1
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
2
|
Saratale RG, Ponnusamy VK, Piechota G, Igliński B, Shobana S, Park JH, Saratale GD, Shin HS, Banu JR, Kumar V, Kumar G. Green chemical and hybrid enzymatic pretreatments for lignocellulosic biorefineries: Mechanism and challenges. BIORESOURCE TECHNOLOGY 2023; 387:129560. [PMID: 37517710 DOI: 10.1016/j.biortech.2023.129560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
The greener chemical and enzymatic pretreatments for lignocellulosic biomasses are portraying a crucial role owing to their recalcitrant nature. Traditional pretreatments lead to partial degradation of lignin and hemicellulose moieties from the pretreated biomass. But it still restricts the enzyme accessibility for the digestibility towards the celluloses and the interaction of lignin-enzymes, nonproductively. Moreover, incursion of certain special chemical treatments and other lignin sulfonation techniques to the enzymatic pretreatment (hybrid enzymatic pretreatment) enhances the lignin structural modification, solubilization of the hemicelluloses and both saccharification and fermentation processes (SAF). This article concentrates on recent developments in various chemical and hybrid enzymatic pretreatments on biomass materials with their mode of activities. Furthermore, the issues on strategies of the existing pretreatments towards their industrial applications are highlighted, which could lead to innovative ideas to overcome the challenges and give guideline for the researchers towards the lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung-807, Taiwan
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland
| | - Bartłomiej Igliński
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - S Shobana
- Green Technology and Sustainable Development in Construction Research Group, Van Lang School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur - 610005, Tamil Nadu, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
3
|
Barrios N, Marquez R, McDonald JD, Hubbe MA, Venditti RA, Pal L. Innovation in lignocellulosics dewatering and drying for energy sustainability and enhanced utilization of forestry, agriculture, and marine resources - A review. Adv Colloid Interface Sci 2023; 318:102936. [PMID: 37331091 DOI: 10.1016/j.cis.2023.102936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Efficient utilization of forestry, agriculture, and marine resources in various manufacturing sectors requires optimizing fiber transformation, dewatering, and drying energy consumption. These processes play a crucial role in reducing the carbon footprint and boosting sustainability within the circular bioeconomy framework. Despite efforts made in the paper industry to enhance productivity while conserving resources and energy through lower grammage and higher machine speeds, reducing thermal energy consumption during papermaking remains a significant challenge. A key approach to address this challenge lies in increasing dewatering of the fiber web before entering the dryer section of the paper machine. Similarly, the production of high-value-added products derived from alternative lignocellulosic feedstocks, such as nanocellulose and microalgae, requires advanced dewatering techniques for techno-economic viability. This critical and systematic review aims to comprehensively explore the intricate interactions between water and lignocellulosic surfaces, as well as the leading technologies used to enhance dewatering and drying. Recent developments in technologies to reduce water content during papermaking, and advanced dewatering techniques for nanocellulosic and microalgal feedstocks are addressed. Existing research highlights several fundamental and technical challenges spanning from the nano- to macroscopic scales that must be addressed to make lignocellulosics a suitable feedstock option for industry. By identifying alternative strategies to improve water removal, this review intends to accelerate the widespread adoption of lignocellulosics as feasible manufacturing feedstocks. Moreover, this review aims to provide a fundamental understanding of the interactions, associations, and bonding mechanisms between water and cellulose fibers, nanocellulosic materials, and microalgal feedstocks. The findings of this review shed light on critical research directions necessary for advancing the efficient utilization of lignocellulosic resources and accelerating the transition towards sustainable manufacturing practices.
Collapse
Affiliation(s)
- Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, NC 27695-8005, USA
| | - Ronald Marquez
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, NC 27695-8005, USA; Laboratoire de Physicochimie des Interfaces Complexes, ESPCI Paris, PSL University, 10 rue Vauquelin, 75231 Paris, France
| | | | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, NC 27695-8005, USA
| | - Richard A Venditti
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, NC 27695-8005, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, NC 27695-8005, USA.
