CH‐1015LausanneSwitzerland
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Present address:
Indiana Biosciences Research Institute1345 West 16th StreetIndianapolisINUSA
| | - Tanja Holland
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Present address:
Eppendorf AGBioprocess CenterRudolf‐Schulten‐Str. 552428JuelichGermany
| | - Johannes Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
5
|
马 洁, 吴 乐, 丁 向, 李 志, 王 盛. [Transient expression of bioactive recombinant human plasminogen activator in tobacco leaf]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:515-522. [PMID: 31140413 PMCID: PMC6743930 DOI: 10.12122/j.issn.1673-4254.2019.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess the potential of transient expression of recombinant human plasminogen activator (rhPA) in plants as a cost-effective approach for recombinant rhPA production. METHODS Tobacco mosaic virus-based expression vector pTMV rhPA-NSK and plant binary expression vector pJ Zera-rhPA were constructed by in vitro sequence synthesis and subcloning. The two vectors were inoculated on either Nicotiana benthamiana or N. excelsiana leaves via agroinfiltration. The expression of recombinant rhPA in Nicotiana leaves was examined using Western blotting and ELISA, and the in vitro fibrinolysis activity of plant-produced rhPA was assessed by fibrin agarose plate assay (FAPA). RESULTS Five to nine days after infiltration with an Agrobacterium inoculum containing pTMV rhPA-NSK, necrosis appeared in the infiltrated area on the leaves of both Nicotiana plants, but intact recombinant rhPA was still present in the necrotic leaf tissues. The accumulation level of recombinant rhPA in infiltrated N. benthamiana leaves was significantly higher than that in N. excelsiana leaves (P < 0.05). The yield of recombinant rhPA was up to 0.6% of the total soluble protein (or about 60.0 μg per gram) in the fresh leaf biomass at 7 days post-inoculation. The plant-derived rhPA was bioactive to convert inactive plasminogen to active plasmin. No necrosis occurred in pJ Zera-rhPA-infiltrated leaves. The Zera-rhPA protein was partially cleaved between the site of Zera tag and rhPA sequence in both Nicotiana leaves. We speculated that the formation of Zera tags-induced particles in the plant cells was a dynamic process of progressive aggregation in which some of the soluble polypeptides were encapsulated in these particles. CONCLUSIONS Enzymatically active recombinant rhPA can be rapidly expressed in tobacco plants using the plant viral ampliconbased system, which offers a promising alternative for cost-effective production of recombinant rhPA.
Collapse
Affiliation(s)
- 洁雪 马
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
| | - 乐乐 吴
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
| | - 向真 丁
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
- 宁夏优势特色作物现代分子育种重点实验室,宁夏 银川 750021Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - 志英 李
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
- 宁夏优势特色作物现代分子育种重点实验室,宁夏 银川 750021Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - 盛 王
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
- 宁夏优势特色作物现代分子育种重点实验室,宁夏 银川 750021Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| |
Collapse
|
6
|
Production and Purification of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:1-24. [DOI: 10.1007/978-981-13-7709-9_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Amiri M, Jalali-Javaran M, Haddad R, Ehsani P. In silico and in vivo analyses of the mutated human tissue plasminogen activator (mtPA) and the antithetical effects of P19 silencing suppressor on its expression in two Nicotiana species. Sci Rep 2018; 8:14079. [PMID: 30232346 PMCID: PMC6145930 DOI: 10.1038/s41598-018-32099-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/13/2018] [Indexed: 11/23/2022] Open
Abstract
Human tissue-type plasminogen activator is one of the most important therapeutic proteins involved in the breakdown of blood clots following the stroke. A mutation was found at position 1541 bp (G514E) and the mutated form was cloned into the binary vector pTRAc-ERH. In silico analysis showed that this mutation might have no significant effect on the active site of the tissue plasminogen activator enzyme. Accordingly, zymography assay confirmed the serine protease activity of the mutated form and its derivatives. The expression of the mutated form was verified with/without co-agroinjection of the P19 gene silencing suppressor in both Nicotiana tabacum and N. benthamiana. The ELISA results showed that the concentration of the mutated form in the absence of P19 was 0.65% and 0.74% of total soluble protein versus 0.141% and 1.36% in the presence of P19 in N. benthamiana and N. tabacum, respectively. In N. tabacum, co-agroinjection of P19 had the synergistic effect and increased the mutated tissue plasminogen activator production two-fold higher. However, in N. benthamiana, the presence of P19 had the adverse effect of five-fold reduction in the concentration. Moreover, results showed that the activity of the mutated form and its derivatives was more than that of the purified commercial tissue plasminogen activator.
