1
|
Chen Y, Li T, Jiang L, Huang Z, Zhang W, Luo Y. The composition, extraction, functional property, quality, and health benefits of coconut protein: A review. Int J Biol Macromol 2024; 280:135905. [PMID: 39332551 DOI: 10.1016/j.ijbiomac.2024.135905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Coconut is widely appreciated for its distinctive flavor and is commonly utilized in the production of a variety of goods. Coconut protein, a by-product derived from coconut oil and coconut milk cake, is frequently underutilized or discarded. This study provides a comprehensive overview of the distribution and composition of coconut protein. Analyses reveal that coconut protein, specifically 11S globulin and 7S globulin, is predominantly found in coconut flesh. Furthermore, various extraction techniques for coconut protein, such as chemical, enzymatic, and physical methods, are discussed. The alkali dissolution and acid precipitation methods are widely utilized for extracting coconut protein, with the potential for enhancement through the incorporation of physical methods such as ultrasound. The evaluation of functional properties, quality, and health benefits of coconut protein is essential, given the limitations imposed by its solubility. Modification may be necessary to optimize its functional properties. Coconut presents a promising source of food protein, characterized by balanced amino acid composition, high digestibility, and low allergenic potential. In conclusion, this study provides a comprehensive overview of the extraction methods, functional properties, quality, and nutritional benefits of coconut protein, offering insights for potential future research directions in the field. Additionally, the information presented may serve as a valuable reference for incorporating coconut protein into plant-based food products.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Tong Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaoxian Huang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America.
| |
Collapse
|
2
|
Lin S, Sun C, Luo L, Huang M, John Martin J, Cao H, Hu J, Bai Z, He Z, Zhang Y, Chen J. Exploring the density and morphology of coconut structures at two locations: a time-based analysis using computer tomography. PeerJ 2024; 12:e18206. [PMID: 39421429 PMCID: PMC11485131 DOI: 10.7717/peerj.18206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Background The study aimed to observe the internal structure of coconuts from two locations (coastal and non-coastal) using computed tomography (CT). Methods Seventy-six mature coconuts were collected from Wenchang and Ding'an cities in Hainan Province. These coconuts were scanned four times using CT, with a two-week interval between each scan. CT data were post-processed to reconstruct two-dimensional slices and three-dimensional models. The density and morphological parameters of coconut structures were measured, and the differences in these characteristics between the two groups and the changes over time were analyzed. Results Time and location had interactive effects on CT values of embryos, solid endosperms and mesocarps, morphological information such as major axis of coconut, thickness of mesocarp, volume of coconut water and height of bud (p < 0.05). Conclusions Planting location and observation time can affect the density and morphology of some coconut structures.
Collapse
Affiliation(s)
- Shenghuang Lin
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikuo, China
| | - Chengxu Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Li’an Luo
- Siemens Healthineers, Guangzhou, China
| | - Mengxing Huang
- College of Information and Communication Engineering, Hainan University, Hainan, China
| | | | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Jinyue Hu
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikuo, China
| | - Zhiming Bai
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikuo, China
| | - Zhanping He
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikuo, China
| | - Yu Zhang
- College of Computer Science and Technology, Hainan University, Haikou, Hainan, China
| | - Jing Chen
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikuo, China
| |
Collapse
|
3
|
Li J, Wang F, Sayed MA, Shen X, Zhou L, Liu X, Sun X, Chen S, Wu Y, Lu L, Gong S, Iqbal A, Yang Y. Integrated transcriptomic and metabolomic data reveal the cold stress responses molecular mechanisms of two coconut varieties. FRONTIERS IN PLANT SCIENCE 2024; 15:1353352. [PMID: 38689842 PMCID: PMC11058665 DOI: 10.3389/fpls.2024.1353352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Among tropical fruit trees, coconut holds significant edible and economic importance. The natural growth of coconuts faces a challenge in the form of low temperatures, which is a crucial factor among adverse environmental stresses impacting their geographical distribution. Hence, it is essential to enhance our comprehension of the molecular mechanisms through which cold stress influences various coconut varieties. We employed analyses of leaf growth morphology and physiological traits to examine how coconuts respond to low temperatures over 2-hour, 8-hour, 2-day, and 7-day intervals. Additionally, we performed transcriptome and metabolome analyses to identify the molecular and physiological shifts in two coconut varieties displaying distinct sensitivities to the cold stress. As the length of cold stress extended, there was a prominent escalation within the soluble protein (SP), proline (Pro) concentrations, the activity of peroxidase (POD) and superoxide dismutase (SOD) in the leaves. Contrariwise, the activity of glutathione peroxidase (GSH) underwent a substantial reduction during this period. The widespread analysis of metabolome and transcriptome disclosed a nexus of genes and metabolites intricately cold stress were chiefly involved in pathways centered around amino acid, flavonoid, carbohydrate and lipid metabolism. We perceived several stress-responsive metabolites, such as flavonoids, carbohydrates, lipids, and amino acids, which unveiled considerably, lower in the genotype subtle to cold stress. Furthermore, we uncovered pivotal genes in the amino acid biosynthesis, antioxidant system and flavonoid biosynthesis pathway that presented down-regulation in coconut varieties sensitive to cold stress. This study broadly enriches our contemporary perception of the molecular machinery that contributes to altering levels of cold stress tolerance amid coconut genotypes. It also unlocks several unique prospects for exploration in the areas of breeding or engineering, aiming to identifying tolerant and/or sensitive coconut varieties encompassing multi-omics layers in response to cold stress conditions.
