1
|
Cann I, Cheng Y, Alhawsawi MAB, Moran M, Li Y, Gong T, Zhu W, Mackie RI. Rumen-Targeted Mining of Enzymes for Bioenergy Production. Annu Rev Anim Biosci 2025; 13:343-369. [PMID: 39541233 DOI: 10.1146/annurev-animal-021022-030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Second-generation biofuel production, which aims to convert lignocellulose to liquid transportation fuels, could be transformative in worldwide energy portfolios. A bottleneck impeding its large-scale deployment is conversion of the target polysaccharides in lignocellulose to their unit sugars for microbial fermentation to the desired fuels. Cellulose and hemicellulose, the two major polysaccharides in lignocellulose, are complex in nature, and their interactions with pectin and lignin further increase their recalcitrance to depolymerization. This review focuses on the intricate linkages present in the feedstocks of interest and examines the potential of the enzymes evolved by microbes, in the microbe/ruminant symbiotic relationship, to depolymerize the target polysaccharides. We further provide insights to how a rational and more efficient assembly of rumen microbial enzymes can be reconstituted for lignocellulose degradation. We conclude by expounding on how gains in this area can impact the sustainability of both animal agriculture and the energy sector.
Collapse
Affiliation(s)
- Isaac Cann
- Center for East Asian and Pacific Studies, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; , ,
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; ,
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China; , ,
| | - Manal A B Alhawsawi
- Clinical Nutrition Department, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; , ,
| | - Mallory Moran
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; , ,
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; ,
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China; , ,
| | - Tian Gong
- National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Sciences, Shaanxi Normal University, Xian, Shaanxi, China
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; , ,
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China; , ,
| | - Roderick I Mackie
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; , ,
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; ,
| |
Collapse
|
2
|
Kabarkouhi Z, Tadi SH, Mahmoodi H, Ranaei Siadat SO, Arjmand S, Shokri B. Simulation and experimental study of a cold atmospheric pressure plasma and comparison of efficiency in boosting recombinant Endoglucanase II production in Pichia pastoris. PLoS One 2024; 19:e0303795. [PMID: 38771745 PMCID: PMC11108213 DOI: 10.1371/journal.pone.0303795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Recombinant proteins are essential in various industries, and scientists employ genetic engineering and synthetic biology to enhance the host cell's protein production capacity. Stress response pathways have been found effective in augmenting protein secretion. Cold atmospheric pressure plasma (CAP) can induce oxidative stress and enhance protein production. Previous studies have confirmed the applicability of CAP jets on Phytase and green fluorescent protein (GFP) production in Pichia pastoris hosts. This study investigates the effect of CAP treatment on another valuable recombinant protein, Endoglucanase II (EgII), integrated into the Pichia pastoris genome. The results demonstrated that plasma induction via two different ignition modes: sinusoidal alternating current (AC) and pulsed direct current (DC) for 120, 180, and 240 s has boosted protein secretion without affecting cell growth and viability. The AC-driven jet exhibited a higher percentage increase in secretion, up to 45%. Simulation of plasma function using COMSOL software provided a pattern of electron temperature (Te) and density distribution, which determine the plasma cocktail's chemistry and reactive species production. Furthermore, electron density (ne) and temperature were estimated from the recorded optical spectrum. The difference in electron properties may explain the moderately different impressions on expression capability. However, cell engineering to improve secretion often remains a trial-and-error approach, and improvements are, at least partially, specific to the protein produced.