| |
Collapse
|
4
|
Shukla A, Kumar D, Girdhar M, Kumar A, Goyal A, Malik T, Mohan A. Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:44. [PMID: 36915167 PMCID: PMC10012730 DOI: 10.1186/s13068-023-02295-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Bioethanol is recognized as a valuable substitute for renewable energy sources to meet the fuel and energy demand of the nation, considered an environmentally friendly resource obtained from agricultural residues such as sugarcane bagasse, rice straw, husk, wheat straw and corn stover. The energy demand is sustained using lignocellulosic biomass to produce bioethanol. Lignocellulosic biomass (LCBs) is the point of attention in replacing the dependence on fossil fuels. The recalcitrant structure of the lignocellulosic biomass is disrupted using effective pretreatment techniques that separate complex interlinked structures among cellulose, hemicellulose, and lignin. Pretreatment of biomass involves various physical, chemical, biological, and physiochemical protocols which are of importance, dependent upon their individual or combined dissolution effect. Physical pretreatment involves a reduction in the size of the biomass using mechanical, extrusion, irradiation, and sonification methods while chemical pretreatment involves the breaking of various bonds present in the LCB structure. This can be obtained by using an acidic, alkaline, ionic liquid, and organosolvent methods. Biological pretreatment is considered an environment-friendly and safe process involving various bacterial and fungal microorganisms. Distinct pretreatment methods, when combined and utilized in synchronization lead to more effective disruption of LCB, making biomass more accessible for further processing. These could be utilized in terms of their effectiveness for a particular type of cellulosic fiber and are namely steam explosion, liquid hot water, ammonia fibre explosion, CO2 explosion, and wet air oxidation methods. The present review encircles various distinct and integrated pretreatment processes developed till now and their advancement according to the current trend and future aspects to make lignocellulosic biomass available for further hydrolysis and fermentation.
Collapse
Affiliation(s)
- Akanksha Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Madhuri Girdhar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Abhineet Goyal
- SAGE School of Science, SAGE University Bhopal, Sahara Bypass Road Katara Hills, Extension, Bhopal, Madhya Pradesh, 462022, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
5
|
Srivastava RK, Nedungadi SV, Akhtar N, Sarangi PK, Subudhi S, Shadangi KP, Govarthanan M. Effective hydrolysis for waste plant biomass impacts sustainable fuel and reduced air pollution generation: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160260. [PMID: 36400296 DOI: 10.1016/j.scitotenv.2022.160260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Among various natural biowastes availability in the environment, agricultural residues showed great impacts. It is due to huge availability and cheap carbon source, creating big challenges for their utility and systematic reduction. Objective of this review is to address the waste biomass availability and huge quantities issues and also put effort to minimize this nutrient load via biotransforming into value-added products. Different wastes (organic/inorganic) generation with their negative issues are due to numbers of developmental and social activities, reported. Currently, various efforts are found for these wastes minimization via generation of different types of value-added products (biogas, bioH2, alcoholic fuel, organic acids and others products) and these wastes in municipal cities are also reported with production of advanced biofuels as promising outcomes. For hydrolysis of complex organic resources including lignocellulosic biomasses, physicochemical, structural or compositional changes are needed that aid in conversion into sugar and organic compounds such as biofuels. So, efficient and effective pretreatment processes selection (physical, biological, chemical or combined one) is critical to achieve these hydrolysis goals and resultant cellulose or hemicellulose components can be accessible by biological catalysis. These can achieve final hydrolysis and fermentative or monomer sugars. And later, synthesis of fuels or value-added products during microbial fermentation or biotransformation processes can be achieved. This review discusses pretreatment techniques for improved hydrolysis for fermentative sugar with emphasis on reduced quantities of toxic compounds (furfural compound) in hydrolyzed biomasses. Minimum deterioration fuel economy also reported with production of different bioproducts including biofuels. Additionally, impacts of toxic products and gasses emission are also discussed with their minimization.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India.
| | - Sruthy Vineed Nedungadi
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India
| | - Nasim Akhtar
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India
| | | | - Sanjukta Subudhi
- Advanced Biofuels program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110 003, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| |
Collapse
|
6
|
Daimary N, Eldiehy KSH, Bora N, Boruah P, Rather MA, Mandal M, Bora U, Deka D. Towards integrated sustainable biofuel and chemical production: An application of banana pseudostem ash in the production of biodiesel and recovery of lignin from bamboo leaves. CHEMOSPHERE 2023; 314:137625. [PMID: 36572360 DOI: 10.1016/j.chemosphere.2022.137625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This study investigated an integrated approach to the biowaste transformation and valorization of byproducts. Biochar obtained from the banana pseudostem was calcined to synthesize a heterogeneous catalyst and sustainably prepare a highly alkaline solution. The ash was utilized directly as a heterogeneous catalyst in biodiesel production from waste cooking oil. At the same time, an alkaline solution prepared from the ash was used for delignification and recovery of lignin from bamboo leaves by the hydrothermal reaction. Techniques like Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), and Energy dispersive X-ray (EDX) were applied to characterized the catalyst. The alkaline solution was analyzed with Atomic absorption spectroscopy (AAS). The Response surface methodology (RSM) technique was considered for the optimization of different parameters in the transesterification and hydrothermal reaction. Under the optimized condition, waste cooking oil (WCO) to Fatty acid methyl ester (FAME) conversion was 97.56 ± 0.11%, and lignin recovery was 43.20 ± 0.45%. While at the best operating pyrolysis temperature, the liquid fraction yield from the banana pseudostem (500 °C) was 38.10 ± 0.31 wt%. This integrated study approach encourages the inexpensive, sustainable, and environment-friendly pathway for synthesizing catalysts and preparing a highly alkaline solution for the valorization of biowaste into biofuel and biochemicals.