Collapse
Affiliation(s)
- Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Fangyuan Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Md. Abu Sayed
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - XiaoJun Shen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiaomei Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shuangyan Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- School of Tropical Crops, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yi Wu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Lilan Lu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shufang Gong
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| |
Collapse
|
4
|
Lin S, Zhang Y, Luo L, Huang M, Cao H, Hu J, Sun C, Chen J. Visualization and quantification of coconut using advanced computed tomography postprocessing technology. PLoS One 2023; 18:e0282182. [PMID: 36827442 PMCID: PMC9956593 DOI: 10.1371/journal.pone.0282182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Computed tomography (CT) is a non-invasive examination tool that is widely used in medicine. In this study, we explored its value in visualizing and quantifying coconut. MATERIALS AND METHODS Twelve coconuts were scanned using CT for three months. Axial CT images of the coconuts were obtained using a dual-source CT scanner. In postprocessing process, various three-dimensional models were created by volume rendering (VR), and the plane sections of different angles were obtained through multiplanar reformation (MPR). The morphological parameters and the CT values of the exocarp, mesocarp, endocarp, embryo, bud, solid endosperm, liquid endosperm, and coconut apple were measured. The analysis of variances was used for temporal repeated measures and linear and non-linear regressions were used to analyze the relationship between the data. RESULTS The MPR images and VR models provide excellent visualization of the different structures of the coconut. The statistical results showed that the weight of coconut and liquid endosperm volume decreased significantly during the three months, while the CT value of coconut apple decreased slightly. We observed a complete germination of a coconut, its data showed a significant negative correlation between the CT value of the bud and the liquid endosperm volume (y = -2.6955x + 244.91; R2 = 0.9859), and a strong positive correlation between the height and CT value of the bud (y = 1.9576 ln(x) -2.1655; R2 = 0.9691). CONCLUSION CT technology can be used for visualization and quantitative analysis of the internal structure of the coconut, and some morphological changes and composition changes of the coconut during the germination process were observed during the three-month experiment. Therefore, CT is a potential tool for analyzing coconuts.
Collapse
Affiliation(s)
- Shenghuang Lin
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Yu Zhang
- College of Computer Science and Technology, Hainan University, Haikou, China
| | - Li’an Luo
- Siemens Healthineers, Guangzhou, China
| | - Mengxing Huang
- College of Information and Communication Engineering, Hainan University, Haikou, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, People’s Republic of China
| | - Jinyue Hu
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Chengxu Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, People’s Republic of China
- * E-mail: (JC); (CS)
| | - Jing Chen
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- * E-mail: (JC); (CS)
| |
Collapse
|
5
|
Rahman F, Majed Patwary MA, Bakar Siddique MA, Bashar MS, Haque MA, Akter B, Rashid R, Haque MA, Royhan Uddin AKM. Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: characterization, antimicrobial, antioxidant and photocatalytic activity. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220858. [PMID: 36425517 PMCID: PMC9682308 DOI: 10.1098/rsos.220858] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been successfully prepared using Cocos nucifera leaf extract and their antimicrobial, antioxidant and photocatalytic activity investigated. The structural, compositional and morphological properties of the NPs were recorded and studied systematically to confirm the synthesis. The aqueous suspension of NPs showed an ultraviolet-visible (UV-Vis) absorption maxima of 370 nm, indicating primarily its formation. X-ray diffraction analysis identified the NPs with a hexagonal wurtzite structure and an average particle size of 16.6 nm. Fourier transform infrared analysis identified some biomolecules and functional groups in the leaf extract as responsible for the encapsulation and stabilization of ZnO NPs. Energy-dispersive X-ray analysis showed the desired elemental compositions in the material. A flower-shaped morphology of ZnO NPs was observed by scanning electron microscopy, with a grain size of around 15 nm. The optical properties of the NPs were studied by UV-Vis spectroscopy, and the band gap was calculated as 3.37 eV. The prepared ZnO NPs have demonstrated antimicrobial activity against T. harzianum and S. aureus, with a zone of inhibition of 14 and 10 mm, respectively. The photocatalytic behaviour of ZnO NPs showed absorbance degradation at around 640 nm and it discoloured methylene blue dye after 1 h, with a degradation maximum of 84.29%. Thus, the prepared ZnO NPs could potentially be used in antibiotic development and pharmaceutical industries, and as photocatalysts.
