1
|
Molenda M, Kolmas J. The Role of Zinc in Bone Tissue Health and Regeneration-a Review. Biol Trace Elem Res 2023; 201:5640-5651. [PMID: 37002364 PMCID: PMC10620276 DOI: 10.1007/s12011-023-03631-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Zinc is a micronutrient of key importance for human health. An increasing number of studies indicate that zinc plays a significant role in bone tissue's normal development and maintaining homeostasis. Zinc is not only a component of bone tissue but is also involved in the synthesis of the collagen matrix, mineralization, and bone turnover. It has been demonstrated that zinc can stimulate runt-related transcription factor 2 (Runx2) and promote the differentiation of osteoblasts. On the other hand, zinc has been found to inhibit osteoclast-like cell formation and to decrease bone resorption by stimulating osteoclasts' apoptosis. Moreover, zinc regulates the RANKL/RANK/OPG pathway, thereby facilitating bone remodeling. To date, not all mechanisms of Zn activity on bone tissue are well understood and documented. The review aimed to present the current state of research on the role of zinc in bone tissue, its beneficial properties, and its effects on bone regeneration. Since calcium phosphates as bone substitute materials are increasingly enriched in zinc ions, the paper included an overview of research on the potential role of such materials in bone filling and regeneration.
Collapse
Affiliation(s)
- Magda Molenda
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland
| | - Joanna Kolmas
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| |
Collapse
|
2
|
Skalny AV, Aschner M, Silina EV, Stupin VA, Zaitsev ON, Sotnikova TI, Tazina SI, Zhang F, Guo X, Tinkov AA. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023; 13:1006. [PMID: 37371586 DOI: 10.3390/biom13061006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of the present study was to review recent epidemiological and clinical data on the association between selected minerals and trace elements and osteoporosis, as well as to discuss the molecular mechanisms underlying these associations. We have performed a search in the PubMed-Medline and Google Scholar databases using the MeSH terms "osteoporosis", "osteogenesis", "osteoblast", "osteoclast", and "osteocyte" in association with the names of particular trace elements and minerals through 21 March 2023. The data demonstrate that physiological and nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-regulation of BMP-2 and Wnt/β-catenin signaling, as well as other pathways. miRNA and epigenetic effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorptive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which promoted bone resorption and impaired bone formation. Concomitant with the results of the laboratory studies, several clinical trials and epidemiological studies demonstrated that supplementation with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ekaterina V Silina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Victor A Stupin
- Department of Hospital Surgery No. 1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg N Zaitsev
- Department of Physical Education, Yaroslavl State Technical University, 150023 Yaroslavl, Russia
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
3
|
Li H, Li M, Ran X, Cui J, Wei F, Yi G, Chen W, Luo X, Chen Z. The Role of Zinc in Bone Mesenchymal Stem Cell Differentiation. Cell Reprogram 2022; 24:80-94. [PMID: 35172118 DOI: 10.1089/cell.2021.0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zinc is an essential trace element for bone growth and bone homeostasis in the human body. Bone mesenchymal stem cells (BMSCs) are multipotent progenitors existing in the bone marrow stroma with the capability of differentiating along multiple lineage pathways. Zinc plays a paramount role in BMSCs, which can be spurred differentiating into osteoblasts, chondrocytes, or adipocytes, and modulates the formation and activity of osteoclasts. The expression of related genes also changed during the differentiation of various cell phenotypes. Based on the important role of zinc in BMSC differentiation, using zinc as a therapeutic approach for bone remodeling will be a promising method. This review explores the role of zinc ion in the differentiation of BMSCs into various cell phenotypes and outlines the existing research on their molecular mechanism.
Collapse
Affiliation(s)
- Huiyun Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Muzhe Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xun Ran
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Fu Wei
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Guoliang Yi
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xuling Luo
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhiwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
4
|
Skiba G, Raj S, Sobol M, Kowalczyk P, Barszcz M, Taciak M, Tuśnio A, Čobanová K, Grešáková Ľ, Grela ER. Influence of the Zinc and Fibre Addition in the Diet on Biomechanical Bone Properties in Weaned Piglets. Animals (Basel) 2022; 12:181. [PMID: 35049803 PMCID: PMC8773129 DOI: 10.3390/ani12020181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
The effects of the zinc and fibre source in piglets' diet on the bone mineral content, density, and strength parameters of the femur were investigated using 24 piglets fed a diet supplemented with either lignocellulose (LC) or potato fibre (PF). Half of each group of piglets consumed a diet with ZnSO4 monohydrate or with zinc glycinate (ZnGly). The diets contained similar amounts of lysine, energy, and fibre. Bone mineral content and density were over 9% higher in pigs receiving diets with ZnGly than in animals fed diets with ZnSO4. Moreover, ZnGly strongly improved maximum and elastic strength (by 25.7 and 20.0%, respectively, p < 0.0001) and bone stiffness (by 29.4%, p < 0.0001). Only the mass of the femur was affected by the type of fibre in the diet, as the femurs of piglets fed diets with LC were over 7% (p < 0.0001) heavier than in piglets fed diets with PF. The intake of digestible zinc and the zinc content in the blood serum were positively correlated with the measured bone parameters and, depending on the parameter, "r" ranged from 0.749 to 0.866 and from 0.400 to 0.479, respectively. It can be concluded that bone parameters are affected more strongly by the organic than inorganic source of zinc.