Collapse
Affiliation(s)
- Zeinab Kabarkouhi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Hadi Mahmoodi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Babak Shokri
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Expression of Pantoea sp. 3.5.1 AgpP Phytase in Three Expression Systems. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Wang H, Li G, Zhong C, Mo J, Sun Y, Shi J, Zhou R, Li Z, Wu Z, Liu D, Zhang X. Generation of Multi-Transgenic Pigs Using PiggyBac Transposons Co-expressing Pectinase, Xylanase, Cellulase, β-1.3-1.4-Glucanase and Phytase. Front Genet 2020; 11:597841. [PMID: 33329743 PMCID: PMC7734351 DOI: 10.3389/fgene.2020.597841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022] Open
Abstract
The current challenges facing the pork industry are to maximize feed efficiency and minimize fecal emissions. Unlike ruminants, pigs lack several digestive enzymes such as pectinase, xylanase, cellulase, β-1.3-1.4-glucanase, and phytase which are essential to hydrolyze the cell walls of grains to release endocellular nutrients into their digestive tracts. Herein, we synthesized multiple cellulase and pectinase genes derived from lower organisms and then codon-optimized these genes to be expressed in pigs. These genes were then cloned into our previously optimized XynB (xylanase)- EsAPPA (phytase) bicistronic construct. We then successfully generated transgenic pigs that expressed the four enzymes [Pg7fn (pectinase), XynB (xylanase), EsAPPA (phytase), and TeEGI (cellulase and β-glucanase)] using somatic cell cloning. The expression of these genes was parotid gland specific. Enzymatic assays using the saliva of these founders demonstrated high levels of phytase (2.0∼3.4 U/mL) and xylanase (0.25∼0.42 U/mL) activities, but low levels of pectinase (0.06∼0.08 U/mL) activity. These multi-transgenic pigs are expected to contribute to enhance feed utilization and reduce environmental impact.
Collapse
Affiliation(s)
- Haoqiang Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guoling Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cuili Zhong
- Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Jianxin Mo
- Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Yue Sun
- Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Junsong Shi
- Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Rong Zhou
- Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xianwei Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Wens Foodstuff Group Co., Ltd., Yunfu, China
| |
Collapse
|
5
|
Mombeni M, Arjmand S, Siadat SOR, Alizadeh H, Abbasi A. pMOX: a new powerful promoter for recombinant protein production in yeast Pichia pastoris. Enzyme Microb Technol 2020; 139:109582. [DOI: 10.1016/j.enzmictec.2020.109582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 11/27/2022]
|
6
|
Giovannoni M, Gramegna G, Benedetti M, Mattei B. Industrial Use of Cell Wall Degrading Enzymes: The Fine Line Between Production Strategy and Economic Feasibility. Front Bioeng Biotechnol 2020; 8:356. [PMID: 32411686 PMCID: PMC7200985 DOI: 10.3389/fbioe.2020.00356] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cell Wall Degrading Enzymes (CWDEs) are a heterogeneous group of enzymes including glycosyl-hydrolases, oxidoreductases, lyases, and esterases. Microbes with degrading activities toward plant cell wall polysaccharides are the most relevant source of CWDEs for industrial applications. These organisms secrete a wide array of CWDEs in amounts strictly necessary for their own sustenance, nonetheless the production of CWDEs from wild type microbes can be increased at large-scale by using optimized fermentation strategies. In the last decades, advances in genetic engineering allowed the expression of recombinant CWDEs also in lab-domesticated organisms such as E. coli, yeasts and plants, dramatically increasing the available options for the large-scale production of CWDEs. The optimization of a CWDE-producing biofactory is a hard challenge that biotechnologists tackle by testing different expression strategies and expression-hosts. Although both the yield and production costs are critical factors to produce biomolecules at industrial scale, these parameters are often disregarded in basic research. This review presents the main characteristics and industrial applications of CWDEs directed toward the cell wall of plants, bacteria, fungi and microalgae. Different biofactories for CWDE expression are compared in order to highlight strengths and weaknesses of each production system and how these aspects impact the final enzyme cost and, consequently, the economic feasibility of using CWDEs for industrial applications.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Gramegna
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
7
|
Fatemi F. Design and fabrication of a label-free aptasensor for rapid and sensitive detection of endoglucanase. Int J Biol Macromol 2020; 148:276-283. [PMID: 31923498 DOI: 10.1016/j.ijbiomac.2020.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/11/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Endoglucanase (endocellulase, EC 3.2.1.4) is one of the most widely used enzymes in industry. Despite its importance, improved methods for the rapid, selective, quantitative assay of this enzyme have been slow to emerge. In this work, we have designed an aptasensor platform for ultrasensitive endoglucanase II detection based on DNA aptamer and reduced graphene oxide/Au nanoparticles (RGO/AuNPs). The surface morphology of RGO/AuNPs was characterized by various techniques such as transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) methods. The aptasensor characterization was monitored with electrochemical techniques. Using RGO/AuNPs as a nanomaterial can effectively increase the conductivity of biosensor electrode. Moreover, using an RGO/AuNPs/aptamer platform in the presence of endoglucanase, the sensor system is able to generate a signal, which significantly improves the selectivity of the aptasensor. The fabricated aptasensor exhibits high sensitivity and selectivity to endoglucanase II with a low limit of detection (LOD) ˂0.1 nM.
