1
|
Lei P, Wang X, Qu X, Qi R, Chen D, Chang Y. The expression of SOCS1 is regulated by promoter DNA methylation and is associated with mitochondria-mediated apoptosis of T-2 induced chondrocytes. Exp Cell Res 2024; 441:114152. [PMID: 38971518 DOI: 10.1016/j.yexcr.2024.114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
At present, the function of SOCS1 in Kashin-Beck disease (KBD) has not been reported. This study aims to explore the expression and mechanism of SOCS1 in KBD, and provide theoretical basis for the prevention and treatment of KBD. The expression of SOCS1 were measured by qRT-PCR and Western blot. ELISA was used to detect the content of SOCS1 in serum and synovial fluid. CCK-8 kits were selected to measure the cell viability. Methylation Specific PCR (MSP) assay is used to detect the methylation level of SOCS1 in chondrocytes. Flow cytometry was used to analyze the apoptosis rate of chondrocytes in different groups. The expression of apoptosis related proteins (caspase-3 and caspase-9) and Cytochrome c were detected using Western blot. The mitochondrial ROS, ATP and the activity of mitochondrial respiratory chain complexes were detected using commercial kits. The results showed that the expression of SOCS1 significantly increases in KBD patients and T-2 induced chondrocytes. Further research has found that the methylation levels of SOCS1 were significantly reduced in KBD patients and T-2 induced chondrocytes. Functional studies have found that SOCS1 silencing inhibited chondrocyte apoptosis and mitochondrial dysfunction. More importantly, SOCS1 regulated mitochondrial mediated chondrocyte apoptosis through the IGF-1/IGF-1R/FAK/Drp1 pathway. In conclusion, SOCS1 expression is increased and methylation levels are decreased in KBD, and is involved in regulating mitochondrial mediated apoptosis in T-2 induced chondrocytes through IGF-1/IGF-1R/FAK/Drp1 signaling. This study provides new theoretical basis for the treatment and prevention of KBD in clinical practice.
Collapse
Affiliation(s)
- Pengzhen Lei
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Xiaoqing Wang
- Nursing Department, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Xiaodong Qu
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Rui Qi
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Duanmingyu Chen
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yanhai Chang
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
2
|
Ning Y, Chen S, Zhang F, Liu Y, Chen F, Li S, Wang C, Wu Y, Gong Y, Hu M, Huang R, Guo X, Yang L, Wang X. The alteration of urinary metabolomics profiles in Kashin-Beck disease in a three consecutive year study. Mol Omics 2023; 19:137-149. [PMID: 36508252 DOI: 10.1039/d2mo00297c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kashin-Beck disease (KBD) is a serious, endemic chronic osteochondral disease characterized by symmetrical enlargement of the phalanges, brachydactyly, joint deformity, and even dwarfism. To investigate the urinary metabolomic profiles of KBD patients, we performed an untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS). Adult urinary specimens were collected from 39 patients with KBD and 19 healthy subjects; the children's urinary specimens were collected from 5 patients with KBD, 25 suspected KBD cases and 123 healthy subjects in the KBD endemic area during a three consecutive year study. We identified 10 upregulated and 28 downregulated secondary level metabolites highly associated with aetiology and pathogenesis of KBD between adult KBD and adult controls. A total of 163, 967 and 795 metabolites were significantly different in the urine among children with KBD, suspected children with KBD cases and healthy child controls, respectively, for each year in three consecutive years. HT-2 toxin, Se-adenosylselenomethionine (AdoSeMet), the toxin T2 tetrol, and many kinds of amino acids were identified as differential metabolites in this study. Amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, arachidonic acid metabolism, D-glutamine and D-glutamate metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and D-glutamine and D-glutamate metabolism were perturbed pathways in adult and child KBD patients. Our study provides new insight into the underlying mechanisms of KBD, and suggests that we should pay more attention to these differences in small-molecule metabolites and metabolic pathways in the environmental aetiology and pathogenesis of KBD.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| | - Shujin Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Chaowei Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China. .,Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Lei Yang
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China. .,Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| |
Collapse
|
3
|
Ning Y, Hu M, Chen S, Zhang F, Yang X, Zhang Q, Gong Y, Huang R, Liu Y, Chen F, Pei L, Guo X, Kang L, Wang X, Zhang Y, Wang X. Investigation of selenium nutritional status and dietary pattern among children in Kashin-Beck disease endemic areas in Shaanxi Province, China using duplicate portion sampling method. ENVIRONMENT INTERNATIONAL 2022; 164:107255. [PMID: 35561595 DOI: 10.1016/j.envint.2022.107255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Selenium deficiency is a primary risk factor of Kashin-Beck disease (KBD). This study aimed to investigate whether children in endemic areas could maintain sufficient selenium intake after termination of selenium supplement administration, and evaluate their comprehensive nutritional status and dietary structure. METHODS Duplicate portion sampling combined with a questionnaire was adopted to collect data on categories and quantity of all food ingested in three consecutive days. Occipital hair was also collected to detect selenium content by hydride generation atomic fluorescence spectrometry (HGAFS). CDGSS3.0 software and factor analysis were integrated to assess the children's comprehensive nutritional status and dietary structure. RESULTS This study included 240 sex-matched (1:1) children aged 7-12 years from KBD endemic (n = 120) and non-endemic (n = 120) areas. Overall, 720 solid food, 720 liquid, and 240 hair samples were collected for selenium determination. The mean selenium level in hair of children in endemic areas (0.38 ± 0.16 mg/kg) was significantly lower than that in children in non-endemic areas (0.56 ± 0.28 mg/kg, Z = -5.249, p < 0.001). The dietary selenium intake of children in endemic areas was 40.0% lower than that in children in non-endemic areas (Z = -9.374, p < 0.001). Children in endemic areas consumed significantly less diverse dietary items leading to significantly less intake of multiple nutrients compared to children in non-endemic areas. CONCLUSIONS The dietary selenium intake of most children in endemic areas was less than the recommended amount. The dietary structure of children was undiversified, which limited the intake of multiple nutrients. Therefore, comprehensive nutrition rather than sole selenium intake should be the primary concern in the future.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China
| | - Xiaodong Yang
- Shaanxi Provincial Institute for Endemic Disease Prevention and Control, Xi'an 710003, PR China.
