1
|
García-Silva I, Farfán-Castro S, Rosales-Mendoza S, Palestino G. Synthesis and Characterization of Thiolated Nanoparticles Based on Poly (Acrylic Acid) and Algal Cell Wall Biopolymers for the Delivery of the Receptor Binding Domain from SARS-CoV-2. Pharmaceutics 2024; 16:891. [PMID: 39065588 PMCID: PMC11279463 DOI: 10.3390/pharmaceutics16070891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The COVID-19 pandemic required great efforts to develop efficient vaccines in a short period of time. However, innovative vaccines against SARS-CoV-2 virus are needed to achieve broad immune protection against variants of concern. Polymeric-based particles can lead to innovative vaccines, serving as stable, safe and immunostimulatory antigen delivery systems. In this work, polymeric-based particles called thiolated PAA/Schizo were developed. Poly (acrylic acid) (PAA) was thiolated with cysteine ethyl ester and crosslinked with a Schizochytrium sp. cell wall fraction under an inverse emulsion approach. Particles showed a hydrodynamic diameter of 313 ± 38 nm and negative Zeta potential. FT-IR spectra indicated the presence of coconut oil in thiolated PAA/Schizo particles, which, along with the microalgae, could contribute to their biocompatibility and bioactive properties. TGA analysis suggested strong interactions between the thiolated PAA/Schizo components. In vitro assessment revealed that thiolated particles have a higher mucoadhesiveness when compared with non-thiolated particles. Cell-based assays revealed that thiolated particles are not cytotoxic and, importantly, increase TNF-α secretion in murine dendritic cells. Moreover, immunization assays revealed that thiolated PAA/Schizo particles induced a humoral response with a more balanced IgG2a/IgG1 ratio. Therefore, thiolated PAA/Schizo particles are deemed a promising delivery system whose evaluation in vaccine prototypes is guaranteed.
Collapse
Affiliation(s)
- Ileana García-Silva
- Biotechnology Section, Center for Research in Health Science and Biomedicine, Autonomous University of San Luis Potosí, Av. Sierra Leona 550, Lomas de San Luis, San Luis Potosí 78210, Mexico; (I.G.-S.); (S.F.-C.)
- Biopolymers and Nanostructures Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico
- Recombinant Biopharmaceuticals Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico
| | - Susan Farfán-Castro
- Biotechnology Section, Center for Research in Health Science and Biomedicine, Autonomous University of San Luis Potosí, Av. Sierra Leona 550, Lomas de San Luis, San Luis Potosí 78210, Mexico; (I.G.-S.); (S.F.-C.)
- Recombinant Biopharmaceuticals Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico
| | - Sergio Rosales-Mendoza
- Biotechnology Section, Center for Research in Health Science and Biomedicine, Autonomous University of San Luis Potosí, Av. Sierra Leona 550, Lomas de San Luis, San Luis Potosí 78210, Mexico; (I.G.-S.); (S.F.-C.)
- Recombinant Biopharmaceuticals Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico
| | - Gabriela Palestino
- Biotechnology Section, Center for Research in Health Science and Biomedicine, Autonomous University of San Luis Potosí, Av. Sierra Leona 550, Lomas de San Luis, San Luis Potosí 78210, Mexico; (I.G.-S.); (S.F.-C.)
- Biopolymers and Nanostructures Laboratory, School of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico
| |
Collapse
|
2
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Zeng L, Bi Y, Guo P, Bi Y, Wang T, Dong L, Wang F, Chen L, Zhang W. Metabolic Analysis of Schizochytrium Mutants With High DHA Content Achieved With ARTP Mutagenesis Combined With Iodoacetic Acid and Dehydroepiandrosterone Screening. Front Bioeng Biotechnol 2021; 9:738052. [PMID: 34869256 PMCID: PMC8637758 DOI: 10.3389/fbioe.2021.738052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
High DHA production cost caused by low DHA titer and productivity of the current Schizochytrium strains is a bottleneck for its application in competition with traditional fish-oil based approach. In this study, atmospheric and room-temperature plasma with iodoacetic acid and dehydroepiandrosterone screening led to three mutants, 6–8, 6–16 and 6–23 all with increased growth and DHA accumulations. A LC/MS metabolomic analysis revealed the increased metabolism in PPP and EMP as well as the decreased TCA cycle might be relevant to the increased growth and DHA biosynthesis in the mutants. Finally, the mutant 6–23, which achieved the highest growth and DHA accumulation among all mutants, was evaluated in a 5 L fermentor. The results showed that the DHA concentration and productivity in mutant 6–23 were 41.4 g/L and 430.7 mg/L/h in fermentation for 96 h, respectively, which is the highest reported so far in literature. The study provides a novel strain improvement strategy for DHA-producing Schizochytrium.