Collapse
Affiliation(s)
- Farjana Rahman
- Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh
| | | | - Md. Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Muhammad Shahriar Bashar
- Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md. Aminul Haque
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Beauty Akter
- Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh
| | - Rimi Rashid
- Materials Science Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Md. Anamul Haque
- Department of Pharmacy, Comilla University, Cumilla 3506, Bangladesh
| | | |
Collapse
|
6
|
Abadl MMT, Mohsin AZ, Sulaiman R, Abas F, Muhialdin BJ, Meor Hussin AS. Biological activities and physiochemical properties of low-fat and high-fat coconut-based kefir. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Tailoring Natural-Based Oleogels Combining Ethylcellulose and Virgin Coconut Oil. Polymers (Basel) 2022; 14:polym14122473. [PMID: 35746048 PMCID: PMC9230444 DOI: 10.3390/polym14122473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/07/2022] Open
Abstract
Oleogels are becoming an attractive research field, since they have recently been shown to be feasible for the food and pharmaceutical sectors and provided some insights into the biomedical area. In this work, edible oleogels were tailored through the combination of ethylcellulose (EC), a gelling agent, with virgin coconut oil (VCO), vegetable oil derived from coconut. The influence of the different EC and VCO ratios on the structural, physical, and thermal properties of the oleogels was studied. All EC/VCO-based oleogels presented a stable network with a viscoelastic nature, adequate structural stability, modulable stiffness, high oil-binding capability, antioxidant activity, and good thermal stability, evidencing the EC and VCO’s good compatibility.
Collapse
|
8
|
Pandiselvam R, Kaavya R, Martinez Monteagudo SI, Divya V, Jain S, Khanashyam AC, Kothakota A, Prasath VA, Ramesh SV, Sruthi NU, Kumar M, Manikantan MR, Kumar CA, Khaneghah AM, Cozzolino D. Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut ( Cocos nucifera L.). Molecules 2022; 27:molecules27103250. [PMID: 35630725 PMCID: PMC9147692 DOI: 10.3390/molecules27103250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
The number of food frauds in coconut-based products is increasing due to higher consumer demands for these products. Rising health consciousness, public awareness and increased concerns about food safety and quality have made authorities and various other certifying agencies focus more on the authentication of coconut products. As the conventional techniques for determining the quality attributes of coconut are destructive and time-consuming, non-destructive testing methods which are accurate, rapid, and easy to perform with no detrimental sampling methods are currently gaining importance. Spectroscopic methods such as nuclear magnetic resonance (NMR), infrared (IR)spectroscopy, mid-infrared (MIR)spectroscopy, near-infrared (NIR) spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy (RS) are gaining in importance for determining the oxidative stability of coconut oil, the adulteration of oils, and the detection of harmful additives, pathogens, and toxins in coconut products and are also employed in deducing the interactions in food constituents, and microbial contaminations. The objective of this review is to provide a comprehensive analysis on the various spectroscopic techniques along with different chemometric approaches for the successful authentication and quality determination of coconut products. The manuscript was prepared by analyzing and compiling the articles that were collected from various databases such as PubMed, Google Scholar, Scopus and ScienceDirect. The spectroscopic techniques in combination with chemometrics were shown to be successful in the authentication of coconut products. RS and NMR spectroscopy techniques proved their utility and accuracy in assessing the changes in coconut oil’s chemical and viscosity profile. FTIR spectroscopy was successfully utilized to analyze the oxidation levels and determine the authenticity of coconut oils. An FT-NIR-based analysis of various coconut samples confirmed the acceptable levels of accuracy in prediction. These non-destructive methods of spectroscopy offer a broad spectrum of applications in food processing industries to detect adulterants. Moreover, the combined chemometrics and spectroscopy detection method is a versatile and accurate measurement for adulterant identification.