| | - Qingping Zhang
- Shaanxi Provincial Institute for Endemic Disease Prevention and Control, Xi'an 710003, PR China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Leilei Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China.
| | - Lianke Kang
- Center for Disease Control and Prevention of Qishan, Baoji 722400, PR China
| | - Xinyi Wang
- Center for Disease Control and Prevention of Hantai, Hanzhong 723000, PR China
| | - Yan Zhang
- Center for Disease Control and Prevention of Ningshan, Ankang 711699, PR China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, 710061, PR China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
4
|
Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2022; 200:2069-2083. [PMID: 34365573 PMCID: PMC8349466 DOI: 10.1007/s12011-021-02851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation of selenoproteins dependent on the Sec insertion sequence element in the 3'UTR of mRNA at the UGA codon through a novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict the potential health risk of the human body in the physiological adaptation state of low selenium based on the results of animal experiments.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China.
| |
Collapse
|
5
|
Kang X, Liu Y, Gong Y, Huang L, Liu H, Hu M, Huang R, Chen F, Chen S, Zhang F, Ning Y, Li C, Zhou R, Zhao H, Wang X, Guo X. The Status of Selenium and Zinc in the Urine of Children From Endemic Areas of Kashin-Beck Disease Over Three Consecutive Years. Front Nutr 2022; 9:862639. [PMID: 35464016 PMCID: PMC9033266 DOI: 10.3389/fnut.2022.862639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Selenium deficiency is one of the main risk factors for Kashin-Beck disease (KBD). This study aimed to detect the status of selenium and zinc in the urine of children from endemic areas of KBD over three consecutive years and to evaluate whether selenium and zinc levels in children in Shaanxi Province remain normal after stopping selenium supplementation. The samples of urine were collected in consecutive years (2017–2019) to detect selenium content by hydride generation atomic fluorescence spectrometry (HGAFS) and to detect zinc content by atomic absorption spectrophotometry (AAS). Generalized estimation equation (GEE) analysis was integrated to assess the comprehensive nutritional status and dietary structure of children. Data were processed in duplicate and analyzed by SPSS 18.0. This study included 30 X-ray-positive KBD cases and 123 healthy children aged 7–12 years. A total of 424 urine and 137 hair samples were collected over three consecutive years for selenium determination. The mean value of urinary selenium in all subjects was 6.86 μg/l (2017), 8.26 μg/l (2018), and 4.04 μg/l (2019), and the mean value of urinary zinc in all subjects was 0.36 mg/l (2017), 0.39 mg/l (2018), and 0.31 mg/l (2019) for the three consecutive years of 2017–2019. The mean values of urinary selenium were 6.56 and 6.94 μg/l (2017), 8.69 and 8.14 μg/l (2018), and 4.57 and 3.90 μg/l (2019) in the KBD-X and normal groups, respectively; and the mean value of urinary zinc were 0.38 and 0.35 mg/l (2017), 0.41 and 0.39 mg/l (2018), and 0.43 and 0.28 mg/l (2019) in the KBD-X and normal groups, respectively. The mean value of hair selenium in 137 subjects was 275.08 μg/kg and the mean values of hair selenium were 267.48 and 276.61 μg/kg in the KBD-X group and normal group, respectively. The level of selenium/zinc showed a trend of increasing first and then decreasing during the three consecutive years. The level of selenium in all subjects from the endemic areas was lower than normal, which reminds us to monitor the state of KBD constantly and adjust selenium salt supplementation in accordance with the changes in the KBD state.
