1
|
Wang Z, Li N, Zhou X, Wei S, Zhu Y, Li M, Gong J, He Y, Dong X, Gao C, Cheng S. Optimization of fermentation parameters to improve the biosynthesis of selenium nanoparticles by Bacillus licheniformis F1 and its comprehensive application. BMC Microbiol 2024; 24:271. [PMID: 39033096 PMCID: PMC11264884 DOI: 10.1186/s12866-024-03410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Selenium nanoparticles (SeNPs) are increasingly gaining attention due to its characteristics of low toxicity, high activity, and stability. Additionally, Bacillus licheniformis, as a probiotic, has achieved remarkable research outcomes in diverse fields such as medicine, feed processing, and pesticides, attracting widespread attention. Consequently, evaluating the activity of probiotics and SeNPs is paramount. The utilization of probiotics to synthesize SeNPs, achieving large-scale industrialization, is a current hotspot in the field of SeNPs synthesis and is currently the most promising synthetic method. To minimize production costs and maximize yield of SeNPs, this study selected agricultural by-products that are nutrient-rich, cost-effective, and readily available as culture medium components. This approach not only fulfills industrial production requirements but also mitigates the impact on downstream processes. RESULTS The experimental findings revealed that SeNPs synthesized by B. licheniformis F1 exhibited a spherical morphology with diameters ranging from 110 to 170 nm and demonstrating high stability. Both the secondary metabolites of B. licheniformis F1 and the synthesized SeNPs possessed significant free radical scavenging ability. To provide a more robust foundation for acquiring large quantities of SeNPs via fermentation with B. licheniformis F1, key factors were identified through single-factor experiments and response surface methodology (RSM) include a 2% seed liquid inoculum, a temperature of 37 ℃, and agitation at 180 rpm. Additionally, critical factors during the optimization process were corn powder (11.18 g/L), soybean meal (10.34 g/L), and NaCl (10.68 g/L). Upon validating the optimized conditions and culture medium, B. licheniformis F1 can synthesize nearly 100.00% SeNPs from 5 mmol/L sodium selenite. Subsequently, pilot-scale verification in a 5 L fermentor using the optimized medium resulted in a shortened fermentation time, significantly reducing production costs. CONCLUSION In this study, the efficient production of SeNPs by the probiotic B. licheniformis F1 was successfully achieved, leading to a significant reduction in fermentation costs. The exploration of the practical applications of this strain holds significant potential and provides valuable guidance for facilitating the industrial-scale implementation of microbial synthesis of SeNPs.
Collapse
Affiliation(s)
- Zhangqian Wang
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Nana Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Xin Zhou
- Medical Department of Gaoming Hospital of TCM, Foshan, 528500, China
| | - Shiya Wei
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Ying Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Mengjun Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Jue Gong
- Hubei National Se-rich Technology Development Co., Ltd., Enshi, 445000, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China.
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China.
| | - Chao Gao
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China.
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan, 430028, China.
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430028, China.
| |
Collapse
|
2
|
Uguz S, Sozcu A. Nutritional Value of Microalgae and Cyanobacteria Produced with Batch and Continuous Cultivation: Potential Use as Feed Material in Poultry Nutrition. Animals (Basel) 2023; 13:3431. [PMID: 37958186 PMCID: PMC10650744 DOI: 10.3390/ani13213431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Recently, the demand for new alternative feedstuffs that do not contain chemical residue and are not genetically modified has been increased for sustainability in poultry production. In this respect, the usage of algae as animal feed is very promising as an alternative feed ingredient that reduces pollutant gases from animal production facilities. The aim of the current study is to investigate the usage possibility of algae, through determining nutritional value and production cost, as a feed ingredient in poultry nutrition. Three microalgae species, including Scenedesmus sp., Ankistrodesmus sp., and Synechococcaceae, were produced with batch and continuous cultivation to determine the difference in the lipid, protein, carbohydrate, fatty acid, and amino acid profiles, as well as the color characteristics and production cost. The highest lipid content of 72.5% was observed in algae biomass produced from Synechococcaceae with batch cultivation, whereas the highest protein level was found in algae biomass produced by Synechococcaceae under continuous cultivation practice (25.6%). The highest content of PUFA was observed in Scenedesmus sp. harvested from both batch and continuous cultivation (35.6 and 36.2%), whereas the lowest content of PUFA was found in Synechococcaceae harvested with continuous cultivation (0.4%). Continuously cultivated of Scenedesmus sp. had higher carbohydrate content than batch-cultivated Scenedesmus sp. (57.2% vs. 50.1%). The algae biomass produced from Synechococcaceae was found to have a higher content of essential amino acids, except lysine and histidine, compared to Scenedesmus sp. and Ankistrodesmus sp. Cultivation practices also affected the amino acid level in each algae species. The continuous cultivation practice resulted in a higher level of essential amino acids, except glycine. Synechococcaceae had richer essential amino acid content except for proline and ornithine, whereas continuous cultivation caused an incremental increase in non-essential amino acids. The lightness value was found to be the lowest (13.9) in Scenedesmus sp. that was continuously cultivated. The current study indicated that Scenedesmus sp. could be offered for its high PUFA and lysine content, whereas Synechococcaceae could have potential due to its high content of methionine and threonine, among the investigated microalgae and Cyanobacteria.