Collapse
Affiliation(s)
- Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod 671124, Kerala, India;
- Correspondence: or (R.P.); (R.K.); (M.R.M.); (A.M.K.); (D.C.)
| | - Rathnakumar Kaavya
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA;
- Correspondence: or (R.P.); (R.K.); (M.R.M.); (A.M.K.); (D.C.)
| | - Sergio I. Martinez Monteagudo
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA;
- Department of Family and Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Chemical & Materials Engineering Department, New Mexico State University, Las Cruces, NM 88003, USA
| | - V. Divya
- School of BioSciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India;
| | - Surangna Jain
- Department of Biotechnology, Mahidol University, Bangkok 12120, Thailand;
| | | | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India;
| | - V. Arun Prasath
- Department of Food Process Engineering, NIT, Rourkela 769008, Odisha, India;
| | - S. V. Ramesh
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod 671124, Kerala, India;
| | - N. U. Sruthi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India;
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, Maharashtra, India;
| | - M. R. Manikantan
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod 671124, Kerala, India;
- Correspondence: or (R.P.); (R.K.); (M.R.M.); (A.M.K.); (D.C.)
| | - Chinnaraja Ashok Kumar
- Department of Food Safety and Quality Assurance, College of Food and Dairy Technology, Chennai 600051, Tamil Nadu, India;
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-875, SP, Brazil
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, 02-532 Warsaw, Poland
- Correspondence: or (R.P.); (R.K.); (M.R.M.); (A.M.K.); (D.C.)
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane 4072, Australia
- Correspondence: or (R.P.); (R.K.); (M.R.M.); (A.M.K.); (D.C.)
| |
Collapse
|
9
|
Javed S, Mangla B, Ahsan W. From propolis to nanopropolis: An exemplary journey and a paradigm shift of a resinous substance produced by bees. Phytother Res 2022; 36:2016-2041. [PMID: 35259776 DOI: 10.1002/ptr.7435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Propolis, a natural resinous mixture produced by honey bees is poised with diverse biological activities. Owing to the presence of flavonoids, phenolic acids, terpenes, and sesquiterpenes, propolis has garnered versatile applications in pharmaceutical industry. The biopharmaceutical issues associated with propolis often beset its use as being too hydrophobic in nature; it is not absorbed in the body well. To combat the problem, various nanotechnological approaches for the development of novel drug delivery systems are generally applied to improve its bioavailability. This paradigm shift and transition of conventional propolis to nanopropolis are evident from the literature wherein a multitude of studies are available on nanopropolis with improved bioavailability profile. These approaches include preparation of gold nanoparticles, silver nanoparticles, magnetic nanoparticles, liposomes, liquid crystalline formulations, solid lipid nanoparticles, mesoporous silica nanoparticles, etc. Nanopropolis has further been explored to assess the potential benefits of propolis for the development of futuristic useful products such as sunscreens, creams, mouthwashes, toothpastes, and nutritional supplements with improved solubility, bioavailability, and penetration profiles. However, more high-quality clinical studies assessing the effects of propolis either alone or in combination with synthetic drugs as well as natural products are warranted and its safety needs to be firmly established.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
10
|
Bahmanpour S, Keshavarz M, Koohpeyma F, Badr P, Noori A, Dabbaghmanesh MH, Poordast T, Najib FS, Zare N, Namazi N, Jahromi BN. Preserving effect of Loboob (a traditional multi-herbal formulation) on sperm parameters of male rats with busulfan-induced subfertility. JBRA Assist Reprod 2022; 26:574-582. [PMID: 34995049 PMCID: PMC9635600 DOI: 10.5935/1518-0557.20210099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Male infertility secondary to exposure to gonadotoxic agents during reproductive age is a concerning issue. The aim of this experimental study was to determine the effect of Loboob on sperm parameters. METHODS 55 healthy rats were selected, weighted and divided into five groups consisting of 11 rats each. The control group received no medication. Rats in Treatment Group 1 received 10mg/kg Busulfan and rats in Treatment Groups 2, 3, and 4 received 35,70 and 140 mg/kg Loboob respectively in addition to 10mg/kg Busulfan. Finally, the sperm parameters and weights of the rats were compared using the Kolmogorov-Smirnov, non-parametric Kruskal-Wallis, and Dunn-Bonferroni tests. RESULTS All sperm parameters and weights were significantly decreased among rats receiving Busulfan. All dosages of Loboob were effective to enhance the motility of slow spermatozoa, while only in the rats given 70 and 140 mg/kg of Loboob saw improvements in progressively motile sperm percentages (0.024 and 0.01, respectively). Loboob at a dosage of 140mg/kg improved sperm viability. It did not improve normal morphology sperm or decrease immotile sperm counts. Loboob did not affect mean rat weight. CONCLUSIONS Loboob offered a dose-dependent protective effect on several sperm parameters in rats with busulfan-induced subfertility.