Collapse
Affiliation(s)
- Mahshid Amiri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mokhtar Jalali-Javaran
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Raheem Haddad
- Agricultural Biotechnology Department, Imam Khomeini International University, Qazvin, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran (IPI), Tehran, Iran.
| |
Collapse
|
8
|
Rezaei M, Naghavi MR, Hosseinzadeh A, Abasi A, Nasiri J. Spatiotemporal oscillations of morphinan alkaloids in opium poppy. J Biosci 2018. [DOI: 10.1007/s12038-018-9758-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Khakdan F, Nasiri J, Ranjbar M, Alizadeh H. Water deficit stress fluctuates expression profiles of 4Cl, C3H, COMT, CVOMT and EOMT genes involved in the biosynthetic pathway of volatile phenylpropanoids alongside accumulation of methylchavicol and methyleugenol in different Iranian cultivars of basil. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:74-83. [PMID: 28787649 DOI: 10.1016/j.jplph.2017.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Here, for the first time, the accumulation ratio of methylchavicol and methyleugenoland compounds together with the expression profiles of five critical genes (i.e., 4Cl, C3H, COMT, CVOMT and EOMT) in three Iranian cultivars of basil were assessed under water deficit stress at flowering stage. The highest value of methylchavicol was detected for Cul. 3 under severe stress (S3; 7.695μg/mg) alongside Cul. 2 under similar circumstances (S3; 4.133μg/mg), while regarding Cul. 1, no detectable amounts were acquired. Considering methyleugenol, Cul. 3 (0.396μg/mg; S0) followed by Cul. 1 (S3; 0.160μg/mg) were the capable plant samples in producing some detectable amounts of methyleugenol. Apart from some expectations, all the genes under study exhibited also different transcription ratios under deficit stress. Our results, overall, demonstrated that the regulation of the above-mentioned genes and production of methychavicol and methyleugenol seems to be a cultivar- and drought stress-dependent mechanism.
Collapse
Affiliation(s)
- Fatemeh Khakdan
- Biotechnology Department, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Jaber Nasiri
- Division of Molecular Plant Genetics, Department of Agronomy & Plant Breeding, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Mojtaba Ranjbar
- Microbial Biotechnology Department, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Houshang Alizadeh
- Division of Molecular Plant Genetics, Department of Agronomy & Plant Breeding, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
10
|
Mohseni AH, Soleimani M, Majidzadeh-A K, Taghinezhad-S S, Keyvani H. Active Expression of Human Tissue Plasminogen Activator (t-PA) c-DNA from Pulmonary Metastases in the Methylotrophic Yeast Pichia Pastoris KM71H Strain. Asian Pac J Cancer Prev 2017; 18:2249-2254. [PMID: 28843264 PMCID: PMC5697489 DOI: 10.22034/apjcp.2017.18.8.2249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Human tissue-type plasminogen activator (t-PA) is a key protease of the trypsin family. It catalyzes the activation of zymogen plasminogen to the fibrin-degrading proteinase, plasmin, leading to digestion of fibrin clots. The recombinant enzyme produced by recombinant technology issued to dissolve blood clots in treatment of various human diseases such as coronary artery thrombosis, pulmonary embolism, acute ischemic stroke (AIS). Pichia pastoris expression system is a unique system for the production of high level of recombinant proteins. GS115 and KM71H are two kinds of Pichia pastoris strains whilst production of recombinant proteins in these strains is not predictable. The aim of the study was evaluation of t-PA expression in KM71H strains. Methods: In this study, the cDNA of the t-PA gene was amplified by PCR, sequenced and cloned into Pichia pastoris KM71H host strain using pPICZalphaA expression vector that allows methanol-induced expression and secretion of the protein. Results: Dot blotting results confirmed the presence oft-PA in the cell supernatant. Western blotting test revealed the approximate size of 70 KDa for recombinant t-PA. Quantitative ELISA experiment showed 810 µg/L of t-PA in the supernatant samples. Zymography analysis confirmed the proteolytic activity and biological function of the expressed recombinant t-PA. Conclusions: Correspondingly, Pichia pastoris KM71H is an appropriate strain for production of active recombinant protein.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran.,Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | | | | | | |
Collapse
|
11
|
Zamanlu M, Farhoudi M, Eskandani M, Mahmoudi J, Barar J, Rafi M, Omidi Y. Recent advances in targeted delivery of tissue plasminogen activator for enhanced thrombolysis in ischaemic stroke. J Drug Target 2017; 26:95-109. [PMID: 28796540 DOI: 10.1080/1061186x.2017.1365874] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue plasminogen activator (tPA) is the only FDA approved medical treatment for the ischaemic stroke. However, it associates with some inevitable limitations, including: short therapeutic window, extremely short half-life and low penetration in large clots. Systemic administration may lead to complications such as haemorrhagic conversion in the brain and relapse in the form of re-occlusion. Furthermore, ultrasound has been utilised in combination with contrast agents, echogenic liposome, microspheres or nanoparticles (NPs) carrying tPA for improving thrombolysis - an approach that has resulted in slight improvement of tPA delivery and facilitated thrombolysis. Most of these delivery systems are able to extend the circulating half-life and clot penetration of tPA. Various technologies employed for ameliorated thrombolytic therapy are in different phases, some are in final steps for clinical applications while some others are under investigations for their safety and efficacy in human cases. Here, recent progresses on the thrombolytic therapy using novel nano- and micro-systems incorporating tPA are articulated. Of these, liposomes and microspheres, polymeric NPs and magnetic nanoparticles (MNPs) are discussed. Key technologies implemented for efficient delivery of tPA and advanced thrombolytic therapy and their advantages/disadvantages are further expressed.
Collapse
Affiliation(s)
- Masumeh Zamanlu
- a Neurosciences Research Center (NSRC), Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Farhoudi
- a Neurosciences Research Center (NSRC), Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Morteza Eskandani
- b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Javad Mahmoudi
- a Neurosciences Research Center (NSRC), Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Jaleh Barar
- b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Pharmaceutics, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Rafi
- d Department of Neurology, Sidney Kimmel College of Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Yadollah Omidi
- b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Pharmaceutics, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
12
|
Bagheri M, Bushehri AAS, Hassandokht MR, Naghavi MR. Evaluation of Solasonine Content and Expression Patterns
of SGT1 Gene in Different Tissues of Two Iranian Eggplant ( Solanum melongena L.) Genotypes. Food Technol Biotechnol 2017; 55:236-242. [PMID: 28867954 PMCID: PMC5569347 DOI: 10.17113/ftb.55.02.17.4883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 02/15/2017] [Indexed: 11/12/2022] Open
Abstract
Eggplant (Solanum melongena L.) is one of the most consumed vegetables in the world. The eggplant glycoalkaloids (GAs) are toxic secondary metabolites that may have detrimental effects on human health, particularly if the magnitudes of GAs are higher than the recommended food safety level (200 mg per kg of fresh mass). In this study, the content of solasonine compound and the expression patterns of solasodine galactosyltransferase (SGT1) gene were assessed in different tissues (mature leaves, flower buds, young, mature, and physiologically ripe fruits) of two Iranian eggplant genotypes (D1 and J10) under field conditions. The maximum mass fraction of solasonine in D1 was detected in flower buds (135.63 µg/g), followed by leaf (113.29 µg/g), physiologically ripe fruit (74.74 µg/g), young fruit (61.33 µg/g), and mature fruit (21.55 µg/g). Comparing both genotypes, the genotype of bitter fruits (J10) contained higher mass fraction of solasonine, as one of the main factors for producing bitter flavour of the plant. Regarding the expression profiles of SGT1, in both genotypes, the activity of the gene was increased nearly parallel with the concentration of solasonine. In the J10 genotype, transcript level of the gene was significantly higher than the genotype of sweet fruits (D1). Although both D1 and J10 genotypes are possibly recommendable for human food consumption, D1 is more suitable for daily diet.