Collapse
Affiliation(s)
- Seyit Uguz
- Department of Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey
- Department of Biosystems Engineering, Faculty of Engineering and Architecture, Yozgat Bozok University, 66200 Yozgat, Turkey
| | - Arda Sozcu
- Department of Animal Science, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey;
| |
Collapse
|
3
|
Singh RP, Yadav P, Kumar A, Hashem A, Avila-Quezada GD, Abd_Allah EF, Gupta RK. Salinity-Induced Physiochemical Alterations to Enhance Lipid Content in Oleaginous Microalgae Scenedesmus sp. BHU1 via Two-Stage Cultivation for Biodiesel Feedstock. Microorganisms 2023; 11:2064. [PMID: 37630624 PMCID: PMC10459255 DOI: 10.3390/microorganisms11082064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In the recent past, various microalgae have been considered a renewable energy source for biofuel production, and their amount and extent can be enhanced by applying certain types of stress including salinity. Although microalgae growing under salinity stress result in a higher lipid content, they simultaneously reduce in growth and biomass output. To resolve this issue, the physiochemical changes in microalgae Scenedesmus sp. BHU1 have been assessed through two-stage cultivation. In stage-I, the maximum carbohydrate and lipid contents (39.55 and 34.10%) were found at a 0.4 M NaCl concentration, while in stage-II, the maximum carbohydrate and lipid contents (42.16 and 38.10%) were obtained in the 8-day-old culture. However, under increased salinity, Scenedesmus sp. BHU1 exhibited a decrease in photosynthetic attributes, including Chl-a, Chl-b, Fv/Fm, Y(II), Y(NPQ), NPQ, qP, qL, qN, and ETRmax but increased Y(NO) and carotenoids content. Apart from physiological attributes, osmoprotectants, stress biomarkers, and nonenzymatic antioxidants were also studied to elucidate the role of reactive oxygen species (ROS) facilitated lipid synthesis. Furthermore, elemental and mineral ion analysis of microalgal biomass was performed to evaluate the biomass quality for biofuel and cell homeostasis. Based on fluorometry analysis, we found the maximum neutral lipids in the 8-day-old grown culture at stage-II in Scenedesmus sp. BHU1. Furthermore, the use of Fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy analyses confirmed the presence of higher levels of hydrocarbons and triacylglycerides (TAGs) composed of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) in the 8-day-old culture. Therefore, Scenedesmus sp. BHU1 can be a promising microalga for potential biodiesel feedstock.
Collapse
Affiliation(s)
- Rahul Prasad Singh
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (R.P.S.); (P.Y.)
| | - Priya Yadav
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (R.P.S.); (P.Y.)
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Rajan Kumar Gupta
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (R.P.S.); (P.Y.)
| |
Collapse
|
4
|
Wang F, Li Y, Yang R, Zhang N, Li S, Zhu Z. Effects of sodium selenite on the growth, biochemical composition and selenium biotransformation of the filamentous microalga Tribonema minus. BIORESOURCE TECHNOLOGY 2023:129313. [PMID: 37302765 DOI: 10.1016/j.biortech.2023.129313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the physiological and biochemical responses of filamentous microalga Tribonema minus to different Na2SeO3 concentrations and its selenium absorption and metabolism to evaluate the potential in treating selenium-containing wastewater. The results showed that low Na2SeO3 concentrations promoted growth by increasing chlorophyll content and antioxidant capacity, whereas high concentrations caused oxidative damage. Although Na2SeO3 exposure reduced lipid accumulation compared with the control, it significantly increased carbohydrate, soluble sugar, and protein contents, with the highest carbohydrate productivity of 117.97 mg/L/d at 0.5 mg/L Na2SeO3. Furthermore, this alga effectively absorbed Na2SeO3 in the growth medium and converted most of it into volatile selenium and a small part into organic selenium (predominantly as selenocysteine), showing strong selenite removal efficacy. This is the first report on the potential of T. minus to produce valuable biomass while removing selenite, providing new insights into the economic feasibility of bioremediation of selenium-containing wastewater.