Collapse
Affiliation(s)
- Grzegorz Skiba
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Stanisława Raj
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Monika Sobol
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Paweł Kowalczyk
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Marcin Barszcz
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Marcin Taciak
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Anna Tuśnio
- The Kielanowski Institute of Animal Physiology and Nutrition, Department of Animal Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (M.S.); (P.K.); (M.B.); (M.T.); (A.T.)
| | - Klaudia Čobanová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Soltesovej 4, 04-001 Košice, Slovakia; (K.Č.); (Ľ.G.)
| | - Ľubomira Grešáková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Soltesovej 4, 04-001 Košice, Slovakia; (K.Č.); (Ľ.G.)
| | - Eugeniusz Ryszard Grela
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| |
Collapse
|
5
|
Zeng Q, Wu T. Enhanced electrochemical performance of neural electrodes based on
PEDOT
:
PSS
hydrogel. J Appl Polym Sci 2021. [DOI: 10.1002/app.51804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qi Zeng
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen Guangdong China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong China
| | - Tianzhun Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong China
| |
Collapse
|
6
|
Vázquez-Lorente H, Molina-López J, Herrera-Quintana L, Gamarra-Morales Y, López-González B, Planells E. Effectiveness of eight-week zinc supplementation on vitamin D 3 status and leptin levels in a population of postmenopausal women: a double-blind randomized trial. J Trace Elem Med Biol 2021; 65:126730. [PMID: 33607357 DOI: 10.1016/j.jtemb.2021.126730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The menopausal period is characterized by hormonal imbalance related to the alteration of parameters involved in lipid metabolism. In addition, menopause increases the risk of deficiencies of key vitamins and minerals such as vitamin D and zinc in such women. The present study investigates the influence of zinc supplementation on the status of vitamin D3 and other lipid parameters in postmenopausal women. METHODS Fifty-one healthy postmenopausal women aged 44-76 years from the province of Granada (Spain) were divided into two groups (placebo and zinc) of 25 and 26 women, respectively. The zinc group was supplemented with 50 mg/day of zinc for 8 weeks. Nutrient intake assessment was performed by means of a 24 -h reminder. Zinc was determined by flame atomic absorption spectrophotometry. Vitamin D was analyzed by liquid chromatography - tandem mass spectrometry. Leptin was determined by enzyme immunoassay. RESULTS Zinc supplementation improved the initial vitamin D3 status of the postmenopausal population (p = 0.049). Plasma levels of 25-OH-D3 increased significantly after Zn supplementation in women with lower age at menopause (p = 0.045). Both intake and plasma zinc levels were inversely correlated to serum leptin levels (p = 0.044 and p = 0.033, respectively), being significantly lower in lower age at menopause (p < 0.001). CONCLUSION Zinc supplementation improved vitamin D3 status and was associated to low leptin levels in the postmenopausal women of the study.
Collapse
Affiliation(s)
- Héctor Vázquez-Lorente
- Department of Physiology, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain.
| | - Jorge Molina-López
- Faculty of Education, Psychology and Sport Sciences, University of Huelva, 21007, Huelva, Spain.
| | - Lourdes Herrera-Quintana
- Department of Physiology, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain.
| | - Yenifer Gamarra-Morales
- Department of Physiology, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain.
| | - Beatriz López-González
- Department of Physiology, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain.
| | - Elena Planells
- Department of Physiology, School of Pharmacy. Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain.