Collapse
Affiliation(s)
- Xin Kang
- Department of Sports Medicine, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lin Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hongliang Liu
- Department of Orthopedics, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minhan Hu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Cheng Li
- Department of Kashin-Beck Disease and Keshan Disease Prevention, Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Rong Zhou
- Department of Kashin-Beck Disease and Keshan Disease Prevention, Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Hongmou Zhao
| | - Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Xi Wang
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Xiong Guo
| |
Collapse
|
6
|
Alterations in the gut microbiota and metabolite profiles of patients with Kashin-Beck disease, an endemic osteoarthritis in China. Cell Death Dis 2021; 12:1015. [PMID: 34711812 PMCID: PMC8553765 DOI: 10.1038/s41419-021-04322-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Kashin-Beck disease (KBD) is a severe osteochondral disorder that may be driven by the interaction between genetic and environmental factors. We aimed to improve our understanding of the gut microbiota structure in KBD patients of different grades and the relationship between the gut microbiota and serum metabolites. Fecal and serum samples collected from KBD patients and normal controls (NCs) were used to characterize the gut microbiota using 16S rDNA gene and metabolomic sequencing via liquid chromatography-mass spectrometry (LC/MS). To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria in the KBD patients, metagenomic sequencing of fecal samples from grade I KBD, grade II KBD and NC subjects was performed. The KBD group was characterized by elevated levels of Fusobacteria and Bacteroidetes. A total of 56 genera were identified to be significantly differentially abundant between the two groups. The genera Alloprevotella, Robinsoniella, Megamonas, and Escherichia_Shigella were more abundant in the KBD group. Consistent with the 16S rDNA analysis at the genus level, most of the differentially abundant species in KBD subjects belonged to the genus Prevotella according to metagenomic sequencing. Serum metabolomic analysis identified some differentially abundant metabolites among the grade I and II KBD and NC groups that were involved in lipid metabolism metabolic networks, such as that for unsaturated fatty acids and glycerophospholipids. Furthermore, we found that these differences in metabolite levels were associated with altered abundances of specific species. Our study provides a comprehensive landscape of the gut microbiota and metabolites in KBD patients and provides substantial evidence of a novel interplay between the gut microbiome and metabolome in KBD pathogenesis.
Collapse
|
7
|
Han F, Pang X, Wang Q, Liu Y, Liu L, Chai Y, Zhang J, Wang S, Lu J, Sun L, Zhan S, Wu H, Huang Z. Dietary Serine and Sulfate-Containing Amino Acids Related to the Nutritional Status of Selenium in Lactating Chinese Women. Biol Trace Elem Res 2021; 199:829-841. [PMID: 32533294 DOI: 10.1007/s12011-020-02204-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Previous studies suggested that serine can promote the synthesis of selenoproteins and the interaction, transformation, and replacement of serine, cysteine, and selenocysteine have been observed in the human body. This study was designed to clarify whether the dietary intakes of serine and sulfate-containing amino acids (SAAs) could directly affect the selenium (Se) nutritional status or the level of milk Se in lactating women. Breast milk and plasma samples were collected from a total of 264 lactating Chinese women when they revisited their local hospital at the 42nd day postpartum to detect the concentration of Se with ICP-MS and the content of selenoprotein P (SEPP1) and the activity of glutathione peroxidase 3 (GPX3) in the plasma by ELISA. The daily Se intake by each subject was calculated based on her own plasma Se concentration. The 24-h dietary record data for 3 consecutive days were collected to calculate their dietary intakes of protein together with each amino acid daily based on the China Food Composition Tables (CFCT). Ordinal polytomous logistic regression was applied to examine the determinants of BMI values for lactating women. For all subjects, the concentration of plasma SEPP1 and milk Se of participants with insufficient Se intake were significantly associated with the dietary intake of serine and 2 SAAs (methionine and cystine), respectively (P < 0.05). No significant correlation was found between each amino acid related to the synthesis of endogenous serine and every biomarker of the Se nutrition status in subjects with an insufficient dietary protein intake (P > 0.05). The ordinal logistic regression analysis showed that dietary protein intake (ordinal OR 1.012, 95% CI = 0.004-0.020, P = 0.002) and plasma SEPP1 (ordinal OR 0.988, 95% CI = - 0.023 to - 0.001, P = 0.036) affected the BMI value together in these lactating women. In conclusion, dietary serine and SAAs were found to directly affect the nutritional status, and both high protein intake and low plasma SEPP1 might be the health risks in these lactating Chinese women.