Collapse
Affiliation(s)
- Soghra Bahmanpour
- Anatomy Department, School of Medicine, Shiraz University of
Medical Sciences, Shiraz, Iran , Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran
| | - Mojtaba Keshavarz
- Endocrine and Metabolism Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrine and Metabolism Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran , Phytopharmaceutical Technology and Traditional Medicine Incubator,
Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adel Noori
- Student Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | | | - Tahereh Poordast
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Fateme Sadat Najib
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Najaf Zare
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Biostatistics, School of Medicine, Shiraz University
of Medical Sciences, Shiraz, Iran
| | - Niloofar Namazi
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran ,Corresponding author: Bahia Namavar Jahromi Department
of OB-GYN School of Medicine Shiraz University of Medical Sciences Shiraz, Iran.
E-mail:
| |
Collapse
|
11
|
Azeta O, Ayeni AO, Agboola O, Elehinafe FB. A review on the sustainable energy generation from the pyrolysis of coconut biomass. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Silva SS, Rodrigues LC, Fernandes EM, Gomes JM, Vilas-Boas Â, Pirraco RP, Reis RL. Approach on chitosan/virgin coconut oil-based emulsion matrices as a platform to design superabsorbent materials. Carbohydr Polym 2020; 249:116839. [PMID: 32933683 DOI: 10.1016/j.carbpol.2020.116839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
The design of innovative pharmaceutical products, able to reach unexplored market niches, requires natural materials use with improved swelling and moisture properties. Herein, chitosan (CHT), a natural polymer, was combined with virgin coconut oil (VCO), a resource extracted from coconut kernels, to develop emulsion-based films for biomedical purposes. The film's properties were tuned by changing VCO concentrations, and the structural, morphological, and physical properties of the films were evaluated. The CHT/VCO-based film morphology showed the presence of VCO droplets at different sizes, both in the surface and inner part. Moreover, the capability to develop CHT/VCO-films as superabsorbent materials was shown. The film extracts cytotoxicity was assessed using human adipose stem cells, and metabolic activity was confirmed. The findings suggest that incorporating a small volume of VCO into the CHT system, superabsorbent materials with the potential to be applied in biomedical devices that require high swelling properties, can be developed.
Collapse
Affiliation(s)
- Simone S Silva
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Luísa C Rodrigues
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Emanuel M Fernandes
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana M Gomes
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ângela Vilas-Boas
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017, Barco, Guimarães, Portugal
| |
Collapse
|
13
|
Antiplasmodial activity of Cocos nucifera leaves in Plasmodium berghei-infected mice. J Parasit Dis 2020; 44:305-313. [PMID: 32499668 PMCID: PMC7244650 DOI: 10.1007/s12639-020-01207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 01/17/2023] Open
Abstract
Plasmodium falciparum (P. falciparum) malaria presents serious public health problems worldwide. The parasite´s resistance to antimalarial drugs has proven to be a significant hurdle in the search for effective treatments against the disease. For this reason, the study of natural products to find new antimalarials remains a crucial step in the fight against malaria. In this study, we aimed to study the in vivo performance of the decoction of C. nucifera leaves in P. berghei-infected mice. We analyzed the effectiveness of different routes of administration and the acute toxicity of the extract. Additionally, we determined the suppressive, curative and prophylactic activity of the extract. The results showed that the decoction of leaves of C. nucifera is most effective when administered intramuscularly to mice in comparison to intraperitoneal, subcutaneous and intragastric methods. We also found that organ signs of acute toxicity appear at 2000 mg/kg/day as evidenced by necropsy examination. Additionally, we found that the prophylactic effect of the extract is of 48% inhibition, however, there is no curative effect. Finally, in a 4-day suppressive assay, we found that the extract can inhibit the growth of the parasite by up to 54% at sub-toxic doses when administered intramuscularly.