| |
Collapse
|
7
|
Ceylan MN, Akdas S, Yazihan N. Is Zinc an Important Trace Element on Bone-Related Diseases and Complications? A Meta-analysis and Systematic Review from Serum Level, Dietary Intake, and Supplementation Aspects. Biol Trace Elem Res 2021; 199:535-549. [PMID: 32451694 DOI: 10.1007/s12011-020-02193-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Bone-related diseases are very common problems, especially in the elderly population. Zinc takes part in the growth and maintenance of healthy bones. This meta-analysis aims to evaluate the effects of zinc supplementation or dietary zinc intake on serum zinc levels and bone turnover markers. A systematical research was performed with 2899 articles in PubMed, WoS, and Scopus for relevant articles in English which have mean/standard deviation values of serum zinc levels, dietary zinc intake/zinc supplementation (mg/day), and bone turnover markers up to February 2020. In the overall analysis, serum zinc level was significantly lower in patients with osteoporosis compared with controls (p 0.0002). Dietary zinc intake decreased in the fracture group compared with controls according to subgroup analysis patients with fracture (p 0.02). Zinc supplementation was effective on the femoral neck (p < 0.0001) and lumbar spine (p 0.05) bone mineral density (BMD). In the correlation analysis of the data obtained from all of the included studies, serum osteocalcin (p 0.0106, r - 0.9148) correlated with serum zinc level. In conclusion, serum zinc level and dietary zinc intake could have an essential role in preventing osteoporosis. Zinc supplementation might improve bone turnover markers for bone formation such as serum osteocalcin and serum alkaline phosphatase and also, BMD at the site of the femoral neck.
Collapse
Affiliation(s)
- Merve Nur Ceylan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey
| | - Sevginur Akdas
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey
| | - Nuray Yazihan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey.
- Faculty of Medicine, Internal Medicine, Department of Pathophysiology, Ankara University, Morfoloji Building, Sihhiye, 06100, Ankara, Turkey.
| |
Collapse
|
8
|
Ding K, McGee-Lawrence ME, Kaiser H, Sharma AK, Pierce JL, Irsik DL, Bollag WB, Xu J, Zhong Q, Hill W, Shi XM, Fulzele S, Kennedy EJ, Elsalanty M, Hamrick MW, Isales CM. Picolinic acid, a tryptophan oxidation product, does not impact bone mineral density but increases marrow adiposity. Exp Gerontol 2020; 133:110885. [PMID: 32088397 PMCID: PMC7065047 DOI: 10.1016/j.exger.2020.110885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
Abstract
Tryptophan is an essential amino acid catabolized initially to kynurenine (kyn), an immunomodulatory metabolite that we have previously shown to promote bone loss. Kyn levels increase with aging and have also been associated with neurodegenerative disorders. Picolinic acid (PA) is another tryptophan metabolite downstream of kyn. However, in contrast to kyn, PA is reported to be neuroprotective and further, to promote osteogenesis in vitro. Thus, we hypothesized that PA might be osteoprotective in vivo. In an IACUC-approved protocol, we fed PA to aged (23-month-old) C57BL/6 mice for eight weeks. In an effort to determine potential interactions of PA with dietary protein we also fed PA in a low-protein diet (8%). The mice were divided into four groups: Control (18% dietary protein), +PA (700 ppm); Low-protein (8%), +PA (700 ppm). The PA feedings had no impact on mouse weight, body composition or bone density. At sacrifice bone and stem cells were collected for analysis, including μCT and RT-qPCR. Addition of PA to the diet had no impact on trabecular bone parameters. However, marrow adiposity was significantly increased in PA-fed mice, and in bone marrow stromal cells isolated from these mice increases in the expression of the lipid storage genes, Plin1 and Cidec, were observed. Thus, as a downstream metabolite of kyn, PA no longer showed kyn's detrimental effects on bone but instead appears to impact energy balance.