Collapse
Affiliation(s)
- Feng Han
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Xuehong Pang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Qin Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Liping Liu
- Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yingjuan Chai
- Maternal and Child Care Hospital of Xicheng district, Beijing, 100054, China
| | - Jie Zhang
- Center for Disease Control and Prevention of Enshi Autonomous Prefecture, Enshi, 445000, Hubei, China
| | - Shijin Wang
- Center for Disease Control and Prevention of Yi Autonomous Prefecture of Liangshan, Liangshan, 615000, Sichuan, China
| | - Jiaxi Lu
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Licui Sun
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Jianghan District, Wuhan, 430022, Hubei, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
8
|
Long J, Liu Y, Zhou X, He L. Dietary Serine Supplementation Regulates Selenoprotein Transcription and Selenoenzyme Activity in Pigs. Biol Trace Elem Res 2021; 199:148-153. [PMID: 32185655 DOI: 10.1007/s12011-020-02117-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/06/2020] [Indexed: 01/28/2023]
Abstract
The synthesis of selenocysteine and its incorporation into selenoproteins require serine during the action of seryl-tRNA synthetase. In view of this, we conducted this study to explore the effects of dietary serine supplementation on selenoprotein transcription and selenoenzyme activity in pigs. A total of 35 crossbred barrows (28 days old) were randomly assigned to five treatment groups. During the 42-day growth experiment, pigs were fed either a basal diet with no supplemented serine or diets supplemented with 0.25%, 0.5%, 0.75%, or 1% serine. The results showed that serine supplementation had no effect on the selenium content in the serum, skeletal muscle, and kidney of pigs. However, dietary supplementation with 0.5% serine significantly increased the selenium content in the liver. Diets supplemented with different levels of serine significantly increased the gene expression of glutathione peroxidase 1 (Gpx1), Gpx2, thioredoxin reductase 1 (Txnrd1), Txnrd2, and selenoprotein P (Sepp1) in the skeletal muscle and liver of pigs. Moreover, pigs supplemented with 0.5% serine had the highest selenoprotein P concentration and glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) activities in the skeletal muscle, which were significantly higher than those in the control pigs. Additionally, pigs supplemented with 0.25% serine had the highest GPx and TrxR activities in the liver, which were significantly higher than those in the control pigs. In conclusion, dietary serine supplementation could improve selenoprotein transcription and selenoenzyme activity in pigs, with the appropriate concentrations of serine to be included in the diet being 0.25% or 0.5%.
Collapse
Affiliation(s)
- Jing Long
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yonghui Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125, Hunan, China.
| | - Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| |
Collapse
|
9
|
Wang X, Ning Y, Zhang P, Li C, Zhou R, Guo X. Hair multi-bioelement profile of Kashin-Beck disease in the endemic regions of China. J Trace Elem Med Biol 2019; 54:79-97. [PMID: 31109624 DOI: 10.1016/j.jtemb.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Kashin-Beck disease (KBD) is a serious chronic osteochondral disease that is endemic in humans. Selenium (Se) has been considered in hypotheses of the aetiology of KBD, but few studies have explored the relationship between other elements and KBD. OBJECTIVE This study explored the relationship between 39 elements and KBD. METHODS In this retrospective study, 150 boys aged 6 to 14 years were randomly selected from a total population of 1,214 children. Subjects from endemic areas were divided into five groups: (KBD -Bin, N = 30; KBD + Se-Yongshou, N = 30; Control -Bin, N = 30; Control + Se -Yongshou, N = 30; and Control External -Chang'an, N = 30). Samples of occipital hair were collected from each subject, and thirty-nine elements, including 15 toxic elements, 19 nutrient elements, and 5 other elements were assayed by inductively coupled plasma mass spectrometry (ICP-MS). Correlation analysis of the elements in each group was performed by ggcorrplot (visualization of a correlation matrix using 'ggplot2') and PerformanceAnalytics packages in the program R Project. RESULTS Among the 15 toxic elements, the levels of aluminum (Al) and bismuth (Bi) in the KBD -Bin were significantly higher than in the other groups, and the levels of silver (Ag), beryllium (Be), platinum (Pt), antimony (Sb), tin (Sn) and lead (Pb) in the KBD -Bin were significantly lower than in the other groups. Among the 19 nutrient elements, the levels of selenium (Se), iodine (I), sulfur (S), and boron (B) in the KBD -Bin were significantly lower than in the other groups. The levels of calcium (Ca), iron (Fe), manganese (Mn), chromium (Cr), strontium (Sr) and phosphorus (P) in the KBD -Bin were significantly higher than in the other groups. Correlations between various elements were remarkably different among the groups. There were positive correlations between As and Pb, Cd and Sb, Pb and Sb, Sb and U in the Control External -Chang'an, between Al and Ni, Cd and Pb, Tl and Ni, Ti and U in the Se-S KBD, and between B and I, B and Mo, Mn and V in the Control External -Chang'an. CONCLUSIONS These findings indicate that the interactions between elements do not represent a simple reciprocal relationship in the occurrence of KBD. In fact, KBD was associated with an imbalance in multiple elements that play a dynamic and interactive role in the development of the disease.