Collapse
Affiliation(s)
- Feifei Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Yuanhong Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Rundong Yang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Na Zhang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China.
| |
Collapse
|
5
|
Singh P, Singh S, Maurya P, Mohanta A, Dubey H, Khadim SR, Singh AK, Pandey AK, Singh AK, Asthana RK. Bioaccumulation of selenium in halotolerant microalga Dunaliella salina and its impact on photosynthesis, reactive oxygen species, antioxidative enzymes, and neutral lipids. MARINE POLLUTION BULLETIN 2023; 190:114842. [PMID: 36965269 DOI: 10.1016/j.marpolbul.2023.114842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Selenium (Se) is an essential element for living systems, however, toxic at higher levels. In the present study, Dunaliella salina cells were exposed to different Se concentrations for their growth (EC50 195 mg L-1) as well as Se accumulation. The cells exposed to 50 mg L-1 Se showed photoautotrophic growth parallel to control and accumulated 65 μg Se g-1 DW. A decrease in photosynthetic quantum yield, chlorophyll content, and the increase in intracellular reactive oxygen species, proline content, and lipid peroxidation accompanied by higher neutral lipid accumulation, were recorded at higher Se level. The enzymes superoxide dismutase and catalase played a pivotal role in antioxidative defense. Heterogeneity in accumulated carotenoids at varying concentrations of selenium was prevalent. The cells exposed to 200 mg L-1 Se resulted in the disorganization of organelles. Thus, the Se enriched biomass obtained at 50 mg L-1 may be explored for bio-fortification of food and feed.
Collapse
Affiliation(s)
- Prabhakar Singh
- Biochemistry Department, North Eastern Hill University, Shillong 793022, India
| | - Sakshi Singh
- Interdisciplinary School of Life Sciences, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Maurya
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Mohanta
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Hardik Dubey
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Sk Riyazat Khadim
- Department of Botany, Model Degree College, Nabarangpur, Odisha 764063, India
| | - Ankit K Singh
- Department of Botany, Marwari College (a Constituent Unit of Lalit Narayan Mithila University), Darbhanga 846004, India
| | - Adarsh K Pandey
- Sophisticated Analytical and Technical Help Institute (SATHI), Banaras Hindu University, Varanasi 221005, India
| | - Arvind K Singh
- Biochemistry Department, North Eastern Hill University, Shillong 793022, India
| | - Ravi K Asthana
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Perković L, Djedović E, Vujović T, Baković M, Paradžik T, Čož-Rakovac R. Biotechnological Enhancement of Probiotics through Co-Cultivation with Algae: Future or a Trend? Mar Drugs 2022; 20:142. [PMID: 35200671 PMCID: PMC8880515 DOI: 10.3390/md20020142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The diversity of algal species is a rich source of many different bioactive metabolites. The compounds extracted from algal biomass have various beneficial effects on health. Recently, co-culture systems between microalgae and bacteria have emerged as an interesting solution that can reduce the high contamination risk associated with axenic cultures and, consequently, increase biomass yield and synthesis of active compounds. Probiotic microorganisms also have numerous positive effects on various aspects of health and represent potent co-culture partners. Most studies consider algae as prebiotics that serve as enhancers of probiotics performance. However, the extreme diversity of algal organisms and their ability to produce a plethora of metabolites are leading to new experimental designs in which these organisms are cultivated together to derive maximum benefit from their synergistic interactions. The future success of these studies depends on the precise experimental design of these complex systems. In the last decade, the development of high-throughput approaches has enabled a deeper understanding of global changes in response to interspecies interactions. Several studies have shown that the addition of algae, along with probiotics, can influence the microbiota, and improve gut health and overall yield in fish, shrimp, and mussels aquaculture. In the future, such findings can be further explored and implemented for use as dietary supplements for humans.
Collapse
Affiliation(s)
- Lucija Perković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Elvis Djedović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Marija Baković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tina Paradžik
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|