Collapse
Affiliation(s)
- Niran Daimary
- Department of Energy, Tezpur University, Napaam, 784028, Assam, India.
| | - Khalifa S H Eldiehy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut Branch, Egypt; Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Neelam Bora
- Department of Energy, Tezpur University, Napaam, 784028, Assam, India
| | - Pankaj Boruah
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Utpal Bora
- Department of Chemical Science, Tezpur University, Napaam, 784028, Assam, India
| | - Dhanapati Deka
- Department of Energy, Tezpur University, Napaam, 784028, Assam, India
| |
Collapse
|
7
|
Ramamoorthy NK, Vengadesan V, Pallam RB, Sadras SR, Sahadevan R, Sarma VV. A pilot-scale sustainable biorefinery, integrating mushroom cultivation and in-situ pretreatment-cum-saccharification for ethanol production. Prep Biochem Biotechnol 2023; 53:954-967. [PMID: 36633578 DOI: 10.1080/10826068.2022.2162922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biomass pretreatment incurs 40% of the overall cost of biorefinery operations. The usage of mushroom cultivation as a pretreatment/delignification technique, and bio-ethanol production from spent mushroom substrates, after subsequent pretreatment, saccharification and fermentation processes, have been reported earlier. However, the present pilot-scale, entirely-organic demonstration is one of the very first biorefinery models, which efficiently consolidates: biomass pretreatment; in-situ cellulase production and saccharification; mushroom cultivation, thereby improving the overall operational economy. During pretreatment, the oyster mushroom, Pluerotus florida VS-6, matures into distinct substrate mycelia and fruiting bodies. Consequential variations in the kinetics of growth, biomass degradation/substrate utilization, oxygen uptake and transfer rates, and enzyme production, have been analyzed. Signifying the first-time usage of a biomass mixture, comprising vegetative waste and e-commerce packaging waste, the 30 day-long, bio-economical, non-inhibitor-generating, catabolite repression-limited, solid-state in-situ pretreatment-cum-saccharification, resulted in: 78% lignin degradation; 13.25% soluble-sugar release; 18.25% mushroom yield; 0.88 FPU/g.ds cellulase secretion. The in-situ saccharified biomass, when sequentially subjected to ex-situ enzymatic hydrolysis and fermentation, showed 37.35% saccharification, and a bio-ethanol yield of 0.425 g per g of glucose, respectively. Apart from yielding engine-ready bio-ethanol, the model doubles as an agripreneurial proposition, and encourages mushroom cultivation and consumption.
Collapse
Affiliation(s)
- Navnit Kumar Ramamoorthy
- Department of Biotechnology, Fungal Biotechnology Laboratory, Pondicherry University, Kalapet, Pondicherry, India
| | - Vinoth Vengadesan
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | - Revanth Babu Pallam
- Department of Biotechnology, Fungal Biotechnology Laboratory, Pondicherry University, Kalapet, Pondicherry, India
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | | | - Vemuri Venkateswara Sarma
- Department of Biotechnology, Fungal Biotechnology Laboratory, Pondicherry University, Kalapet, Pondicherry, India
| |
Collapse
|
8
|
Singh A, Chen CW, Patel AK, Dong CD, Singhania RR. Subcritical Water Pretreatment for the Efficient Valorization of Sorghum Distillery Residue for the Biorefinery Platform. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010038. [PMID: 36671609 PMCID: PMC9854917 DOI: 10.3390/bioengineering10010038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
The depletion of fossil fuels is resulting in an increased energy crisis, which is leading the paradigm shift towards alternative energy resources to overcome the issue. Lignocellulosic biomass or agricultural residue could be utilized to produce energy fuel (bioethanol) as it can resolve the issue of energy crisis and reduce environmental pollution that occurs due to waste generation from agriculture and food industries. A huge amount of sorghum distillery residue (SDR) is produced during the Kaoliang liquor production process, which may cause environmental problems. Therefore, the SDR generated can be utilized to produce bioethanol to meet current energy demands and resolve environmental problems. Using a central composite experimental design, the SDR was subjected to hydrothermal pretreatment. The conditions selected for hydrothermal pretreatment are 155 °C, 170 °C, and 185 °C for 10, 30, and 50 min, respectively. Based on the analysis, 150 °C for 30 min conditions for SDR hydrothermal pretreatment were selected as no dehydration product (Furfural and HMF) was detected in the liquid phase. Therefore, the pretreated slurry obtained using hydrothermal pretreatment at 150 °C for 30 min was subjected to enzymatic hydrolysis at 5% solid loading and 15 FPU/gds. The saccharification yield obtained at 72 h was 75.05 ± 0.5%, and 5.33 g/L glucose concentration. This non-conventional way of enzymatic hydrolysis eliminates the separation and detoxification process, favoring the concept of an economical and easy operational strategy in terms of biorefinery.