Collapse
Affiliation(s)
- Lei Zeng
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Yanqi Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Pengfei Guo
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Yali Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tiantian Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Liang Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
4
|
Hussain SA, Sarker MI, Yosief HO, Yadav MP. Evaluation of diverse biochemical stimulants to enhance growth, lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium Sp. ATCC PRA-276. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Malla A, Rosales-Mendoza S, Phoolcharoen W, Vimolmangkang S. Efficient Transient Expression of Recombinant Proteins Using DNA Viral Vectors in Freshwater Microalgal Species. FRONTIERS IN PLANT SCIENCE 2021; 12:650820. [PMID: 33897742 PMCID: PMC8058379 DOI: 10.3389/fpls.2021.650820] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
The increase in the world population, the advent of new infections and health issues, and the scarcity of natural biological products have spotlighted the importance of recombinant protein technology and its large-scale production in a cost-effective manner. Microalgae have become a significant promising platform with the potential to meet the increasing demand for recombinant proteins and other biologicals. Microalgae are safe organisms that can grow rapidly and are easily cultivated with basic nutrient requirements. Although continuous efforts have led to considerable progress in the algae genetic engineering field, there are still many hurdles to overcome before these microorganisms emerge as a mature expression system. Hence, there is a need to develop efficient expression approaches to exploit microalgae for the production of recombinant proteins at convenient yields. This study aimed to test the ability of the DNA geminiviral vector with Rep-mediated replication to transiently express recombinant proteins in the freshwater microalgal species Chlamydomonas reinhardtii and Chlorella vulgaris using Agrobacterium-mediated transformation. The SARS-CoV-2 receptor binding domain (RBD) and basic fibroblast growth factor (bFGF) are representative antigen proteins and growth factor proteins, respectively, that were subcloned in a geminiviral vector and were used for nuclear transformation to transiently express these proteins in C. reinhardtii and C. vulgaris. The results showed that the geminiviral vector allowed the expression of both recombinant proteins in both algal species, with yields at 48 h posttransformation of up to 1.14 μg/g RBD and 1.61 ng/g FGF in C. vulgaris and 1.61 μg/g RBD and 1.025 ng/g FGF in C. reinhardtii. Thus, this study provides a proof of concept for the use of DNA viral vectors for the simple, rapid, and efficient production of recombinant proteins that repress the difficulties faced in the genetic transformation of these unicellular green microalgae. This concept opens an avenue to explore and optimize green microalgae as an ideal economically valuable platform for the production of therapeutic and industrially relevant recombinant proteins in shorter time periods with significant yields.