Collapse
Affiliation(s)
- Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, PR China; Xi'an Jiaotong University Global Health Institute
| | - Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, PR China
| | - Pan Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, PR China
| | - Cheng Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, PR China; Shaanxi Procincial Institute for Endemic Disease Control, PR China
| | - Rong Zhou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, PR China; Shaanxi Procincial Institute for Endemic Disease Control, PR China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
10
|
Ning Y, Wang X, Zhang P, Anatoly SV, Prakash NT, Li C, Zhou R, Lammi M, Zhang F, Guo X. Imbalance of dietary nutrients and the associated differentially expressed genes and pathways may play important roles in juvenile Kashin-Beck disease. J Trace Elem Med Biol 2018; 50:441-460. [PMID: 29426639 DOI: 10.1016/j.jtemb.2018.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/05/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Kashin-Beck disease (KBD) is a childhood-onset endemic osteoarthropathy in China. Nutrients including trace elements may play active roles in the development of KBD. OBJECTIVE This study aimed to estimate the nutrient intakes of children in endemic areas and to identify the imbalanced nutrients associated differentially expressed genes in the juvenile patients with KBD. METHODS In this cross-sectional study, a consecutive 3 day 24 h semi-quantitative dietary retrospect questionnaire was conducted to estimate the daily nutrient intakes of children using CDGSS 3.0 software. Gene profile analysis was employed to identify differentially expressed genes in peripheral blood mononuclear cells of children with KBD. GOC, CTD, KEGG, and REACTOME databases were used to establish the relationship between nutrients and nutrients-associated differentially expressed genes and pathways. Statistical analyses were accomplished by SPSS 18.0 software. RESULTS Daily Se intakes without supplementation of children were significantly lower in Se-supplemented (Se + ) KBD areas (29.3 ∼ 29.6 mg/d) and non-endemic area (27.8 ± 7.9 mg/d) compared to non-Se-supplemented (Se-) KBD area (32.9 ± 7.9 mg/d, c2 = 20.24, P < .01). Children in Se+ KBD areas were suffering more serious insufficient intake of multiple nutrients, including vitamins-B2/-C/-E, Ca, Fe, Zn and I. Gene profile analysis combined with bioinformatics technique identified 34 nutrients associated differentially expressed genes and 10 significant pathways which are related to the pathological changes in juvenile KBD. CONCLUSIONS Imbalance of dietary nutrients and nutrients-associated differentially expressed genes and pathways may play important roles in the development of juvenile KBD.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China; Xi'an Jiaotong University Global Health Institute, PR China
| | - Pan Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Skalny V Anatoly
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia; Orenburg State University, Orenburg, Russia; Yaroslavl State University, Yaroslavl, Russia; RUDN University, Moscow, Russia
| | - N Tejo Prakash
- Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, India
| | - Cheng Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China; Shaanxi Procincial Institute for Endemic Disease Control, PR China
| | - Rong Zhou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China; Shaanxi Procincial Institute for Endemic Disease Control, PR China
| | - Mikko Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China; Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden, Sweden
| | - Feng Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
11
|
Ning Y, Wang X, Zhang P, Liu A, Qi X, Liu M, Guo X. Dietary exosome-miR-23b may be a novel therapeutic measure for preventing Kashin-Beck disease. Exp Ther Med 2018; 15:3680-3686. [PMID: 29556257 PMCID: PMC5844000 DOI: 10.3892/etm.2018.5885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/04/2018] [Indexed: 01/01/2023] Open
Abstract
Previous studies have identified a close association between diet and the prevalence of Kashin-Beck disease (KBD); however, the mechanisms via which the diet protects against KBD-associated cartilage injury has remained elusive. Recent international research studies have revealed a therapeutic role of dietary exosome micro (mi)RNAs in repairing chondrocyte lesions by regulating genes and proteins associated with cellular apoptosis and extracellular matrix. Vital molecules affecting bio-functions of chondrocytes, including miR-23b and protein kinase cyclic AMP-activated catalytic subunit β, were preliminarily identified to be dysregulated in cells and cartilage tissue of KBD patients. The function of dietary exosome in the repair of chondrocyte lesions in KBD is a novel topic in this field. It is worth exploring the protective role of dietary exosome-miR-23b against chondrocyte damage through the regulation of the protein kinase A (PKA) signaling pathway. The following aims are significant in future studies: i) To verify the association between exosome and cartilage damage in KBD patients; ii) to identify whether the protective mechanism of miR-23b in cartilage damage proceeds through regulating the PKA pathway; and iii) to explore the therapeutic role of dietary exosome-miR-23b in repairing chondrocyte lesions induced by environmental risk factors. These ideas may help establish the therapeutic role and mechanisms of dietary exosome-miR-23b in repairing chondrocyte lesions at the molecular, cellular and organismal level. These studies may simultaneously elucidate the disease pathogenesis and provide evidence for novel biomarkers and therapeutic methods for KBD.