Collapse
Affiliation(s)
- Anusuiya Singh
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Cheng-Di Dong
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Correspondence: (C.-D.D.); (R.R.S.)
| | - Reeta Rani Singhania
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
- Correspondence: (C.-D.D.); (R.R.S.)
| |
Collapse
|
9
|
Engineered Production of Isobutanol from Sugarcane Trash Hydrolysates in Pichia pastoris. J Fungi (Basel) 2022; 8:jof8080767. [PMID: 35893135 PMCID: PMC9330720 DOI: 10.3390/jof8080767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 12/10/2022] Open
Abstract
Concerns over climate change have led to increased interest in renewable fuels in recent years. Microbial production of advanced fuels from renewable and readily available carbon sources has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the yeast Pichia pastoris, an industrial powerhouse in heterologous enzyme production, to produce the advanced biofuel isobutanol from sugarcane trash hydrolysates. Our strategy involved overexpressing a heterologous xylose isomerase and the endogenous xylulokinase to enable the yeast to consume both C5 and C6 sugars in biomass. To enable the yeast to produce isobutanol, we then overexpressed the endogenous amino acid biosynthetic pathway and the 2-keto acid degradation pathway. The engineered strains produced isobutanol at a titer of up to 48.2 ± 1.7 mg/L directly from a minimal medium containing sugarcane trash hydrolysates as the sole carbon source. To our knowledge, this is the first demonstration of advanced biofuel production using agricultural waste-derived hydrolysates in the yeast P. pastoris. We envision that our work will pave the way for a scalable route to this advanced biofuel and further establish P. pastoris as a versatile production platform for fuels and high-value chemicals.
Collapse
|
10
|
A New Polysaccharide Carrier Isolated from Camelina Cake: Structural Characterization, Rheological Behavior, and Its Influence on Purple Corn Cob Extract's Bioaccessibility. Foods 2022; 11:foods11121736. [PMID: 35741934 PMCID: PMC9223137 DOI: 10.3390/foods11121736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
A polysaccharide fraction obtained from camelina cake (CCP), selected as a carrier to encapsulate purple corn cob extract (MCE), was investigated. A wide population of carbohydrate polymers (with a polydispersivity index of 3.26 ± 0.07 and an average molecular weight of about 139.749 × 103 ± 4.392 × 103 g/mol) with a gel-like behavior and a thixotropic feature characterized the fraction. MCE-CCP combinations (50–50 and 25–75, w/w), selected based on CCP encapsulation efficiency, were tested for their stability and MCE polyphenols’ bioaccessibility during digestion (monitored using an in vitro static procedure). During the oral and gastric phases of the digestion process, CCP gradually swelled and totally released MCE polyphenols. MCE-CCP50 had the fastest release. Moreover, anthocyanins were still detectable during the duodenal phase, in both MCE-CCP ingredients. Furthermore, CCP (5 mg/mL) exerted in vitro potential hypocholesterolemic activity via bile salts binding during digestion.
Collapse
|
11
|
Betlej I, Antczak A, Szadkowski J, Drożdżek M, Krajewski K, Radomski A, Zawadzki J, Borysiak S. Evaluation of the Hydrolysis Efficiency of Bacterial Cellulose Gel Film after the Liquid Hot Water and Steam Explosion Pretreatments. Polymers (Basel) 2022; 14:polym14102032. [PMID: 35631914 PMCID: PMC9146238 DOI: 10.3390/polym14102032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022] Open
Abstract
The influence of bacterial cellulose gel film pretreatment methods on the efficiency of enzymatic hydrolysis was investigated. An increase in the efficiency of enzymatic hydrolysis due to liquid hot water pretreatment or steam explosion was shown. The glucose yield of 88% was obtained from raw, non-purified, bacterial cellulose treated at 130 °C. The results confirm the potential of bacterial cellulose gel film as a source for liquid biofuel production.
Collapse
Affiliation(s)
- Izabela Betlej
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Andrzej Antczak
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Jan Szadkowski
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Michał Drożdżek
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Krzysztof Krajewski
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Andrzej Radomski
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Janusz Zawadzki
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Sławomir Borysiak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
12
|
Selection and Optimization of an Innovative Polysaccharide-Based Carrier to Improve Anthocyanins Stability in Purple Corn Cob Extracts. Antioxidants (Basel) 2022; 11:antiox11050916. [PMID: 35624780 PMCID: PMC9138105 DOI: 10.3390/antiox11050916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
The extraction process of alcohol-insoluble polysaccharides from exhausted Moradyn cob (Zea mays L. cv. Moradyn) (EMCP), camelina cake (Camelina sativa L. Crantz) (CCP), and common bean seeds (Phaseolus vulgaris L.) (CBP) was investigated and optimized by Response Surface Methodology. Each fraction was tested at different core/carrier ratios in the encapsulation of Moradyn cob extract (MCE), a rich source of antioxidant anthocyanins, and the obtained ingredients were screened for their encapsulation efficiency (EE%) and extraction process sustainability. The ingredients containing 50% and 75% CCP had EE% higher than 60% and 80%, respectively, and were selected for further studies. Preliminary structural analysis indicated CCP was mostly composed of neutral polysaccharides and proteins in a random-coiled conformation, which was also unchanged in the ingredients. CCP-stabilizing properties were tested, applying an innovative stress testing protocol. CCP strongly improved MCE anthocyanins solid-state stability (25 °C, 30% RH), and therefore it could be an innovative anthocyanins carrier system.