Collapse
Affiliation(s)
- Mahmoud Bagheri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources,
University of Tehran, Chamran Blvd., IR-31587-77871 Karaj, Iran
- Seed and Plant Improvement Institute, Agricultural Research,
Education and Extension Organization (AREEO), Fahmideh Blvd., IR-31585-4119 Karaj, Iran
| | - Ali Akbar Shahnejat Bushehri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources,
University of Tehran, Chamran Blvd., IR-31587-77871 Karaj, Iran
| | - Mohammad Reza Hassandokht
- Department of Horticultural Sciences, College of Agriculture and Natural Resources,
University of Tehran, Chamran Blvd., IR-31587-77871 Karaj, Iran
| | - Mohammad Reza Naghavi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources,
University of Tehran, Chamran Blvd., IR-31587-77871 Karaj, Iran
| |
Collapse
|
13
|
Abdoli Nasab M, Jalali Javaran M, Cusido RM, Palazon J. Purification of recombinant tissue plasminogen activator (rtPA) protein from transplastomic tobacco plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:139-144. [PMID: 27428368 DOI: 10.1016/j.plaphy.2016.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/19/2016] [Accepted: 06/24/2016] [Indexed: 05/17/2023]
Abstract
Plants are low cost platforms for the production of recombinant proteins, but their complexity renders the purification of plant recombinant proteins more difficult than proteins expressed in yeast or bacteria. Plastid transformation enables high-level expression of foreign genes and the accumulation of recombinant proteins in plastid organelles. Histidine (His) tags are widely used for affinity purification of recombinant proteins in a nickel column. The human tissue-type plasminogen activator (tPA) is one of the most important pharmaceutical recombinant proteins involved in the breakdown of blood clots in different parts of the body. The truncated form of the tissue plasminogen activator (K2S) has a longer plasma half-life, better diffusion into the clot, and higher fibrinolytic activity. In a construct designed to insert the K2S gene in the tobacco chloroplast, the sequence of six histidines and a factor Xa protease site was fused to the C-terminus of the K2S protein. The presence and amount of tPA recombinant protein in transplastomic tobacco plants was estimated by ELISA analysis using a specific antibody. The protein was purified from total soluble protein, insoluble protein aggregates and the protein was extracted from the isolated chloroplast using nickel resin and a chromatography column. After digestion of the purified protein with factor Xa, the presence of the purified tPA protein was confirmed by western blot analysis.
Collapse
Affiliation(s)
- Maryam Abdoli Nasab
- Department of Biotechnology, Institute of Science, High Technology and Environmental Science, Graduate University of Advanced Technology, P.O. Box 76315-117, Kerman, Iran.
| | - Mokhtar Jalali Javaran
- Department of Plant Breeding, Faculty of Agiculture, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran.
| | - Rosa M Cusido
- Department of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan, XXIII, S/n, 08028, Barcelona, Spain.
| | - Javier Palazon
- Department of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan, XXIII, S/n, 08028, Barcelona, Spain.