Collapse
Affiliation(s)
- Kehong Ding
- Center for Healthy Aging, Augusta University, United States of America; Department of Neuroscience and Regenerative Medicine, Augusta University, United States of America
| | - Meghan E McGee-Lawrence
- Center for Healthy Aging, Augusta University, United States of America; Department of Orthopaedic Surgery, Augusta University, United States of America; Department of Cellular Biology and Anatomy, Augusta University, United States of America
| | - Helen Kaiser
- Department of Cellular Biology and Anatomy, Augusta University, United States of America
| | - Anuj K Sharma
- Department of Cellular Biology and Anatomy, Augusta University, United States of America
| | - Jessica L Pierce
- Department of Cellular Biology and Anatomy, Augusta University, United States of America
| | - Debra L Irsik
- Department of Neuroscience and Regenerative Medicine, Augusta University, United States of America
| | - Wendy B Bollag
- Center for Healthy Aging, Augusta University, United States of America; Department of Medicine, Augusta University, United States of America; Department of Physiology, Augusta University, United States of America; Charlie Norwood VA Medical Center, Augusta, GA 30912, United States of America
| | - Jianrui Xu
- Department of Neuroscience and Regenerative Medicine, Augusta University, United States of America
| | - Qing Zhong
- Center for Healthy Aging, Augusta University, United States of America; Department of Neuroscience and Regenerative Medicine, Augusta University, United States of America
| | - William Hill
- Center for Healthy Aging, Augusta University, United States of America; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Xing-Ming Shi
- Center for Healthy Aging, Augusta University, United States of America; Department of Neuroscience and Regenerative Medicine, Augusta University, United States of America; Department of Orthopaedic Surgery, Augusta University, United States of America
| | - Sadanand Fulzele
- Center for Healthy Aging, Augusta University, United States of America; Department of Orthopaedic Surgery, Augusta University, United States of America
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, United States of America
| | - Mohammed Elsalanty
- Center for Healthy Aging, Augusta University, United States of America; Department of Oral Biology, Augusta University, United States of America
| | - Mark W Hamrick
- Center for Healthy Aging, Augusta University, United States of America; Department of Orthopaedic Surgery, Augusta University, United States of America; Department of Cellular Biology and Anatomy, Augusta University, United States of America
| | - Carlos M Isales
- Center for Healthy Aging, Augusta University, United States of America; Department of Medicine, Augusta University, United States of America; Department of Neuroscience and Regenerative Medicine, Augusta University, United States of America; Department of Orthopaedic Surgery, Augusta University, United States of America; Department of Cellular Biology and Anatomy, Augusta University, United States of America.
| |
Collapse
|
9
|
Qi S, He J, Zheng H, Chen C, Jiang H, Lan S. Zinc Supplementation Increased Bone Mineral Density, Improves Bone Histomorphology, and Prevents Bone Loss in Diabetic Rat. Biol Trace Elem Res 2020; 194:493-501. [PMID: 31363990 DOI: 10.1007/s12011-019-01810-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
Abstract
Diabetic osteoporosis (DOP) is a complication of diabetes, with the characteristics of bone mineral density (BMD) reduction and bone structure destruction. Zinc was reported has a benefit effect on postmenopausal osteoporosise, it was also has hypoglycemic effect, whether zinc was beneficial on diabetes-induced osteoporosis has not been reported. So in the present study, we established a diabetic rat model by streptozotocin injection (60 mg/kg), and administered zinc sulfate by oral gavage to investigate the protective effects of zinc on DOP and the underline possible mechanism. Thirty six Sprague Dawley rats were divided into T1DM group (diabetic rats), control group (vehicle treatment), and T1DM-Zinc group (diabetic rats administered zinc sulfate 0.25 mg/kg by oral gavage). The bone histomorphological parameters, serum bone metabolism markers (including ALP, OPG, RUNX 2, and RANKL), BMD, and bone marrow adipocyte numbers were detected after eight weeks of zinc sulfate treatment. The results showed zinc sulfate administration (0.25 mg/kg/d) decreased blood glucose, increased the BMD, decreased serum ALP, and RANKL, increased serum OPG and RUNX 2 levels, as well as OPG/RANKL ratio of T1DM rats. Meanwhile, the bone histomorphological parameters, bone marrow adipocytes numbers were returned to be normal. The RUNX 2, and OPG mRNA expression levels in bone tissues of T1DM-Zinc group rats were increased after zinc sulfate treatment compared with the diabetic rats (P < 0.05). Those indicating that zinc sulfate can prevent DOP, the protective mechanism were mainly related to its hypoglycemic effect, bone marrow lipogenesis inhibition effect, OPG/RANKL ratio and RUNX 2 up-regulation effect.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Jia He
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Hongxing Zheng
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China.
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Hai Jiang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Shiqiang Lan
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| |
Collapse
|
10
|
Feig VR, Tran H, Lee M, Liu K, Huang Z, Beker L, Mackanic DG, Bao Z. An Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902869. [PMID: 31414520 DOI: 10.1002/adma.201902869] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/28/2019] [Indexed: 05/20/2023]
Abstract
Due to their high water content and macroscopic connectivity, hydrogels made from the conducting polymer PEDOT:PSS are a promising platform from which to fabricate a wide range of porous conductive materials that are increasingly of interest in applications as varied as bioelectronics, regenerative medicine, and energy storage. Despite the promising properties of PEDOT:PSS-based porous materials, the ability to pattern PEDOT:PSS hydrogels is still required to enable their integration with multifunctional and multichannel electronic devices. In this work, a novel electrochemical gelation ("electrogelation") method is presented for rapidly patterning PEDOT:PSS hydrogels on any conductive template, including curved and 3D surfaces. High spatial resolution is achieved through use of a sacrificial metal layer to generate the hydrogel pattern, thereby enabling high-performance conducting hydrogels and aerogels with desirable material properties to be introduced into increasingly complex device architectures.