Collapse
|
13
|
Akintunde MO, Adebayo-Tayo BC, Ishola MM, Zamani A, Horváth IS. Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains. Bioengineered 2022; 13:10010-10025. [PMID: 35416127 PMCID: PMC9161868 DOI: 10.1080/21655979.2022.2062970] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Agricultural residues are constantly increasing with increased farming processes, and improper disposal is detrimental to the environment. Majority of these waste residues are rich in lignocellulose, which makes them suitable substrate for bacterial fermentation in the production of value-added products. In this study, bacterial cellulose (BC), a purer and better form of cellulose, was produced by two Komagataeibacter sp. isolated from rotten banana and kombucha drink using corncob (CC) and sugarcane bagasse (SCB) enzymatic hydrolyzate, under different fermentation conditions, that is, static, continuous, and intermittent agitation. The physicochemical and mechanical properties of the BC films were then investigated by Fourier Transformed Infrared Spectroscopy (FTIR), Thermogravimetry analysis, Field Emission Scanning Electron Microscopy (FE-SEM), and Dynamic mechanical analysis. Agitation gave a higher BC yield, with Komagataeibacter sp. CCUG73629 producing BC from CC with a dry weight of 1.6 g/L and 1.4 g/L under continuous and intermittent agitation, respectively, compared with that of 0.9 g/L in HS medium. While BC yield of dry weight up to 1.2 g/L was obtained from SCB by Komagataeibacter sp. CCUG73630 under continuous agitation compared to that of 0.3 g/L in HS medium. FTIR analysis showed BC bands associated with cellulose I, with high thermal stability. The FE-SEM analysis showed that BC fibers were highly ordered and densely packed. Although the BC produced by both strains showed similar physicochemical and morphological properties, the BC produced by the Komagataeibacter sp. CCUG73630 in CC under intermittent agitation had the best modulus of elasticity, 10.8 GPa and tensile strength, 70.9 MPa.
Collapse
Affiliation(s)
- Moyinoluwa O Akintunde
- Department of Microbiology, University of Ibadan, Ibadan, Nigeria.,Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | | | | - Akram Zamani
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
14
|
Leroy A, Falourd X, Foucat L, Méchin V, Guillon F, Paës G. Evaluating polymer interplay after hot water pretreatment to investigate maize stem internode recalcitrance. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:164. [PMID: 34332625 PMCID: PMC8325808 DOI: 10.1186/s13068-021-02015-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Biomass recalcitrance is governed by various molecular and structural factors but the interplay between these multiscale factors remains unclear. In this study, hot water pretreatment (HWP) was applied to maize stem internodes to highlight the impact of the ultrastructure of the polymers and their interactions on the accessibility and recalcitrance of the lignocellulosic biomass. The impact of HWP was analysed at different scales, from the polymer ultrastructure or water mobility to the cell wall organisation by combining complementary compositional, spectral and NMR analyses. RESULTS HWP increased the kinetics and yield of saccharification. Chemical characterisation showed that HWP altered cell wall composition with a loss of hemicelluloses (up to 45% in the 40-min HWP) and of ferulic acid cross-linking associated with lignin enrichment. The lignin structure was also altered (up to 35% reduction in β-O-4 bonds), associated with slight depolymerisation/repolymerisation depending on the length of treatment. The increase in [Formula: see text], [Formula: see text] and specific surface area (SSA) showed that the cellulose environment was looser after pretreatment. These changes were linked to the increased accessibility of more constrained water to the cellulose in the 5-15 nm pore size range. CONCLUSION The loss of hemicelluloses and changes in polymer structural features caused by HWP led to reorganisation of the lignocellulose matrix. These modifications increased the SSA and redistributed the water thereby increasing the accessibility of cellulases and enhancing hydrolysis. Interestingly, lignin content did not have a negative impact on enzymatic hydrolysis but a higher lignin condensed state appeared to promote saccharification. The environment and organisation of lignin is thus more important than its concentration in explaining cellulose accessibility. Elucidating the interactions between polymers is the key to understanding LB recalcitrance and to identifying the best severity conditions to optimise HWP in sustainable biorefineries.