| |
Collapse
|
14
|
Nasiri J, Naghavi MR, Alizadeh H, Moghadam MRF. Seasonal-based temporal changes fluctuate expression patterns of TXS, DBAT, BAPT and DBTNBT genes alongside production of associated taxanes in Taxus baccata. PLANT CELL REPORTS 2016; 35:1103-1119. [PMID: 26883228 DOI: 10.1007/s00299-016-1941-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Environmental cues have synergistic or antagonistic regulatory roles on transcription activity and taxanes accumulation in yew, though DBAT activity is less influenced, could be accordingly a rate-limiting enzyme. The current work was undertaken to elucidate the consequences of some environmental cues (i.e., day length, temperature, sunlight and relative humidity) on the expression patterns of TXS, DBAT, BAPT and DBTNBT genes contributed to the taxol biosynthetic pathway along with the accumulation of some taxanes in needles and stems of Taxus baccata over year 2013-2014. In both tissues, light intensity and temperature correlated with the production of 10-DAB III and total taxanes, and TXS activity, while a lack of significant association was deduced for day length and relative humidity. Furthermore, in both tissues, a weak correlation was observed between BAC III and light intensity, temperature, day length and relative humidity, and the corresponding gene, DBAT. Surprisingly, DBAT activity was not co-induced with TXS in both tissues, and remained expressed at basal levels over year, supporting that the conversion of 10-DAB III into BAC III could presumably be a rate limiting step in the taxol biosynthetic pathway. Similar to BAC III, no strong correlation was detected between production of taxol in both tissues and all the meteorological data, while the corresponding genes BAPT and DBTNBT, in some cases, exhibited significant correlated results. Notably, despite higher activities of BAPT and DBTNBT in both tissues over year, taxol production was still in small quantities, probably owing to the low amounts of its precursors rather than low volumes of BAPT and DBTNBT transcripts. The results, altogether, could provide us new insights towards the potential regulatory roles of environmental cues on the production of taxanes in yew trees.
Collapse
Affiliation(s)
- Jaber Nasiri
- Division of Plant Molecular Genetics, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran.
| | - Mohammad Reza Naghavi
- Division of Plant Molecular Genetics, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran.
| | - Houshang Alizadeh
- Division of Plant Molecular Genetics, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | | |
Collapse
|
15
|
Co-expression of disulfide oxidoreductases DsbA/DsbC markedly enhanced soluble and functional expression of reteplase in Escherichia coli. J Biotechnol 2015; 192 Pt A:197-203. [PMID: 25449110 DOI: 10.1016/j.jbiotec.2014.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022]
Abstract
Reteplase is the third generation of thrombolytic medicine and has many advantages over commercial t-PA. However, over-expressing recombinant reteplase in E. coli always accumulates as inclusion bodies due to nine pairs of disulfide bonds formation that is the main obstacle for correct folding. In this paper, in order to enhance soluble expression of recombinant reteplase in E. coli, DsbA/DsbC foldases were used to introduce disulfide bonds into the reduced polypeptide chain and catalyze their isomerization to the native disulfide linkage during the folding process. Firstly multiple E. coli protein expression systems, i.e. DsbA, DsbC and DsbA/DsbC co-expression were constructed. Subsequently, IPTG and l-arabinose were added to induce expression of foldases and reteplase accordingly, and experimental parameters such as culture temperature and inducer concentration were optimized. As a result, the co-expression system markedly enhanced soluble expression of recombinant reteplase, and up to 60% of reteplase achieved soluble expression especially for the DsbC co-expression system. The fibrin plate method for active reteplase quantification showed that ∼70 mg soluble reteplase per liter fermentation broth was obtained with 2.35 × 105 IU/mg thrombolytic activity. Finally, fluorescence spectra indicated that the structural conformation of soluble reteplase was identical to its native state. The soluble expression of recombinant reteplase in E. coli was accomplished by co-expression with DsbA/DsbC, which contributes to further research in clinical application and folding mechanism, and provides guidance for production of other proteins with disulfide bonds.
Collapse
|
16
|
Heidari HR, Bandehpour M, Vahidi H, Barar J, Kazemi B, Naderi-Manesh H. Improvement in the stability and functionality of Nicotiana tabacum produced recombinant TRAIL through employment of endoplasmic reticulum expression and ascorbate buffer mediated extraction strategies. ACTA ACUST UNITED AC 2014; 4:123-32. [PMID: 25337465 PMCID: PMC4204037 DOI: 10.15171/bi.2014.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/15/2014] [Accepted: 03/31/2014] [Indexed: 02/04/2023]
Abstract
Introduction: In order to employ Nicotiana tabacum cells as a profitable natural bioreactor for production of bio-functional "Soluble human TRAIL" (ShTRAIL), endoplasmic reticulum (ER) targeted expression and innovative extraction procedures were exploited.