Collapse
Affiliation(s)
- Vivian Rachel Feig
- Department of Materials Science and Engineering, Stanford University, 443 Via Ortega, Room 328, Stanford, CA, 93405, USA
| | - Helen Tran
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Room 328, Stanford, CA, 93405, USA
| | - Minah Lee
- Center for Energy Storage Research, Clean Energy Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Kathy Liu
- Department of Materials Science and Engineering, Stanford University, 443 Via Ortega, Room 328, Stanford, CA, 93405, USA
| | - Zhuojun Huang
- Department of Materials Science and Engineering, Stanford University, 443 Via Ortega, Room 328, Stanford, CA, 93405, USA
| | - Levent Beker
- Department of Mechanical Engineering, Koç University Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey
| | - David G Mackanic
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Room 328, Stanford, CA, 93405, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Room 328, Stanford, CA, 93405, USA
| |
Collapse
|
11
|
Qi S, Zheng H, Chen C, Jiang H. Du-Zhong (Eucommia ulmoides Oliv.) Cortex Extract Alleviates Lead Acetate-Induced Bone Loss in Rats. Biol Trace Elem Res 2019; 187:172-180. [PMID: 29740803 DOI: 10.1007/s12011-018-1362-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to evaluate the protective effect of Du-Zhong cortex extract (DZCE) on lead acetate-induced bone loss in rats. Forty female Sprague-Dawley rats were randomly divided into four groups: group I (control) was provided with distilled water. Group II (PbAc) received 500 ppm lead acetate in drinking water for 60 days. Group III (PbAc+DZCE) received 500 ppm lead acetate in drinking water, and given intragastric DZCE (100 mg/kg body weight) for 60 days. Group IV (DZCE) was given intragastric DZCE (100 mg/kg body weight) for 60 days. The bone mineral density, serum biochemical markers, bone histomorphology, and bone marrow adipocyte parameters were analyzed using dual-energy X-ray absorptiometry, biochemistry, histomorphometry, and histopathology, respectively. The results showed that the lumbar spine and femur bone mineral density was significantly decreased in PbAc group compared with the control (P < 0.05); however, this decrease was inhibited by the intake of Du-Zhong cortex extract (P < 0.05, vs. PbAc group; P > 0.05, vs. control and DZCE group). Serum calcium and serum phosphorus in the PbAc+DZCE group were greater than that in the PbAc group (P < 0.05). The PbAc group had higher ALP, osteocalcin, and RANKL than the control group (P < 0.01), and they were significantly lower in the PbAc+DZCE group compared with the PbAc group. There were no significant differences of ALP, osteocalcin, and RANKL among the PbAc+DZCE, control, and DZCE groups (P > 0.05). Serum OPG and OPG/RANKL ration were significantly higher in the PbAc+DZCE group than that in the PbAc group (P < 0.05). The bone histomorphometric analyses showed that bone volume and trabecular thickness in the femoral trabecular bone were significantly lower in the PbAc group than that in the control group, but those were restored in the PbAc+DZCE groups. The bone marrow adipocyte number, percent adipocyte volume per tissue volume (AV/TV), and mean adipocyte diameter were significantly increased in the PbAc group compared to the control (P < 0.01), and those were restored in the PbAc+DZCE group. The differences of those parameters between PbAc+DZCE, DZCE, and the control group were not significant. The results above indicate that the Du-Zhong cortex extract has protective effects on both stimulation of bone formation and suppression of bone resorption in lead-exposed rats, therefore, Du-Zhong cortex extract has the potential to prevent or treat osteoporosis resulting from lead expose.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Hongxing Zheng
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China.
| | - Chen Chen
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China.
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi University of Technology, Hanzhong, 723000, China.