Collapse
|
14
|
Nyayiru Kannaian UP, Edwin JB, Rajagopal V, Nannu Shankar S, Srinivasan B. Phytochemical composition and antioxidant activity of coconut cotyledon. Heliyon 2020; 6:e03411. [PMID: 32083218 PMCID: PMC7021540 DOI: 10.1016/j.heliyon.2020.e03411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 01/13/2023] Open
Abstract
Coconut tree (Cocos nucifera L.), a perennial, monocot tree, belonging to the family Arecaceae, is distributed through the tropics. Bioactivities of coconut water, husk fiber, oil, flowers, spadix and mesocarp of coconut fruit are widely reported. However, there is no study on cotyledon of coconut. In this study, carbohydrates, proteins, lipids, phenols, flavonoids, tannins, alkaloids and antioxidants were quantified in hot and cold percolated extracts of coconut cotyledon. Further, the antioxidant activity was studied using 2,2-diphenyl-1-picrylhydrazyl (DPPH); ferric reducing antioxidant power (FRAP); ferric thiocyanate (FTC); thiobarbituric acid (TBA); nitric oxide (NO) radical scavenging and β-carotene bleaching assays. Among the secondary metabolites, only cardiac glycosides were detected. Methanolic extraction by cold percolation extracted high content of secondary metabolites and exhibited significant antioxidant activity in DPPH, FRAP, NO and β-carotene bleaching assays, with EC50 of 0.12, 6.43, 16.21 and 8.09 mg/ml respectively. The chloroform extracts recorded high lipid content and scavenged the radicals in FTC (EC50 13.31 mg/ml) and TBA (EC50 9.21 mg/ml) assays. The study recommends extraction of compounds using methanol through cold percolation. The cotyledon of coconut is found to be a potent nutritive source equivalent to the endosperm.
Collapse
Affiliation(s)
- Udaya Prakash Nyayiru Kannaian
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai 600117, India
- Corresponding author.
| | - Jasmine Brighty Edwin
- R and D, Marina Labs, 14, Kavya Gardens, N.T. Patel Road, Nerkundram, Chennai 600107, India
| | - Vidhya Rajagopal
- Department of Biotechnology, Valliammal College for Women, Anna Nagar, Chennai 600040, India
| | - Sripriya Nannu Shankar
- R and D, Marina Labs, 14, Kavya Gardens, N.T. Patel Road, Nerkundram, Chennai 600107, India
| | - Bhuvaneswari Srinivasan
- Department of Botany, Bharathi Women's College (Autonomous), Broadway, Chennai 600108, India
| |
Collapse
|
15
|
Darwin D, Triovanta U, Rinaldi R, Pratama A. Anaerobic Acidification of Coconut Water Waste by Lactobacillus acidophilus Culture for Biotechnological Production of Lactic Acid. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2019. [DOI: 10.11118/actaun201967061433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Tayler NM, Boya CA, Herrera L, Moy J, Ng M, Pineda L, Almanza A, Rosero S, Coronado LM, Correa R, Santamaría R, Caballero Z, Durant-Archibold AA, Tidgewell KJ, Balunas MJ, Gerwick WH, Spadafora A, Gutiérrez M, Spadafora C. Analysis of the antiparasitic and anticancer activity of the coconut palm (Cocos nucifera L. ARECACEAE) from the natural reserve of Punta Patiño, Darién. PLoS One 2019; 14:e0214193. [PMID: 30939131 PMCID: PMC6445518 DOI: 10.1371/journal.pone.0214193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/09/2019] [Indexed: 01/01/2023] Open
Abstract
Cocos nucifera (C. nucifera) (the coconut palm tree) has been traditionally used to fight a number of human diseases, but only a few studies have tested its components against parasites such as those that cause malaria. In this study, C. nucifera samples were collected from a private natural reserve in Punta Patiño, Darien, Panama. The husk, leaves, pulp, and milk of C. nucifera were extracted and evaluated against the parasites that cause Chagas’ disease or American trypanosomiasis (Trypanosoma cruzi), leishmaniasis (Leishmania donovani) and malaria (Plasmodium falciparum), as well as against a line of breast cancer cells. While there was no activity in the rest of the tests, five and fifteen-minute aqueous decoctions of leaves showed antiplasmodial activity at 10% v/v concentration. Removal of some HPLC fractions resulted in loss of activity, pointing to the presence of synergy between the components of the decoction. Chemical molecules were separated and identified using an ultra-performance liquid chromatography (UPLC) approach coupled to tandem mass spectrometry (LC–MS/MS) using atmospheric pressure chemical ionization quadrupole–time of flight mass spectrometry (APCI–Q–TOF–MS) and molecular networking analysis, revealing the presence of compounds including polyphenol, flavone, sterol, fatty acid and chlorophyll families, among others.