Collapse
Affiliation(s)
- Fataneh Fatemi
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran.
| |
Collapse
|
8
|
Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
: Energy demand is constantly growing, and, nowadays, fossil fuels still play a dominant role in global energy production, despite their negative effects on air pollution and the emission of greenhouse gases, which are the main contributors to global warming. An alternative clean source of energy is represented by the lignocellulose fraction of plant cell walls, the most abundant carbon source on Earth. To obtain biofuels, lignocellulose must be efficiently converted into fermentable sugars. In this regard, the exploitation of cell wall lytic enzymes (CWLEs) produced by lignocellulolytic fungi and bacteria may be considered as an eco-friendly alternative. These organisms evolved to produce a variety of highly specific CWLEs, even if in low amounts. For an industrial use, both the identification of novel CWLEs and the optimization of sustainable CWLE-expressing biofactories are crucial. In this review, we focus on recently reported advances in the heterologous expression of CWLEs from microbial and plant expression systems as well as some of their industrial applications, including the production of biofuels from agricultural feedstock and of value-added compounds from waste materials. Moreover, since heterologous expression of CWLEs may be toxic to plant hosts, genetic strategies aimed in converting such a deleterious effect into a beneficial trait are discussed.
Collapse
|
9
|
Diaz Arias CA, Molino JVD, de Araújo Viana Marques D, Queiroz Maranhão A, Abdalla Saes Parra D, Pessoa Junior A, Converti A. Influence of carbon source on cell size and production of anti LDL (-) single-chain variable fragment by a recombinant Pichia pastoris strain. Mol Biol Rep 2019; 46:3257-3264. [PMID: 31073913 DOI: 10.1007/s11033-019-04785-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/22/2019] [Indexed: 10/26/2022]
Abstract
The aim of this work was to study the effect of the carbon source (glycerol, sucrose, glucose or a sucrose/glucose mixture) on the production of the anti LDL (-) single-chain variable fragment (scFv) by the recombinant Pichia pastoris SMD 1168 strain as well as on the cell size. The use of glucose as a carbon source in the growth phase led to a remarkable increase in cell size compared with glycerol, while the smallest cells were obtained with sucrose likely due to the occurrence of an energetic stress. The scFv concentration seemed to be related to cell number rather than to cell concentration, which in its turn showed no significant dependence on the carbon source. Yeast cells grown on sucrose had a mean diameter (0.736 ± 0.097 μm) about 35% shorter than those grown on glucose and allowed for the highest final concentration of the scFv antibody fragment (93.7 ± 0.2 mg/L). These results demonstrate that sucrose is the best carbon source for the expression of such an antibody fragment by the recombinant P. pastoris strain, which may be very useful for the diagnostic analysis of the so-called "bad cholesterol".