| | - Hai Jiang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| |
Collapse
|
12
|
Qi S. Synergistic Effects of Genistein and Zinc on Bone Metabolism and the Femoral Metaphyseal Histomorphology in the Ovariectomized Rats. Biol Trace Elem Res 2018; 183:288-295. [PMID: 28842860 DOI: 10.1007/s12011-017-1134-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
Abstract
In this study, we evaluated the synergistic effects of genistein and zinc on bone metabolism, bone mineral density, and the femoral metaphyseal histomorphology in the ovariectomized rats. Sixty female Sprague-Dawley rats, aged 13 weeks, were divided into sham-operated group (SHAM), ovariectomized group (OVX), genistein-treated group (OVX-Gen), zinc-treated group (OVX-Zn), genistein combined zinc-treated group (OVX-Gen-Zn), and 17β-estradiol-treated group (OVX-E) (n = 10). Genistein, zinc, and 17β-estradiol injections were started immediately after OVX and continued for 10 weeks. The OVX-Gen group was subcutaneous injections of genistein (5 mg/kg once every day). The OVX-Zn group was given intragastric ZnSO4 (0.25 mg/kg once every day) after bilateral ovariectomy. The OVX-Gen-Zn group was subcutaneous injections of genistein (5 mg/kg), at the same time intragastric ZnSO4 (0.25 mg/kg once every day). OVX-E group were intraperitoneally injected with 17β-estradiol (10 μg/kg) once every other day. The results showed that genistein and zinc did not alter body weight in OVX rats. The soluble ZnSO4 had no effect to uterus weight loss. Genistein and zinc supplementation significantly increased the BMD of the femur and lumbar spine in OVX rats (P < 0.05, vs. OVX control group). The BMD of the lumbar spine and femur in the OVX-Gen-Zn group is higher than that in the OVX-Gen and OVX-Zn groups (P < 0.05), and there were no differences of BMD among the OVX-Gen-Zn, OVX-E, and SHAM groups (P > 0.05). The femoral metaphyseal morphology and bone histomorphometric parameters revealed that the trabecular volume and thickness in the OVX-Gen-Zn and OVX-E groups were similar to that of SHAM group, and the OVX-Gen-Zn group had more trabecular volume than the OVX-Gen and OVX-Zn groups. Serum zinc was found to be significantly reduced in the OVX group when compared with SHAM. Serum zinc levels were enhanced in the OVX-Zn, OVX-Gen-Zn, and OVX-E groups and restored to normal levels. Serum calcium and serum phosphorus in the OVX-Gen-Zn group was greater than that in the OVX-Gen and OVX-Zn groups (P < 0.05); the serum calcium, phosphorus, and ALP in the OVX-Gen-Zn group were similar to that of SHAM and OVX-E groups (P > 0.05). The OVX group had higher osteocalcin, CTX, and RANKL than the SHAM group (P < 0.01). They were lower in the OVX-Gen and OVX-Zn groups (P < 0.05), and they were significantly lower in the OVX-Gen-Zn and OVX-E groups, than in the OVX group. There were no significant differences of osteocalcin, CTX, and RANKL among the OVX-Gen-Zn, OVX-E, and SHAM groups (P > 0.05). OPG and OPG/RANKL ratios were significantly higher in the OVX-Gen and OVX-Zn groups than that in the OVX group (P < 0.05). The OPG and OPG/RANKL ratio in the OVX-Gen-Zn group is higher than that in the OVX-Gen and OVX-Zn groups (P < 0.05, vs. OVX-Gen group; P < 0.01, vs. OVX-Zn group). The differences of the OPG and OPG/RANKL ratios between the OVX-Gen-Zn, OVX-E, and the SHAM groups were not significant (P > 0.05). The results above indicate that the genistein and zinc have synergistic effects on both stimulation of bone formation and suppression of bone resorption in ovariectomized rats, thereby increasing bone mass.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, Shaanxi University of Technology, Chaoyang Road, Hantai District, Hanzhong City, Shaanxi Province, 723000, China.
| |
Collapse
|
13
|
The positive effect of chick embryo and nutrient mixture on bone marrow- derived mesenchymal stem cells from aging rats. Sci Rep 2018; 8:7051. [PMID: 29728592 PMCID: PMC5935737 DOI: 10.1038/s41598-018-25563-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
The aging of many mammalian tissues is associated with loss of functional adult stem cells, especially bone marrow-derived mesenchymal stem cells (BMSCs). This study was aimed to analyze the biological effect of chick embryo (CE) and nutrient mixture (NM) on the BMSCs of aging rats. The aging rat model was established to be induced by D-galactose (500 mg/kg/d) for 90 days. Meanwhile, aging rats were fed with CE and NM in different dose manner by intragastric administration. At the end of the experimental period, serum was collected from rats and used for BMSCs culture. Flow cytometric analysis was used to investigate the BMSCs surface markers. Alizarin Red and oil red O staining were performed to evaluate the multi-lineage differentiation of BMSCs. The results showed that CE plus NM increased the telomere length of BMSCs and promoted BMSCs proliferation. Moreover, CE plus NM administration promoted BMSCs differentiation into osteoblasts and suppressed differentiation into adipocytes. High-throughput sequencing analysis revealed that there were 326 genes were up-regulated and 59 genes were down-regulated in BMSCs of aging rats treated with CE plus NM. In conclusion, CE plus NM supplement had potential to delay aging through the recovery of BMSCs senescence and could be used as a safe effective approach for nutritional therapy of anti-aging.