Collapse
Affiliation(s)
- Yujie Ning
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Xi Wang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Pan Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Amin Liu
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Qi
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Meidan Liu
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| | - Xiong Guo
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
Wu W, He A, Wen Y, Xiao X, Hao J, Zhang F, Guo X. Comparison of microRNA expression profiles of Kashin-Beck disease, osteoarthritis and rheumatoid arthritis. Sci Rep 2017; 7:540. [PMID: 28373711 PMCID: PMC5428653 DOI: 10.1038/s41598-017-00522-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
Kashin-Beck disease (KBD) is a chronic osteochondropathy with unclear pathogeny. In this study, we compared the microRNA expression profiles of 16 KBD patients, 16 osteoarthritis (OA) patients and 16 rheumatoid arthritis (RA) patients and 16 healthy controls in their blood specimens. miRNAs expression profiling was performed using Exiqon miRCURY LNATM miRNAs Array. miRNAs target genes were predicted using miRror suite. Another independent mRNA expression profile dataset of 20 KBD patients and 15 healthy controls were integrated with the miRNA expression profiles of KBD. We identified 140 differently expressed miRNAs in KBD vs. CONTROLS GO enrichment analysis found that hypoxia, Wnt receptor signaling pathway and vitamin B6 biosynthesis related GO terms were significantly overrepresented in the target genes of differently expressed miRNAs in KBD vs. CONTROL 18 differently expressed common miRNAs were identified in KBD vs. Control, KBD vs. OA and KBD vs. RA. Integrating the lists of differently expressed miRNA target genes and mRNA differently expressed genes detected 6 common genes for KBD. Our results demonstrated the altered miRNAs expression profiles of KBD comparing to healthy controls, OA and RA, which provide novel clues for clarifying the mechanism of KBD.
Collapse
Affiliation(s)
- Wenhong Wu
- Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Awen He
- Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiao Xiao
- Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jingcan Hao
- Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|
13
|
Dermience M, Mathieu F, Li XW, Vandevijvere S, Claus W, De Maertelaer V, Dufourny G, Bin L, Yangzom D, Lognay G. Minerals and Trace Elements Intakes and Food Consumption Patterns of Young Children Living in Rural Areas of Tibet Autonomous Region, P.R. China: A Cross-Sectional Survey. Healthcare (Basel) 2017; 5:E12. [PMID: 28257043 PMCID: PMC5371918 DOI: 10.3390/healthcare5010012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Several studies revealed clinical signs of stunting and rickets among rural populations of Tibet Autonomous Region (T.A.R.), and especially amid children. Further, these populations are affected by a bone disease named Kashin-Beck disease (KBD). However, little is known about the dietary status of this population. This survey aimed to assess the usual intakes of young Tibetan children living in rural areas around Lhasa for energy, water, and ten minerals and trace elements (Na, K, Ca, P, Mg, Fe, Zn, Cu, Mn, and Se) involved in bone metabolism. DESIGN A cross-sectional survey was designed. Totally, 250 pre-school children aged 3-5 years living in rural areas were enrolled. The 24-h food recall method was used to collect the intakes for two days, during two different seasons (September 2012 and April 2013). Because Tibetan foods are mainly derived from local agriculture and artisanal production, a combination of food composition tables was compiled, including specific and local food composition data. RESULTS The Chinese dietary recommended intakes are not met for most of the elements investigated. Intake of sodium is much too high, while usual intakes are too low for K, Ca, Zn, Cu, and Se. Bioavailability of Ca, Fe, and Zn may be of concern due to the high phytic acid content in the diet. CONCLUSION These nutrient imbalances may impact growth and bone metabolism of young Tibetan children. The advantages of the implementation of food diversification programs are discussed as well as the relevance of supplements distribution.
Collapse
Affiliation(s)
- Michael Dermience
- Analytical chemistry, Gembloux Agro Bio Tech-University of Liege, Passage des Deportes, 2, B-5030 Gembloux, Belgium.
| | - Françoise Mathieu
- Kashin-Beck Disease Fund Asbl-Vzw, Rue de l'Aunee, 6, B-6953 Forrieres, Belgium.
| | - Xiao Wei Li
- China National Center for Food Safety Risk Assessment, Panjiayuan Nanli, 7, Chaoyang District, Beijing 100021, China.
| | | | - William Claus
- Kashin-Beck Disease Fund Asbl-Vzw, Rue de l'Aunee, 6, B-6953 Forrieres, Belgium.
| | - Viviane De Maertelaer
- SBIM and Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire, Free University of Brussels, route de Lennik, 808, B-1070 Brussels, Belgium.
| | - Ghislaine Dufourny
- CIRIHA, Haute Ecole Lucia de Brouckere, Avenue Emile Gryzon, 1, B-1070 Brussels, Belgium.
| | - Li Bin
- Center for Disease Control and Prevention-North Lin Kuo Road 21, Lhasa 850000, China.
| | - Dechen Yangzom
- Kashin-Beck Disease Foundation, Gakyiling Hotel, Tuanjie Xincun, Sera Road, Lhasa 850000, China.
| | - Georges Lognay
- Analytical chemistry, Gembloux Agro Bio Tech-University of Liege, Passage des Deportes, 2, B-5030 Gembloux, Belgium.