Collapse
Affiliation(s)
- Amandine Leroy
- INRAE, UR 1268 BIA, 44316, Nantes, France
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100, Reims, France
| | - Xavier Falourd
- INRAE, UR 1268 BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - Loïc Foucat
- INRAE, UR 1268 BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - Valérie Méchin
- INRAE, Institut Jean-Pierre Bourgin, 78026, Versailles, France
| | | | - Gabriel Paës
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100, Reims, France.
| |
Collapse
|
15
|
Suriyachai N, Weerasai K, Upajak S, Khongchamnan P, Wanmolee W, Laosiripojana N, Champreda V, Suwannahong K, Imman S. Efficiency of Catalytic Liquid Hot Water Pretreatment for Conversion of Corn Stover to Bioethanol. ACS OMEGA 2020; 5:29872-29881. [PMID: 33251422 PMCID: PMC7689892 DOI: 10.1021/acsomega.0c04054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 05/04/2023]
Abstract
Lignocellulose is a promising raw material for the production of second-generation biofuels. In this study, the effects of acid-catalyzed liquid hot water (LHW) on pretreatment of corn stover (CS) for subsequent hydrolysis and conversion to ethanol were studied. The effects of reaction temperature, acid concentration, and residence time on glucose yield were evaluated using a response surface methodology. The optimal condition was 162.4 °C for 29.5 min with 0.45% v/v of sulfuric acid, leading to the maximum glucose yield of 91.05% from enzymatic hydrolysis of the cellulose-enriched fraction. Conversion of the solid fraction to ethanol by simultaneous saccharification and fermentation resulted in a theoretical ethanol yield of 93.91% based on digestible glucose. Scanning electron microscopy revealed disruption on the microstructure of the pretreated CS. Increases of crystallinity index and surface area of the pretreated biomass were observed along with alteration in the functional group profiles, as demonstrated by Fourier transform infrared spectroscopy. This work provides an insight into the effects of LHW on the enzymatic susceptibility and modification of the physicochemical properties of CS for further application on bioethanol production in biorefinery.
Collapse
Affiliation(s)
- Nopparat Suriyachai
- Integrated Biorefinery
excellent Center (IBC), School of Energy and Environment, University of Phayao, Tambon Maeka, Amphur Muang, Phayao 56000, Thailand
- BIOTEC-JGSEE
Integrative Biorefinery Laboratory, National
Center for Genetic Engineering and Biotechnology, Innovation Cluster 2 Building, Thailand Science
Park, Khlong Luang, Pathum
Thani 12120, Thailand
| | - Khatiya Weerasai
- The Joint Graduate School for Energy and Environment
(JGSEE), King Mongkut’s University
of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok 10140, Thailand
| | - Supawan Upajak
- School of Energy and
Environment, University of Phayao, Tambon Maeka, Amphur Muang, Phayao 56000, Thailand
| | - Punjarat Khongchamnan
- School of Energy and
Environment, University of Phayao, Tambon Maeka, Amphur Muang, Phayao 56000, Thailand
| | - Wanwitoo Wanmolee
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Paholyothin
Rd, Klong Laung, Pathum Thani 12120, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School for Energy and Environment
(JGSEE), King Mongkut’s University
of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok 10140, Thailand
- BIOTEC-JGSEE
Integrative Biorefinery Laboratory, National
Center for Genetic Engineering and Biotechnology, Innovation Cluster 2 Building, Thailand Science
Park, Khlong Luang, Pathum
Thani 12120, Thailand
| | - Verawat Champreda
- BIOTEC-JGSEE
Integrative Biorefinery Laboratory, National
Center for Genetic Engineering and Biotechnology, Innovation Cluster 2 Building, Thailand Science
Park, Khlong Luang, Pathum
Thani 12120, Thailand
| | - Kowit Suwannahong
- Department
of Environmental Health, Faculty of Public Health, Burapha University, Chonburi 20131, Thailand
| | - Saksit Imman
- Integrated Biorefinery
excellent Center (IBC), School of Energy and Environment, University of Phayao, Tambon Maeka, Amphur Muang, Phayao 56000, Thailand
- School of Energy and
Environment, University of Phayao, Tambon Maeka, Amphur Muang, Phayao 56000, Thailand
- . Tel.: +66-5446-6666. ext
3405
| |
Collapse
|
16
|
Martín-Lara M, Chica-Redecillas L, Pérez A, Blázquez G, Garcia-Garcia G, Calero M. Liquid Hot Water Pretreatment and Enzymatic Hydrolysis as a Valorization Route of Italian Green Pepper Waste to Delivery Free Sugars. Foods 2020; 9:E1640. [PMID: 33182839 PMCID: PMC7697518 DOI: 10.3390/foods9111640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
In this work, liquid hot water pretreatment (autohydrolysis) was used to improve enzymatic hydrolysis of a commonly consumed vegetable waste in Spain, Italian green pepper, to finally produce fermentable sugars. Firstly, the effect of temperature and contact time on sugar recovery during pretreatment (in insoluble solid and liquid fraction) was studied in detail. Then, enzymatic hydrolysis using commercial cellulase was performed with the insoluble solid resulting from pretreatment. The objective was to compare results with and without pretreatment. The results showed that the pretreatment step was effective to facilitate the sugars release in enzymatic hydrolysis, increasing the global sugar yield. This was especially notable when pretreatment was carried out at 180 °C for 40 min for glucose yields. In these conditions a global glucose yield of 61.02% was obtained. In addition, very low concentrations of phenolic compounds (ranging from 69.12 to 82.24 mg/L) were found in the liquid fraction from enzymatic hydrolysis, decreasing the possibility of fermentation inhibition produced by these components. Results showed that Italian green pepper is an interesting feedstock to obtain free sugars and prevent the enormous quantity of this food waste discarded annually.