Collapse
|
14
|
Devi KB, Tripathy B, Kumta PN, Nandi SK, Roy M. In Vivo Biocompatibility of Zinc-Doped Magnesium Silicate Bio-Ceramics. ACS Biomater Sci Eng 2018; 4:2126-2133. [DOI: 10.1021/acsbiomaterials.8b00297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- K. Bavya Devi
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| | - Bipasa Tripathy
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | | | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Mangal Roy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| |
Collapse
|
15
|
Liu H, Li W, Ge X, Jia S, Li B. Coadministration of puerarin (low dose) and zinc attenuates bone loss and suppresses bone marrow adiposity in ovariectomized rats. Life Sci 2016; 166:20-26. [DOI: 10.1016/j.lfs.2016.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/17/2016] [Accepted: 09/28/2016] [Indexed: 01/09/2023]
|
16
|
Brasil SC, Santos RMM, Fernandes A, Alves FRF, Pires FR, Siqueira JF, Armada L. Influence of oestrogen deficiency on the development of apical periodontitis. Int Endod J 2016; 50:161-166. [PMID: 26821330 DOI: 10.1111/iej.12612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/22/2016] [Indexed: 11/28/2022]
Abstract
AIM To evaluate the effects of a long period of oestrogen deficiency on the development of apical periodontitis in rats. METHODOLOGY Wistar rats (n = 24), 3 months old, evaluated by vaginal cytology, were included in the study. Twelve animals were ovariectomized (OVX group) and the other 12 were sham operated (control group). One hundred and twenty days after castration, the pulps of the left mandibular first molars were exposed to induce the development of apical periodontitis. Body mass was verified on a weekly basis. Following 21 and 40 days of lesion induction, the animals were sacrificed. Blood was collected for biochemical analysis, and mandibles were removed for radiographic analysis. Comparative analysis of the data was performed by the nonparametric Kruskal-Wallis and Dunn's multiple-comparisons tests. The t-test was applied to compare the oestrogen levels between control and OVX groups. RESULTS Radiographs revealed that apical periodontitis lesions were significantly larger in the 40-day OVX group when compared with both 40-day (P < 0.05) and 21-day (P < 0.001) control groups. Serum oestrogen levels were significantly lower in the OVX group (P < 0.01), confirming the efficacy of castration. Oestrogen deficiency resulted in significantly greater body mass gain (P < 0.01) in 40-day OVX group when compared with 40-day control group. Serum concentrations of calcium were similar between groups (P > 0.05). Alkaline phosphatase levels, although higher in the OVX groups (21 and 40 days), were not significantly different. CONCLUSIONS Ovariectomized rats had significantly larger apical periodontitis lesions after 40 days of pulp exposure when compared with controls. These findings suggest that bone alterations as a result of long periods of oestrogen deficiency can influence the progression of apical periodontitis.
Collapse
Affiliation(s)
- S C Brasil
- Department of Endodontics, Faculty of Dentistry, Estácio de Sá University, Rio de Janeiro, Brazil
| | - R M M Santos
- Department of Physiology and Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - A Fernandes
- Department of Physiology and Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - F R F Alves
- Department of Endodontics, Faculty of Dentistry, Estácio de Sá University, Rio de Janeiro, Brazil
| | - F R Pires
- Department of Endodontics, Faculty of Dentistry, Estácio de Sá University, Rio de Janeiro, Brazil
| | - J F Siqueira
- Department of Endodontics, Faculty of Dentistry, Estácio de Sá University, Rio de Janeiro, Brazil
| | - L Armada
- Department of Endodontics, Faculty of Dentistry, Estácio de Sá University, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Suzuki T, Katsumata SI, Matsuzaki H, Suzuki K. Dietary zinc supplementation increased TNFα and IL1β-induced RANKL expression, resulting in a decrease in bone mineral density in rats. J Clin Biochem Nutr 2015; 58:48-55. [PMID: 26798197 PMCID: PMC4706095 DOI: 10.3164/jcbn.15-71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/19/2015] [Indexed: 11/22/2022] Open
Abstract
We investigated the effect of dietary zinc supplementation on bone metabolism in rats. Four-week-old male Wistar rats were fed a 30.0 mg zinc/kg diet (C), a 300.0 mg zinc/kg diet (HZ) or a 3,000.0 mg zinc/kg diet (EZ) for 4 weeks. The zinc content of the femur gradually increased in accordance with the gradual increase in the dietary zinc level. Although the mRNA expression of zinc transporters in bone did not differ between the groups, the mRNA expression of metallothioneins was increased in the HZ and EZ groups compared to the C group. Moreover, the bone mineral density was significantly decreased in the HZ and EZ groups compared to the C group. Furthermore, the mRNA expression of tumor necrosis factor α, Interleukin-1β and osteoclastogenesis-related genes such as receptor for activator of nuclear factor-κB (NF-κB) ligand, tumor necrosis factor receptor-associated factor 6, and nuclear factor of activated T cells cytoplasmic 1 was significantly increased in the HZ and EZ groups compared to the C group. These findings suggested that dietary zinc supplementation reduced bone mineral density through the promotion of bone resorption via an increase in the expression of receptor for activator of NF-κB ligand induced by tumor necrosis factor α and Interleukin-1β.