Collapse
Affiliation(s)
- Cesar Andres Diaz Arias
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes 580, Bloco 16, São Paulo, SP, 05508-000, Brazil
| | - João Vitor Dutra Molino
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes 580, Bloco 16, São Paulo, SP, 05508-000, Brazil
| | | | - Andrea Queiroz Maranhão
- Department of Cell Biology, Brasilia University, Campus Universitario Darcy RibeiroBloco K, 2 pavimento, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Dulcineia Abdalla Saes Parra
- Department of Clinical and Toxicological Analyses, University of São Paulo, Prof. Lineu Prestes, 580, Bloco 18, São Paulo, SP, 05508-000, Brazil
| | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes 580, Bloco 16, São Paulo, SP, 05508-000, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145, Genoa, Italy.
| |
Collapse
|
10
|
A Thermostable Aspergillus fumigatus GH7 Endoglucanase Over-Expressed in Pichia pastoris Stimulates Lignocellulosic Biomass Hydrolysis. Int J Mol Sci 2019; 20:ijms20092261. [PMID: 31067833 PMCID: PMC6540056 DOI: 10.3390/ijms20092261] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/15/2022] Open
Abstract
In the context of avoiding the use of non-renewable energy sources, employing lignocellulosic biomass for ethanol production remains a challenge. Cellulases play an important role in this scenario: they are some of the most important industrial enzymes that can hydrolyze lignocellulose. This study aims to improve on the characterization of a thermostable Aspergillus fumigatus endo-1,4-β-glucanase GH7 (Af-EGL7). To this end, Af-EGL7 was successfully expressed in Pichia pastoris X-33. The kinetic parameters Km and Vmax were estimated and suggested a robust enzyme. The recombinant protein was highly stable within an extreme pH range (3.0-8.0) and was highly thermostable at 55 °C for 72 h. Low Cu2+ concentrations (0.1-1.0 mM) stimulated Af-EGL7 activity up to 117%. Af-EGL7 was tolerant to inhibition by products, such as glucose and cellobiose. Glucose at 50 mM did not inhibit Af-EGL7 activity, whereas 50 mM cellobiose inhibited Af-EGL7 activity by just 35%. Additionally, the Celluclast® 1.5L cocktail supplemented with Af-EGL7 provided improved hydrolysis of sugarcane bagasse "in natura", sugarcane exploded bagasse (SEB), corncob, rice straw, and bean straw. In conclusion, the novel characterization of Af-EGL7 conducted in this study highlights the extraordinary properties that make Af-EGL7 a promising candidate for industrial applications.
Collapse
|
11
|
Disulfide bonds elimination of endoglucanase II from Trichoderma reesei by site-directed mutagenesis to improve enzyme activity and thermal stability: An experimental and theoretical approach. Int J Biol Macromol 2018; 120:1572-1580. [DOI: 10.1016/j.ijbiomac.2018.09.164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 01/21/2023]
|
12
|
Troshagina DS, Suleimanova AD, Itkina DL, Sharipova MR. Cloning of Phytase Genes from Pantoea Sp. 3.5.1 and Bacillus ginsengihumi M2.11 in Pichia pastoris. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0563-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Secretion expression of human neutrophil peptide 1 (HNP1) in Pichia pastoris and its functional analysis against antibiotic-resistant Helicobacter pylori. Appl Microbiol Biotechnol 2018; 102:4817-4827. [DOI: 10.1007/s00253-018-8982-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 12/22/2022]
|
14
|
Chahed H, Boumaiza M, Ezzine A, Marzouki M. Heterologous expression and biochemical characterization of a novel thermostable Sclerotinia sclerotiorum GH45 endoglucanase in Pichia pastoris. Int J Biol Macromol 2018; 106:629-635. [DOI: 10.1016/j.ijbiomac.2017.08.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
|
15
|