Collapse
Affiliation(s)
- M.A. Martín-Lara
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (L.C.-R.); (A.P.); (G.B.); (M.C.)
| | - L. Chica-Redecillas
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (L.C.-R.); (A.P.); (G.B.); (M.C.)
| | - A. Pérez
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (L.C.-R.); (A.P.); (G.B.); (M.C.)
| | - G. Blázquez
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (L.C.-R.); (A.P.); (G.B.); (M.C.)
| | - G. Garcia-Garcia
- Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Sheffield S1 3JD, UK;
| | - M. Calero
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (L.C.-R.); (A.P.); (G.B.); (M.C.)
| |
Collapse
|
17
|
Weiermüller J, Akermann A, Sieker T, Ulber R. Bioraffinerien auf Basis schwach verholzter Biomasse. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jens Weiermüller
- Technische Universität Kaiserslautern Fachbereich Maschinenbau und Verfahrenstechnik Lehrgebiet für Bioverfahrenstechnik Gottlieb-Daimler-Straße 49 67663 Kaiserslautern Deutschland
| | - Alexander Akermann
- Technische Universität Kaiserslautern Fachbereich Maschinenbau und Verfahrenstechnik Lehrgebiet für Bioverfahrenstechnik Gottlieb-Daimler-Straße 49 67663 Kaiserslautern Deutschland
| | - Tim Sieker
- Technische Universität Kaiserslautern Fachbereich Maschinenbau und Verfahrenstechnik Lehrgebiet für Bioverfahrenstechnik Gottlieb-Daimler-Straße 49 67663 Kaiserslautern Deutschland
| | - Roland Ulber
- Technische Universität Kaiserslautern Fachbereich Maschinenbau und Verfahrenstechnik Lehrgebiet für Bioverfahrenstechnik Gottlieb-Daimler-Straße 49 67663 Kaiserslautern Deutschland
| |
Collapse
|
18
|
Evaluation of Hydrothermal Pretreatment on Lignocellulose-Based Waste Furniture Boards for Enzymatic Hydrolysis. Appl Biochem Biotechnol 2020; 192:415-431. [PMID: 32394318 DOI: 10.1007/s12010-020-03315-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
Three typical waste furniture boards, including fiberboard, chipboard, and blockboard, were pretreated with conventional hydrothermal method. The responses of chemical composition, physicochemical morphology, and performances of enzymatic hydrolysis were evaluated. Results indicated the almost complete hemicellulose removal at higher pretreatment temperatures, the enhanced crystallinity index, and disordered morphology of the pretreated substrates indicated that the hydrothermal pretreatment deconstructed these boards well. However, the very low enzymatic hydrolysis (< 8% after 72 h) of the pretreated substrates showed the poor biological conversion. Three hypotheses for the weakened enzymatic hydrolysis were investigated, and results indicated that the residual adhesives and their degraded fractions were mainly responsible for poor hydrolysis. When NaOH post-pretreatment was attempted, cellulose-glucose conversion of the hydrothermally pretreated fiberboard, chipboard and blockboard can be improved to 28.5%, 24.1%, and 37.5%. Herein, the process of NaOH hydrothermal pretreatment was integrated, by which the hydrolysis of pretreated fiberboard, chipboard and blockboard was greatly promoted to 47.1%, 37.3%, and 53.8%, suggesting a possible way to pretreat these unconventional recalcitrant biomasses.