Collapse
Affiliation(s)
- Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Dai K, Zhao J, Cheng Y, Tian C, Zhang C, Chen M. Inulin as a Promising Alternative Feedstock for Docosahexaenoic Acid Production by
Schizochytrium
sp. ATCC 20888. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kexin Dai
- School of Biological Engineering Dalian Polytechnic University Dalian 116034 China
| | - Jing Zhao
- College of Life Science Dalian Minzu University Dalian 116600 China
| | - Yan Cheng
- School of Biological Engineering Dalian Polytechnic University Dalian 116034 China
| | - Chang Tian
- School of Biological Engineering Dalian Polytechnic University Dalian 116034 China
| | - Chunzhi Zhang
- School of Biological Engineering Dalian Polytechnic University Dalian 116034 China
| | - Ming Chen
- School of Biological Engineering Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
7
|
Bernaerts TM, Gheysen L, Foubert I, Hendrickx ME, Van Loey AM. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnol Adv 2019; 37:107419. [DOI: 10.1016/j.biotechadv.2019.107419] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
|
8
|
Cloning of the pks3 gene of Aurantiochytrium limacinum and functional study of the 3-ketoacyl-ACP reductase and dehydratase enzyme domains. PLoS One 2018; 13:e0208853. [PMID: 30533058 PMCID: PMC6289434 DOI: 10.1371/journal.pone.0208853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022] Open
Abstract
Aurantiochytrium limacinum has received attention because of its abundance of polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA). DHA is synthesized through the polyketide synthase (PKS) pathway in A. limacinum. The related enzymes of the PKS pathway are mainly expressed by three gene clusters, called pks1, pks2 and pks3. In this study, the full-length pks3 gene was obtained by polymerase chain reaction amplification and Genome Walking technology. Based on a domain analysis of the deduced amino acid sequence of the pks3 gene, 3-ketoacyl-ACP reductase (KR) and dehydratase (DH) enzyme domains were identified. Herein, A. limacinum OUC168 was engineered by gene knock-in of KR and DH using the 18S rDNA sequence as the homologous recombination site. Total fatty acid contents and the degree of unsaturation of total fatty acids increased after the kr or dh gene was knocked in. The cloning and functional study of the pks3 gene of A. limacinum establishes a foundation for revealing the DHA synthetic pathway. Gene knock-in of the enzyme domain associated with PKS synthesis has the potential to provide effective recombinant strains with higher DHA content for industrial applications.
Collapse
|
9
|
Ramos-Vega A, Rosales-Mendoza S, Bañuelos-Hernández B, Angulo C. Prospects on the Use of Schizochytrium sp. to Develop Oral Vaccines. Front Microbiol 2018; 9:2506. [PMID: 30410471 PMCID: PMC6209683 DOI: 10.3389/fmicb.2018.02506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Although oral subunit vaccines are highly relevant in the fight against widespread diseases, their high cost, safety and proper immunogenicity are attributes that have yet to be addressed in many cases and thus these limitations should be considered in the development of new oral vaccines. Prominent examples of new platforms proposed to address these limitations are plant cells and microalgae. Schizochytrium sp. constitutes an attractive expression host for vaccine production because of its high biosynthetic capacity, fast growth in low cost culture media, and the availability of processes for industrial scale production. In addition, whole Schizochytrium sp. cells may serve as delivery vectors; especially for oral vaccines since Schizochytrium sp. is safe for oral consumption, produces immunomodulatory compounds, and may provide bioencapsulation to the antigen, thus increasing its bioavailability. Remarkably, Schizochytrium sp. was recently used for the production of a highly immunoprotective influenza vaccine. Moreover, an efficient method for transient expression of antigens based on viral vectors and Schizochytrium sp. as host has been recently developed. In this review, the potential of Schizochytrium sp. in vaccinology is placed in perspective, with emphasis on its use as an attractive oral vaccination vehicle.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Carlos Angulo
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| |
Collapse
|
10
|
Xu J, Zhu Y, Li H, Chen L, Chen W, Cui M, Han L, Hou W, Li D. Alanine mother liquor as a nitrogen source for docosahexaenoic acid production by Schizochytrium sp. B4D1. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
11
|
Hoang LAT, Nguyen HC, Le TT, Hoang THQ, Pham VN, Hoang MHT, Ngo HTT, Hong DD. Different fermentation strategies by Schizochytrium mangrovei strain pq6 to produce feedstock for exploitation of squalene and omega-3 fatty acids. JOURNAL OF PHYCOLOGY 2018; 54:550-556. [PMID: 29889307 DOI: 10.1111/jpy.12757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Schizochytrium mangrovei strain PQ6 was investigated for coproduction of docosahexaenoic acid (C22: 6ω-3, DHA) and squalene using a 30-L bioreactor with a working volume of 15 L under various batch and fed-batch fermentation process regimes. The fed-batch process was a more efficient cultivation strategy for achieving higher biomass production rich in DHA and squalene. The final biomass, total lipid, unsaponifiable lipid content, and DHA productivity were 105.25 g · L-1 , 43.40% of dry cell weight, 8.58% total lipid, and 61.66 mg · g-1 · L-1 , respectively, after a 96 h fed-batch fermentation. The squalene content was highest at 48 h after feeding glucose (98.07 mg · g-1 of lipid). Differences in lipid accumulation during fermentation were correlated with changes in ultrastructure using transmission electron microscopy and Nile Red staining of cells. The results may be of relevance to industrial-scale coproduction of DHA and squalene in heterotrophic marine microalgae such as Schizochytrium.