| |
Collapse
|
14
|
Yu FF, Zhang YX, Zhang LH, Li WR, Guo X, Lammi MJ. Identified molecular mechanism of interaction between environmental risk factors and differential expression genes in cartilage of Kashin-Beck disease. Medicine (Baltimore) 2016; 95:e5669. [PMID: 28033256 PMCID: PMC5207552 DOI: 10.1097/md.0000000000005669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As environmental risk factors (ERFs) play an important role in the pathogenesis of Kashin-Beck disease (KBD), it is important to identify the interaction between ERFs and differentially expression genes (DEGs) in KBD. The environmental response genes (ERGs) were analyzed in cartilage of KBD in comparison to normal controls.We searched 5 English and 3 Chinese databases from inception to September 2015, to identify case-control studies that examined ERFs for KBD using integrative meta-analysis and systematic review. Total RNA was isolated from articular cartilage of KBD patients and healthy controls. Human whole genome microarray chip (Agilent) was used to analyze the amplified, labeled, and hybridized total RNA, and the validated microarray data were partially verified using real-time quantitative polymerase chain reaction (qRT-PCR). The ERGs were derived from the Comparative Toxicogenomics Database. The identified ERGs were subjected to KEGG pathway enrichment, biological process (BP), and interaction network analyses using the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7, and STRING.The trace elements (selenium and iodine), vitamin E, and polluted grains (T-2 toxin/HT-2 toxin, deoxynivalenol, and nivalenol) were identified as the ERFs for KBD using meta-analysis and review. We identified 21 upregulated ERGs and 7 downregulated ERGs in cartilage with KBD compared with healthy controls, which involved in apoptosis, metabolism, and growth and development. KEGG pathway enrichment analysis found that 2 significant pathways were involved with PI3K-Akt signaling pathway and P53 signaling pathway, and gene ontology function analysis found 3 BPs involved with apoptosis, death, and cell death in KBD cartilage.According to previous results and our own research, we suggest that the trace element selenium and vitamin E induce PI3K-Akt signaling pathway and the mycotoxins (T-2 toxin/HT-2 toxin and DON) induce P53 signaling pathway, contributing to the development of KBD, and chondrocyte apoptosis and cell death.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi’an
| | - Yan-Xiang Zhang
- Department of Orthopedics, Baoji People's Hospital, Baoji, China
| | - Lian-He Zhang
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi’an
| | - Wen-Rong Li
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi’an
| | - Xiong Guo
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi’an
| | - Mikko J. Lammi
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi’an
- Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| |
Collapse
|
15
|
Zhang YF, Yang JY, Li YK, Zhou W. Toxicity and oxidative stress induced by T-2 toxin in cultured mouse Leydig cells. Toxicol Mech Methods 2016; 27:100-106. [DOI: 10.1080/15376516.2016.1258747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yong Fa Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, PR China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Jian Ying Yang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Yong Kai Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Wei Zhou
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, PR China
| |
Collapse
|
16
|
Wang Q, Sun LC, Liu YQ, Lu JX, Han F, Huang ZW. The Synergistic Effect of Serine with Selenocompounds on the Expression of SelP and GPx in HepG2 Cells. Biol Trace Elem Res 2016; 173:291-6. [PMID: 26944060 DOI: 10.1007/s12011-016-0665-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/24/2016] [Indexed: 01/27/2023]
Abstract
We explored the synergistic effect of serine combined with several selenocompounds or used alone on the expression of selenoprotein P (SelP) and glutathione peroxidase (GPx) in this study. We first compared the SelP and GPx expression difference between HepG2 and Hela cells treated with serine and finally chose HepG2 as experimental cell. In the serine-used-alone experiment, three kinds of selenium nutritional models (low-, adequate-, and high-selenium) were established and serine was 10 times gradient diluted (0.01 to 100 μmol/L). In the combined experiment, the selenocompound doses were set as 0.01, 0.1, and 1 μmol Se/L and serine was set according to its molar ratio with the selenocompounds. We found that SelP and GPx concentrations in the low-, adequate-, and high-selenium models increased following with serine dose. When the concentration of sodium selenite and SeMet was 1 μmol Se/L while MeSeCys was 0.1 and 1 μmol Se/L, SelP concentrations for serine combined with selenocompounds groups were significantly higher than that of selenocompounds used alone. When the concentration of sodium selenite was 0.1 μmol Se/L, SeMet was 0.1 and 1 μmol Se/L while MeSeCys was 0.01 and 1 μmol Se/L, GPx concentrations for serine combined with selenocompounds groups were significantly higher than that of selenocompounds used alone. Our preliminary result indicated the beneficial effect of serine on the expression of SelP and GPx, which suggested that it might be a candidate for combined selenium supplement.