Collapse
Affiliation(s)
- Takako Suzuki
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shin-Ichi Katsumata
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hiroshi Matsuzaki
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kazuharu Suzuki
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
18
|
Samira J, Saoudi M, Abdelmajid K, Hassane O, Treq R, Hafed E, Abdelfatteh E, Hassib K. Accelerated bone ingrowth by local delivery of Zinc from bioactive glass: oxidative stress status, mechanical property, and microarchitectural characterization in an ovariectomized rat model. Libyan J Med 2015; 10:28572. [PMID: 26486308 PMCID: PMC4612471 DOI: 10.3402/ljm.v10.28572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Synthetic bone graft substitutes such as bioactive glass (BG) material are developed in order to achieve successful bone regeneration. Zn plays an important role in the proper bone growth, development, and maintenance of healthy bones. AIMS This study aims to evaluate in vivo the performance therapy of zinc-doped bioactive glass (BG-Zn) and its applications in biomedicine. METHODS Female Wistar rats were ovariectomized. BG and BG-Zn were implanted in the femoral condyles of Wistar rats and compared to that of control group. Grafted bone tissues were carefully removed to evaluate the oxidative stress status, histomorphometric profile, mechanical property, and mineral bone distribution by using inductively coupled plasma optical emission spectrometry. RESULTS A significant decrease of thiobarbituric acid-reactive substances was observed after BG-Zn implantation. Superoxide dismutase, catalase (CAT), and glutathione peroxidase (GPx) activities significantly increased in ovariectomized group implanted with Zinc-doped bioactive glass (OVX-BG-Zn) as compared to ovariectomized group implanted with bioactive glass (OVX-BG). An improved mechanical property was noticed in contact of OVX-BG-Zn (39±6 HV) when compared with that of OVX-BG group (26±9 HV). After 90 days of implantation, the histomorphometric analysis showed that trabecular thickness (Tb.Th) and trabecular number (Tb.N) were significantly increased with 28 and 24%, respectively, in treated rats of OVX-BG-Zn group as compared to those of OVX-BG groups. Trabecular separation (Tb.Sp) and trabecular bone pattern factor (TBPf) were significantly decreased in OVX-BG-Zn group with 29.5 and 54% when compared with those of OVX-BG rat groups. On the other hand, a rise in Ca and P ion concentrations in the implanted microenvironment was shown and lead to the formation/deposition of Ca-P phases. The ratio of pyridinoline [Pyr] to dihydroxylysinonorleucine [DHLNL] cross-links was normalized to the control level. CONCLUSION Our findings suggested that BG-Zn might have promising potential applications for osteoporosis therapy.
Collapse
Affiliation(s)
- Jbahi Samira
- Campus de Beaulieu, UMR CNRS 6226, University of Rennes, Rennes, France
- Animal Ecophysiology Laboratory, Department of Life Sciences, Sfax Faculty of Science, University of Sfax, Sfax, Tunisia
- Higher Institute of Applied Biology of Medenine, University of Gabes, Gabes, Tunisia;
| | - Monji Saoudi
- Animal Ecophysiology Laboratory, Department of Life Sciences, Sfax Faculty of Science, University of Sfax, Sfax, Tunisia
| | - Kabir Abdelmajid
- Histology, Orthopaedic and Traumatology Laboratory, Sfax Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Oudadesse Hassane
- Campus de Beaulieu, UMR CNRS 6226, University of Rennes, Rennes, France
| | - Rebai Treq
- Histology, Orthopaedic and Traumatology Laboratory, Sfax Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Efeki Hafed
- Animal Ecophysiology Laboratory, Department of Life Sciences, Sfax Faculty of Science, University of Sfax, Sfax, Tunisia
| | | | - Keskes Hassib
- Histology, Orthopaedic and Traumatology Laboratory, Sfax Faculty of Medicine, University of Sfax, Sfax, Tunisia
| |
Collapse
|