Collapse
Affiliation(s)
- Lan Anh Thi Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Ha Cam Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thom Thi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Huong Quynh Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Van Nhat Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Minh Hien Thi Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Hoai Thu Thi Ngo
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Dang Diem Hong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
12
|
Song P, Yuan K, Qin T, Zhang K, Ji XJ, Ren L, Guan R, Wen J, Huang H. Metabolomics profiling reveals the mechanism of increased pneumocandin B 0 production by comparing mutant and parent strains. J Ind Microbiol Biotechnol 2018; 45:767-780. [PMID: 29948195 DOI: 10.1007/s10295-018-2047-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/18/2018] [Indexed: 11/26/2022]
Abstract
Metabolic profiling was used to discover mechanisms of increased pneumocandin B0 production in a high-yield strain by comparing it with its parent strain. Initially, 79 intracellular metabolites were identified, and the levels of 15 metabolites involved in six pathways were found to be directly correlated with pneumocandin B0 biosynthesis. Then by combining the analysis of key enzymes, acetyl-CoA and NADPH were identified as the main factors limiting pneumocandin B0 biosynthesis. Other metabolites, such as pyruvate, α-ketoglutaric acid, lactate, unsaturated fatty acids and previously unreported metabolite γ-aminobutyric acid were shown to play important roles in pneumocandin B0 biosynthesis and cell growth. Finally, the overall metabolic mechanism hypothesis was formulated and a rational feeding strategy was implemented that increased the pneumocandin B0 yield from 1821 to 2768 mg/L. These results provide practical and theoretical guidance for strain selection, medium optimization, and genetic engineering for pneumocandin B0 production.
Collapse
Affiliation(s)
- Ping Song
- Department Biochemical Engineering, School Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Kai Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Tingting Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ke Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rongfeng Guan
- Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jianping Wen
- Department Biochemical Engineering, School Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
13
|
Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Bañuelos-Hernández B, Monreal-Escalante E, González-Ortega O, Angulo C, Rosales-Mendoza S. Algevir: An Expression System for Microalgae Based on Viral Vectors. Front Microbiol 2017; 8:1100. [PMID: 28713333 PMCID: PMC5491637 DOI: 10.3389/fmicb.2017.01100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/31/2017] [Indexed: 12/23/2022] Open
Abstract
The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus) and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin), which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture), which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins.
Collapse
Affiliation(s)
- Bernardo Bañuelos-Hernández
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico
| | - Omar González-Ortega
- Laboratorio de Bioseparaciones, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico
| | - Carlos Angulo
- Grupo de Inmunología & Vacunología. Centro de Investigaciones Biológicas del Noroeste, SC., Instituto Politécnico Nacional 195La Paz, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico
| |
Collapse
|
15
|
Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Braz J Microbiol 2017; 48:359-365. [PMID: 28162954 PMCID: PMC5470432 DOI: 10.1016/j.bjm.2017.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/13/2016] [Indexed: 11/28/2022] Open
Abstract
The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30 g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22 g/L, and fed-batch system experiments in which 0.14 g/L of glucose and 0.0014 g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9 g/L) was obtained after 96 h of cultivation in the batch system using initial concentrations of 0.22 g/L total nitrogen and 30 g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6 g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80 g/L, respectively.