Collapse
Affiliation(s)
- Nicole M. Tayler
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Apartado, Panama, Republic of Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, A.P., India
| | - Cristopher A. Boya
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, A.P., India
- Centro de Biodiversidad y Descubrimiento de Drogas, INDICASAT AIP, City of Knowledge, Apartado, Panama, Republic of Panama
| | - Liuris Herrera
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Apartado, Panama, Republic of Panama
- Smithsonian Tropical Research Institute, Balboa, Ancon, Apartado, Panama, Republic of Panama
| | - Jamie Moy
- Smithsonian Tropical Research Institute, Balboa, Ancon, Apartado, Panama, Republic of Panama
| | - Michelle Ng
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Apartado, Panama, Republic of Panama
- Smithsonian Tropical Research Institute, Balboa, Ancon, Apartado, Panama, Republic of Panama
| | - Laura Pineda
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Apartado, Panama, Republic of Panama
- Smithsonian Tropical Research Institute, Balboa, Ancon, Apartado, Panama, Republic of Panama
| | - Alejandro Almanza
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Apartado, Panama, Republic of Panama
- Smithsonian Tropical Research Institute, Balboa, Ancon, Apartado, Panama, Republic of Panama
| | - Sara Rosero
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Apartado, Panama, Republic of Panama
| | - Lorena M. Coronado
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Apartado, Panama, Republic of Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, A.P., India
| | - Ricardo Correa
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Apartado, Panama, Republic of Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, A.P., India
| | - Ricardo Santamaría
- Centro de Biodiversidad y Descubrimiento de Drogas, INDICASAT AIP, City of Knowledge, Apartado, Panama, Republic of Panama
| | - Zuleima Caballero
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Apartado, Panama, Republic of Panama
| | - Armando A. Durant-Archibold
- Centro de Biodiversidad y Descubrimiento de Drogas, INDICASAT AIP, City of Knowledge, Apartado, Panama, Republic of Panama
| | - Kevin J. Tidgewell
- Smithsonian Tropical Research Institute, Balboa, Ancon, Apartado, Panama, Republic of Panama
| | - Marcy J. Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - William H. Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Alida Spadafora
- Asociación Nacional para la Conservación de la Naturaleza (ANCON), Balboa, Ancon, Apartado, Panama, Republic of Panama
| | - Marcelino Gutiérrez
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, A.P., India
| | - Carmenza Spadafora
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Apartado, Panama, Republic of Panama
- * E-mail:
| |
Collapse
|
17
|
Muthuvinothini A, Stella S. Green synthesis of metal oxide nanoparticles and their catalytic activity for the reduction of aldehydes. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Muritala HF, Akolade JO, Akande SA, Abdulazeez AT, Aladodo RA, Bello AB. Antioxidant and alpha-amylase inhibitory potentials of Cocos nucifera husk. Food Sci Nutr 2018; 6:1676-1683. [PMID: 30258612 PMCID: PMC6145255 DOI: 10.1002/fsn3.741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Concoctions containing extract from Cocos nucifera husk fiber are used in Nigeria by traditional medicine practitioners for management of diabetes and its associated complications. Preliminary antidiabetic study was designed to validate the folkloric usage of the plant extract. Dried coconut husk fiber was pulverized and extracted with methanol, followed by partitioning of the methanolic extract in ethyl acetate. Phenolic content, radical scavenging activity and antioxidant capacity as well as inhibitory effects of C. nucifera methanolic (CN-M) extract and its ethyl acetate (CN-E) fraction on pancreatic α-amylase and lipid peroxidation were determined. Total phenolic content and antioxidant capacity of CN-E fraction were significantly higher than that of CN-M extract, whereas there was no significant difference in their ability to scavenge free radicals. The CN-E fraction also exhibited higher in vitro and in vivo inhibitory effects on α-amylase activity and lipid peroxidation; reducing blood glucose level within 5 days following intraperitoneal administration of the C. nucifera extract to alloxan-induced hyperglycemic rats. The phenolic-rich extracts from coconut husk can be further explored as nutraceutical supplement in food formulation for diabetic patients.