Collapse
|
19
|
Tamaddon F, Arab D, Ahmadi-AhmadAbadi E. Urease immobilization on magnetic micro/nano-cellulose dialdehydes: Urease inhibitory of Biginelli product in Hantzsch reaction by urea. Carbohydr Polym 2019; 229:115471. [PMID: 31826427 DOI: 10.1016/j.carbpol.2019.115471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 01/30/2023]
Abstract
Micro/nano celluloses (MC)/NC) were magnetized by nanoγ-Fe2O3 into the nanoγ-Fe2O3@MC (NMMC) and nanoγ-Fe2O3@NC (NMMC) which oxidized to NMMCD and NMNCD dialdehydes for Schiff-base immobilization of urease as NMMCD/urease and NMMCD/urease. The relative enzyme-activity of the immobilized ureases were comparable with the free-urease, although 75%-80% of the enzyme activity preserved for NMMCD/urease and NMNCD/urease after six cycles. The compared catalytic activities of the NMMCD/urease and NMMCD/urease in Biginelli/Hantzsch reactions in water at 60 °C surprised us by 100% selectivity for the Biginelli product 3,4-dihydropyrimidin-2(1H)-one (DHPM1). With the superiority of NMNCD/urease, this high selectivity using immobilized ureases is owing to the admirable urease inhibitory of the formed Biginelli product DHPM1 by urea condensation instead of urea hydrolysis. The robust enzyme inhibitory of the DHPM1 for free urease was also confirmed by phenol red test to show the deactivation of enzyme for enzymatic hydrolysis of urea and ammonia production in water.
Collapse
Affiliation(s)
- Fatemeh Tamaddon
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | - Davood Arab
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | | |
Collapse
|
20
|
Zhang S, Yang X, Zhang H, Chu C, Zheng K, Ju M, Liu L. Liquefaction of Biomass and Upgrading of Bio-Oil: A Review. Molecules 2019; 24:E2250. [PMID: 31212889 PMCID: PMC6630481 DOI: 10.3390/molecules24122250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 11/17/2022] Open
Abstract
The liquefaction of biomass is an important technology to converse the biomass into valuable biofuel. The common technologies for liquefaction of biomass are indirect liquefaction and direct liquefaction. The indirect liquefaction refers to the Fischer-Tropsch (F-T) process using the syngas of biomass as the raw material to produce the liquid fuel, including methyl alcohol, ethyl alcohol, and dimethyl ether. The direct liquefaction of biomass refers to the conversion biomass into bio-oil, and the main technologies are hydrolysis fermentation and thermodynamic liquefaction. For thermodynamic liquefaction, it could be divided into fast pyrolysis and hydrothermal liquefaction. In addition, this review provides an overview of the physicochemical properties and common upgrading methods of bio-oil.
Collapse
Affiliation(s)
- Shiqiu Zhang
- College of Environmental Science and Engineering, Nankai University, Jinnan District, Tianjin 300350, China.
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, Nankai University, Jinnan District, Tianjin 300350, China.
| | - Xue Yang
- College of Environmental Science and Engineering, Nankai University, Jinnan District, Tianjin 300350, China.
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, Nankai University, Jinnan District, Tianjin 300350, China.
| | - Haiqing Zhang
- College of Environmental Science and Engineering, Nankai University, Jinnan District, Tianjin 300350, China.
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, Nankai University, Jinnan District, Tianjin 300350, China.
| | - Chunli Chu
- College of Environmental Science and Engineering, Nankai University, Jinnan District, Tianjin 300350, China.
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, Nankai University, Jinnan District, Tianjin 300350, China.
| | - Kui Zheng
- Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Meiting Ju
- College of Environmental Science and Engineering, Nankai University, Jinnan District, Tianjin 300350, China.
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, Nankai University, Jinnan District, Tianjin 300350, China.
| | - Le Liu
- College of Environmental Science and Engineering, Nankai University, Jinnan District, Tianjin 300350, China.
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, Nankai University, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
21
|
Eom T, Chaiprapat S, Charnnok B. Enhanced enzymatic hydrolysis and methane production from rubber wood waste using steam explosion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:231-239. [PMID: 30684808 DOI: 10.1016/j.jenvman.2019.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/14/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Rubber wood waste (RW) requires due to its recalcitrance a pretreatment step before efficient biochemical conversion is possible. Non chemical steam explosion pretreatment was adopted to enhance enzymatic hydrolysis and anaerobic digestion with severity from 2.70 to 4.35. RW treated at severity 4.35 (214 °C for 10 min) gave the highest 83.9 L CH4/kgVS effectiveness in anaerobic digestibility together with 45.2% hydrolysability in terms of glucan conversion. The intense pretreatment decreased particle size and degraded most of the hemicellulose, resulting in increased specific surface and better access for enzymes to cellulose. Additionally, the energy yield of steam exploded RW was enhanced by combined enzymatic hydrolysis with anaerobic digestion, in comparison to enzymatic hydrolysis or anaerobic digestion alone. This allowed for an efficient steam explosion pretreatment with co-production of sugar and methane. This study provides a technical approach for efficient biofuel production from RW after steam explosion pretreatment. Valorization of lignin-rich residue generated from the integrated process may increase value of RW, but assessing this requires further study.
Collapse
Affiliation(s)
- Tokla Eom
- Environmental Engineering, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla, 90110, Thailand
| | - Sumate Chaiprapat
- Environmental Engineering, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla, 90110, Thailand; PSU Energy Systems Research Institute (PERIN), Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla, 90110, Thailand
| | - Boonya Charnnok
- PSU Energy Systems Research Institute (PERIN), Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|