Collapse
|
16
|
A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase. Enzyme Microb Technol 2016; 93-94:182-190. [DOI: 10.1016/j.enzmictec.2016.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/30/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022]
|
17
|
Lowrey J, Armenta RE, Brooks MS. Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass. J Ind Microbiol Biotechnol 2016; 43:1105-15. [PMID: 27155854 DOI: 10.1007/s10295-016-1779-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/28/2016] [Indexed: 11/28/2022]
Abstract
Efficient resource usage is important for cost-effective microalgae production, where the incorporation of waste streams and recycled water into the process has great potential. This study builds upon emerging research on nutrient recycling in thraustochytrid production, where waste streams are recovered after lipid extraction and recycled into future cultures. This research investigates the nitrogen flux of recycled hydrolysate derived from enzymatic lipid extraction of thraustochytrid biomass. Results indicated the proteinaceous content of the recycled hydrolysate can offset the need to supply fresh nitrogen in a secondary culture, without detrimental impact upon the produced biomass. The treatment employing the recycled hydrolysate with no nitrogen addition accumulated 14.86 g L(-1) of biomass in 141 h with 43.3 % (w/w) lipid content compared to the control which had 9.26 g L(-1) and 46.9 % (w/w), respectively. This improved nutrient efficiency and wastewater recovery represents considerable potential for enhanced resource efficiency of commercial thraustochytrid production.
Collapse
Affiliation(s)
- Joshua Lowrey
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Mara Renewables Corporation, 101 Research Drive, Dartmouth, NS, B2Y 4T6, Canada.
| | - Roberto E Armenta
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Mara Renewables Corporation, 101 Research Drive, Dartmouth, NS, B2Y 4T6, Canada
| | - Marianne S Brooks
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
18
|
The Potential of Microalgae Lipids for Edible Oil Production. Appl Biochem Biotechnol 2016; 180:438-451. [DOI: 10.1007/s12010-016-2108-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/27/2016] [Indexed: 12/24/2022]
|
19
|
Aasen IM, Ertesvåg H, Heggeset TMB, Liu B, Brautaset T, Vadstein O, Ellingsen TE. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 2016; 100:4309-21. [DOI: 10.1007/s00253-016-7498-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 01/09/2023]
|
20
|
Sun L, Ren L, Zhuang X, Ji X, Yan J, Huang H. Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. BIORESOURCE TECHNOLOGY 2014; 159:199-206. [PMID: 24657750 DOI: 10.1016/j.biortech.2014.02.106] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 05/27/2023]
Abstract
Four nutrient limitation cultures, namely monosodium glutamate (MSG-L), phosphate (P-L), ammonium sulfate (NH4(+)-L) and double (D-L, MSG and P limitation) limited, were designed to study how cell growth and biochemical components of Schizochytrium sp. were affected by nutrient limitations. All limited conditions caused decrease in biomass especially MSG-L and D-L conditions. MSG-L condition attained the highest lipid yield of 30.73 g/l but the lowest protein content. P-L condition shortened the fermentation time and obtained the highest DHA productivity of 291 mg/lh. D-L condition was the most cost-effective fermentation condition which gained the highest input-output ratio. NH4(+)-L condition got the highest squalene and DHA content in lipids. Meanwhile, nitrogen limited conditions promoted the accumulation of neutral lipids. All limited conditions benefit the PUFAs accumulation in the neutral lipids. In addition, the existence of NH4(+) or the absence of MSG and phosphate reduced the unsaponifiable matters content in lipid.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Lujing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| | - Xiaoyan Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiaojun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Jiacheng Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| |
Collapse
|
21
|
Ren LJ, Sun GN, Ji XJ, Hu XC, Huang H. Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2014; 157:107-113. [PMID: 24534791 DOI: 10.1016/j.biortech.2014.01.078] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
Single cell oils (SCOs), a complex lipid system, contains neutral lipids (NLs), polar lipids (PLs) and unsaponifiable matters (UMs). To investigate the dynamic changes and the metabolic competition mechanism of different components of SCOs, changes in lipid composition of Schizochytrium sp. were monitored in lipid accumulation and turnover stages. Lipid content could reach 69.98% in biomass during the lipid accumulation stage, while, after the exhaustion of glucose, the content decreased to 45.51% and 20.6g/L non-oil biomass was synthesis. Polyunsaturated fatty acids (PUFAs) were easier to bind with PLs. NLs were preferentially converted to PLs during lipid turnover stage, accompanied by the degradation of saturated fatty acids and the increase of UMs. Meanwhile, a positive correlation between the synthesis of PUFAs and unsaponifiable matters exited in Schizochytrium sp., and increasing the content of UMs from 45 to 100mg/L could increase the PUFA percentage from 64% to 74% effectively.
Collapse
Affiliation(s)
- Lu-Jing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Guan-Nan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xue-Chao Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| |
Collapse
|