Production of thermostable β-glucosidase and CMCase by Penicillium sp. LMI01 isolated from the Amazon region. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2017.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Siripong W, Wolf P, Kusumoputri TP, Downes JJ, Kocharin K, Tanapongpipat S, Runguphan W. Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:1. [PMID: 29321810 PMCID: PMC5757298 DOI: 10.1186/s13068-017-1003-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/21/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Interests in renewable fuels have exploded in recent years as the serious effects of global climate change become apparent. Microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered Pichia pastoris, an industrial workhorse in heterologous enzyme production, to produce the biofuel isobutanol from two renewable carbon sources, glucose and glycerol. Our strategy exploited the yeast's amino acid biosynthetic pathway and diverted the amino acid intermediates to the 2-keto acid degradation pathway for higher alcohol production. To further demonstrate the versatility of our yeast platform, we incorporated a broad-substrate-range alcohol-O-acyltransferase to generate a variety of volatile esters, including isobutyl acetate ester and isopentyl acetate ester. RESULTS The engineered strain overexpressing the keto-acid degradation pathway was able to produce 284 mg/L of isobutanol when supplemented with 2-ketoisovalerate. To improve the production of isobutanol and eliminate the need to supplement the production media with the expensive 2-ketoisovalerate intermediate, we overexpressed a portion of the amino acid l-valine biosynthetic pathway in the engineered strain. While heterologous expression of the pathway genes from the yeast Saccharomyces cerevisiae did not lead to improvement in isobutanol production in the engineered P. pastoris, overexpression of the endogenous l-valine biosynthetic pathway genes led to a strain that is able to produce 0.89 g/L of isobutanol. Fine-tuning the expression of bottleneck enzymes by employing an episomal plasmid-based expression system further improved the production titer of isobutanol to 2.22 g/L, a 43-fold improvement from the levels observed in the original strain. Finally, heterologous expression of a broad-substrate-range alcohol-O-acyltransferase led to the production of isobutyl acetate ester and isopentyl acetate ester at 51 and 24 mg/L, respectively. CONCLUSIONS In this study, we engineered high-level production of the biofuel isobutanol and the corresponding acetate ester by P. pastoris from readily available carbon sources. We envision that our work will provide an economic route to this important class of compounds and establish P. pastoris as a versatile production platform for fuels and chemicals.
Collapse
Affiliation(s)
- Wiparat Siripong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| | - Philipp Wolf
- Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Theodora Puspowangi Kusumoputri
- Atma Jaya University, Jl. Jend. Sudirman No.51, RT.5/RW.4, Karet Semanggi, Setia Budi, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta, 12930 Indonesia
| | | | - Kanokarn Kocharin
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| |
Collapse
|
17
|
Juturu V, Wu JC. Heterologous Protein Expression in Pichia pastoris
: Latest Research Progress and Applications. Chembiochem 2017; 19:7-21. [DOI: 10.1002/cbic.201700460] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Veeresh Juturu
- Institute of Chemical and Engineering Sciences; Agency for Science; Technology and Research (A*STAR); 1 Pesek Road Jurong Island Singapore 627833 Singapore
| | - Jin Chuan Wu
- Institute of Chemical and Engineering Sciences; Agency for Science; Technology and Research (A*STAR); 1 Pesek Road Jurong Island Singapore 627833 Singapore
| |
Collapse
|
18
|
Sun FF, Bai R, Yang H, Wang F, He J, Wang C, Tu M. Heterologous expression of codon optimized Trichoderma reesei Cel6A in Pichia pastoris. Enzyme Microb Technol 2016; 92:107-16. [DOI: 10.1016/j.enzmictec.2016.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/27/2016] [Accepted: 07/12/2016] [Indexed: 01/23/2023]
|
19
|
Ergün BG, Çalık P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 2016; 39:1-36. [PMID: 26497303 DOI: 10.1007/s00449-015-1476-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability.