Collapse
Affiliation(s)
| | | | - Sarah Abimbola Akande
- Biotechnology Advanced Research CentreSheda Science and Technology ComplexAbujaNigeria
| | | | | | | |
Collapse
|
19
|
Lamdande AG, Prakash M, KSMS R. Storage study and quality evaluation of fresh coconut grating. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Archana Gopalrao Lamdande
- Academy of Scientific and Innovative Research; New Delhi India
- Department of Food Engineering, CSIR- Central Food Technological Research Institute (CFTRI), Mysore, 570020, India
| | - Maya Prakash
- Department of Traditional Foods and Sensory Science; CSIR-Central Food Technological Research Institute (CFTRI); Mysore 570 020 India
| | - Raghavarao KSMS
- Academy of Scientific and Innovative Research; New Delhi India
- Department of Food Engineering, CSIR- Central Food Technological Research Institute (CFTRI), Mysore, 570020, India
| |
Collapse
|
20
|
Rocha PDSD, Campos JF, Nunes-Souza V, Vieira MDC, Boleti APDA, Rabelo LA, Dos Santos EL, de Picoli Souza K. Antioxidant and Protective Effects of Schinus terebinthifolius Raddi Against Doxorubicin-Induced Toxicity. Appl Biochem Biotechnol 2017; 184:869-884. [PMID: 28889333 DOI: 10.1007/s12010-017-2589-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022]
Abstract
Doxorubicin is an anticancer drug whose toxic effects on non-cancer cells are associated with increased oxidative stress. This study investigated the chemical composition, antioxidant activity of the methanolic extract of Schinus terebinthifolius Raddi leaves (MESL) as well as effects against doxorubicin-induced toxicity in human erythrocytes, K562 human erythroleukemia cells, and mouse hearts. The chemical composition indicated the presence of phenolic compounds, flavonoids, tannins, and ascorbic acid. MESL showed antioxidant activity by scavenging free radicals and inhibiting hemolysis and lipid peroxidation in human erythrocytes incubated with an oxidizing agent, and was able to increase the enzymatic activity of superoxide dismutase and glutathione peroxidase in human erythrocytes, without influencing the activity of enzyme catalase. The increase of oxidative hemolysis and malondialdehyde levels in erythrocytes incubated with doxorubicin was reduced by treatment with MESL. The cytotoxic activity of doxorubicin in erythroleukemia cells treated with MESL was unmodified. Additionally, the extract protected mice against the doxorubicin-induced cardiotoxicity. In conclusion, the MESL exhibits antioxidant activity, reducing doxorubicin-induced oxidative stress without changing the anticancer action of the drug, and protects against doxorubicin-induced cardiotoxicity. Hence, these findings suggest that these effects are via anti-oxidative by inhibiting free radicals, decreased oxidative stress, and increased antioxidant enzyme activity.
Collapse
Affiliation(s)
- Paola Dos Santos da Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, MS, 79804-970, Brazil
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, MS, 79804-970, Brazil
| | - Valéria Nunes-Souza
- Federal University of Pernambuco, Av. Professor Moraes Rêgo, Recife, PE, 50670-901, Brazil
| | - Maria do Carmo Vieira
- Agricultural Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, Brazil
| | - Ana Paula de Araújo Boleti
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, MS, 79804-970, Brazil
| | - Luiza Antas Rabelo
- Laboratório de Reatividade Cardiovascular, Federal University of Alagoas, Av. Lourival Melo Mota, Maceió, AL, 57072-900, Brazil
| | - Edson Lucas Dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, MS, 79804-970, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados, MS, 79804-970, Brazil.
| |
Collapse
|
21
|
Elango G, Roopan SM, Al-Dhabi NA, Arasu MV, Dhamodaran KI, Elumalai K. Coir mediated instant synthesis of Ni-Pd nanoparticles and its significance over larvicidal, pesticidal and ovicidal activities. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.09.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Surendra T, Roopan SM, Arasu MV, Al-Dhabi NA, Sridharan M. Phenolic compounds in drumstick peel for the evaluation of antibacterial, hemolytic and photocatalytic activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:463-71. [DOI: 10.1016/j.jphotobiol.2016.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/08/2023]
|