Methods: At first, the ShTRAIL encoding gene was sub-cloned into designed H2 helper vector to equip it with potent TMV omega leader sequences, ER sorting signal peptide, poly-histidine tag and ER retention signal peptide (KDEL). Then, the ER targeted ShTRAIL cassette was sequentially sub-cloned into "CaMV-35S" helper and "pGreen-0179" final expression vectors. Afterward, Agrobacterium mediated transformation method was adopted to express the ShTRAIL in the ER of N. tabacum . Next, the ShTRAIL protein was extracted through both phosphate and innovative ascorbate extraction buffers. Subsequently, oligomerization state of the ShTRAIL was evaluated through cross-linking assay and western blot analysis. Then, semi-quantitative western blot analysis was performed to estimate the ShTRAIL production. Finally, biological activity of the ShTRAIL was evaluated through MTT assay.
Results: The phosphate buffer extracted ShTRAIL was produced in dimmer form, whereas the ShTRAIL extracted with ascorbate buffer generated trimer form. The ER targeted ShTRAIL strategy increased the ShTRAIL’s production level up to about 20 μg/g of fresh weight of N. tabacum . MTT assay indicated that ascorbate buffer extracted ShTRAIL could prohibit proliferation of A549 cell line.
Conclusion: Endoplasmic reticulum expression and reductive ascorbate buffer extraction procedure can be employed to enhance the stability and overall production level of bio-functional recombinant ShTRAIL from transgenic N. tabacum cells.
Collapse
Affiliation(s)
- Hamid Reza Heidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; Student s Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Abdoli-Nasab M, Jalali-Javaran M, Cusidó RM, Palazón J, Baghizadeh A, Alizadeh H. Expression of the truncated tissue plasminogen activator (K2S) gene in tobacco chloroplast. Mol Biol Rep 2013; 40:5749-58. [PMID: 24114696 DOI: 10.1007/s11033-013-2678-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 09/14/2013] [Indexed: 01/08/2023]
Abstract
As because the plant plastid genome is highly polyploid, the transformation of chloroplasts permits the introduction of thousands of copies of foreign genes per plant cell and generates extraordinarily high levels of recombinant protein. Human tissue-type plasminogen activator is one of the most important pharmaceutical proteins involved in the breakdown of blood clots in brain and heart blood vessels. We report the introduction and expression of the truncated human tissue plasminogen activator (K2S) gene in tobacco chloroplasts. The K2S-containing vector pKCZK2S was successfully transferred to tobacco plastomes using the biolistic delivery procedure. Transplastomic plants were selected on RMOP medium containing spectinomycin (500 mg/l). In order to achieve homoplasmy, several rounds of selection and regeneration were performed. The presence, site-specific integration, homoplasmy, expression and activity assay of the transgene were confirmed in the transplastomic plants by PCR, Southern-blot, RT-PCR, SDS-PAGE, ELISA, Dot-blot, Western-blot and zymography analysis. Our results show that the tissue plasminogen activator (K2S form) protein to be expressed in tobacco chloroplasts in active form.
Collapse
Affiliation(s)
- Maryam Abdoli-Nasab
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran,
| | | | | | | | | | | |
Collapse
|
18
|
Li F, Zhang H, Sun Y, Pan Y, Zhou J, Wang J. Expanding the Genetic Code for Photoclick Chemistry inE. coli, Mammalian Cells, andA. thaliana. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Li F, Zhang H, Sun Y, Pan Y, Zhou J, Wang J. Expanding the Genetic Code for Photoclick Chemistry inE. coli, Mammalian Cells, andA. thaliana. Angew Chem Int Ed Engl 2013; 52:9700-4. [DOI: 10.1002/anie.201303477] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/24/2013] [Indexed: 12/25/2022]
|