Collapse
|
20
|
Akbarzadeh A, Dehnavi E, Aghaeepoor M, Amani J. Optimization of Recombinant Expression of Synthetic Bacterial Phytase in Pichia pastoris Using Response Surface Methodology. Jundishapur J Microbiol 2015; 8:e27553. [PMID: 26870311 PMCID: PMC4746705 DOI: 10.5812/jjm.27553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/19/2015] [Accepted: 07/13/2015] [Indexed: 11/28/2022] Open
Abstract
Background: Escherichia coli phytase is an acidic histidine phytase with great specific activity. Pichia pastoris is a powerful system for the heterologous expression of active and soluble proteins which can express recombinant proteins in high cell density fermenter without loss of product yield and efficiently secrete heterologous proteins into the media. Recombinant protein expression is influenced by expression conditions such as temperature, concentration of inducer, and pH. By optimization, the yield of expressed proteins can be increase. Response surface methodology (RSM) has been widely used for the optimization and studying of different parameters in biotechnological processes. Objectives: In this study, the expression of synthetic appA gene in P. pastoris was greatly improved by adjusting the expression condition. Materials and Methods: The appA gene with 410 amino acids was synthesized by P. pastoris codon preference and cloned in expression vector pPinkα-HC, under the control of AOX1 promoter, and it was transformed into P. pastoris GS115 by electroporation. Recombinant phytase was expressed in buffered methanol-complex medium (BMMY) and the expression was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzymatic assay. To achieve the highest level of expression, methanol concentration, pH and temperature were optimized via RSM. Finally, the optimum pH and temperature for recombinant phytase activity was determined. Results: Escherichia coli phytase was expressed in P. pastoris under different cultivation conditions (post-induction temperature, methanol concentration, and post-induction pH). The optimized conditions by RSM using face centered central composite design were 1% (v/v) methanol, pH = 5.8, and 24.5°C. Under the optimized conditions, appA was successfully expressed in P. pastoris and the maximum phytase activity was 237.2 U/mL after 72 hours of expression. Conclusions: By optimization of recombinant phytase expression in shake flask culture, we concluded that P. pastoris was a suitable host for high-level expression of phytase and it can possess high potential for industrial applications.
Collapse
Affiliation(s)
- Ali Akbarzadeh
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Ehsan Dehnavi
- Gene Transfer Pioneers Research Group, Shahid Beheshti University, Tehran, IR Iran
| | - Mojtaba Aghaeepoor
- Gene Transfer Pioneers Research Group, Shahid Beheshti University, Tehran, IR Iran
- Semnan Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, IR Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Jafar Amani, Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Vanak Sq, Molasadra St, P. O. Box: 193955487, Tehran, IR Iran. Tel: +98-2182482568, Fax: +98-2188068924, E-mail:
| |
Collapse
|
21
|
|
22
|
Apte AA, Senger RS, Fong SS. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis. Bioengineered 2014; 5:243-53. [PMID: 24830736 DOI: 10.4161/bioe.29160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.
Collapse
Affiliation(s)
- Advait A Apte
- Department of Biological Systems Engineering; Virginia Tech; Blacksburg, VA USA
| | - Ryan S Senger
- Department of Biological Systems Engineering; Virginia Tech; Blacksburg, VA USA
| | - Stephen S Fong
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
23
|
Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:135. [PMID: 25356086 PMCID: PMC4212100 DOI: 10.1186/s13068-014-0135-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/03/2014] [Indexed: 05/03/2023]
Abstract
Second generation biofuel development is increasingly reliant on the recombinant expression of cellulases. Designing or identifying successful expression systems is thus of preeminent importance to industrial progress in the field. Recombinant production of cellulases has been performed using a wide range of expression systems in bacteria, yeasts and plants. In a number of these systems, particularly when using bacteria and plants, significant challenges have been experienced in expressing full-length proteins or proteins at high yield. Further difficulties have been encountered in designing recombinant systems for surface-display of cellulases and for use in consolidated bioprocessing in bacteria and yeast. For establishing cellulase expression in plants, various strategies are utilized to overcome problems, such as the auto-hydrolysis of developing plant cell walls. In this review, we investigate the major challenges, as well as the major advances made to date in the recombinant expression of cellulases across the commonly used bacterial, plant and yeast systems. We review some of the critical aspects to be considered for industrial-scale cellulase production.
Collapse
Affiliation(s)
- Camilla Lambertz
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Megan Garvey
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: School of Medicine, Deakin University, CSIRO Australian Animal Health Laboratory, 5 Portarlington Rd, Newcomb, VIC 3219 Australia
| | - Johannes Klinger
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Dirk Heesel
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Holger Klose
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Rainer Fischer
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Ulrich Commandeur
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|