Collapse
Affiliation(s)
- Qin Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Li-Cui Sun
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yi-Qun Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Jia-Xi Lu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Feng Han
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Zhen-Wu Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
17
|
Ning Y, Wang X, Wang S, Zhang F, Zhang L, Lei Y, Guo X. Is It the Appropriate Time to Stop Applying Selenium Enriched Salt in Kashin-Beck Disease Areas in China? Nutrients 2015; 7:6195-212. [PMID: 26225999 PMCID: PMC4555115 DOI: 10.3390/nu7085276] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/11/2015] [Accepted: 07/20/2015] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify significant factors of selenium (Se) nutrition of children in Kashin-Beck disease (KBD) endemic areas and non-KBD area in Shaanxi Province for providing evidence of whether it is the time to stop applying Se-enriched salt in KBD areas. A cross-sectional study contained 368 stratified randomly selected children aged 4-14 years was conducted with 24-h retrospective questionnaire based on a pre-investigation. Food and hair samples were collected and had Se contents determined with hydride generation atomic fluorescence spectrometry. Average hair Se content of 349.0 ± 60.2 ng/g in KBD-endemic counties was significantly lower than 374.1 ± 47.0 ng/g in non-KBD counties. It was significantly higher in the male children (365.2 ± 52.3 ng/g) than in the female (345.0 ± 62.2 ng/g, p = 0.002) and significantly higher in the 4.0-6.9 years group (375.2 ± 58.9 ng/g) than the 7.0-14.0 years group (347.0 ± 56.1 ng/g, p < 0.01). Gender, living area, Se intake without supplements, Se-enriched salt, oil source and protein intake were identified as significant factors of hair Se contents. Cereals, meat and milk were commonly included as significant food categories that mainly contributed to Se intake without supplement of the whole population. Balanced dietary structure without Se supplement could effectively enhance and maintain children's Se nutrition. It may be the time to stop applying Se-enriched salt in KBD areas in Shaanxi Province.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, China.
| | - Xi Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, China.
| | - Sen Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, China.
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, China.
| | - Lianhe Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, China.
| | - Yanxia Lei
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, China.
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
18
|
Jablonska E, Vinceti M. Selenium and Human Health: Witnessing a Copernican Revolution? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:328-68. [PMID: 26074278 DOI: 10.1080/10590501.2015.1055163] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In humans, selenium was hypothesized to lower the risk of several chronic diseases, mainly due to the antioxidant activity of selenium-containing proteins. Recent epidemiologic and laboratory studies, however, are changing our perception of the biological effects of this nutritionally essential trace element. We reviewed the most recent epidemiologic and biochemical literature on selenium, synthesizing the findings from these studies into a unifying view. Randomized trials have shown that selenium did not protect against cancer and other chronic diseases, but even increased the risk of specific neoplasms such as advanced prostate cancer and skin cancer, in addition to type 2 diabetes. Biochemical studies indicate that selenium may exert a broad pattern of toxic effects at unexpectedly low concentrations. Furthermore, its upregulation of antioxidant proteins (selenium-dependent and selenium-independent) may be a manifestation of self-induced oxidative stress. In conclusion, toxic effects of selenium species occur at lower concentrations than previously believed. Those effects may include a large range of proteomic changes and adverse health effects in humans. Since the effects of environmental exposure to this element on human health still remain partially unknown, but are potentially serious, the toxicity of selenium exposure should be further investigated and considered as a public health priority.
Collapse
Affiliation(s)
- Ewa Jablonska
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| | | |
Collapse
|
19
|
Liu J, Wang L, Guo X, Pang Q, Wu S, Wu C, Xu P, Bai Y. The role of mitochondria in T-2 toxin-induced human chondrocytes apoptosis. PLoS One 2014; 9:e108394. [PMID: 25264878 PMCID: PMC4181319 DOI: 10.1371/journal.pone.0108394] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
T-2 toxin, a mycotoxin produced by Fusarium species, has been shown to cause diverse toxic effects in animals and is also a possible pathogenic factor of Kashin–Beck disease (KBD). The role of mitochondria in KBD is recognized in our recent research. The aim of this study was to evaluate the role of mitochondria in T-2 toxin-induced human chondrocytes apoptosis to understand the pathogenesis of KBD. T-2 toxin decreased chondrocytes viabilities in concentration- and time-dependent manners. Exposure to T-2 toxin can reduce activities of mitochondrial complexes III, IV and V, ΔΨm and the cellular ATP, while intracellular ROS increased following treatment with T-2 toxin. Furthermore, mitochondrial cytochrome c release, caspase-9 and 3 activation and chondrocytes apoptosis were also obviously observed. Interestingly, Selenium (Se) can partly block T-2 toxin -induced mitochondria dysfunction, oxidative damage and chondrocytes apoptosis. These results suggest that the effect of T-2 toxin on human chondrocytes apoptosis may be mediated by a mitochondrial pathway, which is highly consistent with the chondrocytes changes in KBD.
Collapse
Affiliation(s)
- Jiangtao Liu
- School of Public Health, Science Health Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related Diseases, Ministry of Education, Xi’an, Shaanxi, PR China
- Department of Orthopedics Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Xiong Guo
- School of Public Health, Science Health Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related Diseases, Ministry of Education, Xi’an, Shaanxi, PR China
- * E-mail: (XG); (QJP)
| | - Qingjiang Pang
- Department of Orthopedics Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China
- * E-mail: (XG); (QJP)
| | - Shixun Wu
- School of Public Health, Science Health Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related Diseases, Ministry of Education, Xi’an, Shaanxi, PR China
| | - Cuiyan Wu
- School of Public Health, Science Health Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related Diseases, Ministry of Education, Xi’an, Shaanxi, PR China
| | - Peng Xu
- Department of Orthopaedics Surgery, The Xi’an Red Cross Hospital, Xi’an, Shaanxi, PR China
| | - Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|