1
|
Tang J, Dong L, Tang M, Arif A, Zhang H, Zhang G, Zhang T, Xie K, Su S, Zhao Z, Dai G. Metagenomic Analysis Reveals the Characteristics of Cecal Microbiota in Chickens with Different Levels of Resistance During Recovery from Eimeria tenella Infection. Animals (Basel) 2025; 15:1500. [PMID: 40427376 PMCID: PMC12108197 DOI: 10.3390/ani15101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Coccidiosis, caused by Eimeria protozoa, is a severe intestinal parasitic disease that results in substantial economic losses to the global poultry industry annually. The gut microbiota plays a crucial role in host health, metabolism, immune function, and nutrient absorption in chickens. Recent studies have focused on the effects of Eimeria tenella's (E. tenella) acute infection period on host health. However, recovery conditions, cecal microbiota composition, and functional differences in the ceca of chickens with varying resistance to E. tenella remain poorly understood during the recovery period after infection. This study aimed to compare growth performance, cecal histopathology, and the cecal microbiota characteristics in control (R_JC), resistant (R_JR), and susceptible (R_JS) chickens during recovery, using metagenomic sequencing. The results revealed significant differences in both cecal tissue structure and growth performance between the different groups during recovery. Although no significant differences were observed in microbial alpha diversity among the groups, sequencing analysis highlighted notable changes in microbial composition and abundance. Bacteroidetes, Firmicutes, and Proteobacteria were the predominant phyla in chicken cecal contents; however, Firmicutes abundance was lower in the R_JS group than in the R_JC and R_JR groups. Further analysis, combining linear discriminant analysis effect size (LEfSe) and differential heatmap analysis, identified Bacteroides_fluxus, Ruminococcus_flavefaciens, and Bacteroides_sp_CACC_737 as dominant microorganisms in the R_JR group (p < 0.05) compared to both the R_JC and R_JS groups. In contrast, Sutterella_sp_AM11-39, Bacteroides_sp_43_108, Mycobacterium, Mycoplasma_arginini, and Chlamydia dominated in the R_JS group, while Butyricimonas, Butyricimonas_sp_Marseille-P3923, and Flavonifractor_plautii were significantly reduced in the R_JS group (p < 0.05). Additionally, beneficial cecal microorganisms such as Flavonifractor_sp__An10, Pseudoflavonifractor, and Faecalicoccus were significantly decreased in both the R_JR and R_JS groups (p < 0.05) compared to the R_JC group. Predictive functional analysis using the KEGG and CAZy databases further indicated that the cecal microbiota in the R_JR group exhibited enhanced metabolism-related pathways, whereas these pathways were significantly diminished in the R_JS group, potentially influencing the recovery process from coccidial infection. These findings provide valuable insights into the cecal microbiota's role during recovery from E. tenella infection and deepen our understanding of the impact of coccidial infections on host health.
Collapse
Affiliation(s)
- Jianqiang Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.T.)
| | - Liyue Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.T.)
| | - Meihui Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.T.)
| | - Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.T.)
| | - Honghong Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.T.)
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.T.)
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.T.)
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.T.)
| | - Shijie Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.T.)
| | - Zhenhua Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.T.)
| |
Collapse
|
2
|
Liu J, Zhao J, Zhang YL, Zhang C, Yang GD, Tian WS, Zhou BH, Wang HW. Underlying Mechanism of Fluoride Inhibits Colonic Gland Cells Proliferation by Inducing an Inflammation Response. Biol Trace Elem Res 2025; 203:973-985. [PMID: 38995434 DOI: 10.1007/s12011-024-04212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 07/13/2024]
Abstract
The integrity of colonic gland cells is a prerequisite for normal colonic function and maintenance. To evaluate the underlying injury mechanisms in colonic gland cells induced by excessive fluoride (F), forty-eight female Kunming mice were randomly allocated into four groups and treated with different concentrations of NaF (0, 25, 50, and 100 mg F-/L) for 70 days. As a result, the integrity of the colonic mucosa and the cell layer was seriously damaged after F treatment, as manifested by atrophy of the colonic glands, colonic cell surface collapse, breakage of microvilli, and mitochondrial vacuolization. Alcian blue and periodic acid Schiff staining revealed that F decreased the number of goblet cells and glycoprotein secretion. Furthermore, F increased the protein expression of TLR4, NF-κB, and ERK1/2 and decreased IL-6, interfered with NF-κB signaling, following induced colonic gland cells inflammation. The accumulation of F inhibited proliferation via the JAK/STAT signaling pathway, as characterized by decreased mRNA and protein expression of JAK, STAT3, STAT5, PCNA, and Ki67 in colon tissue. Additionally, the expression of CDK4 was up-regulated by increased F concentration. In conclusion, excessive F triggered colonic inflammation and inhibited colonic gland cell proliferation via regulation of the NF-κB and JAK/STAT signaling pathways, leading to histopathology and barrier damage in the colon. The results explain the damaging effect of the F-induced inflammatory response on the colon from the perspective of cell proliferation and provide a new idea for explaining the potential mechanism of F-induced intestinal damage.
Collapse
Affiliation(s)
- Jing Liu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Yu-Ling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Cai Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Guo-Dong Yang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Wei-Shun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China.
| |
Collapse
|
3
|
Kasi SR, Roffel S, Özcan M, Gibbs S, Feilzer AJ. In vitro cytotoxicity (irritant potency) of toothpaste ingredients. PLoS One 2025; 20:e0318565. [PMID: 39883661 PMCID: PMC11781688 DOI: 10.1371/journal.pone.0318565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
PURPOSE This study aimed to determine the cytotoxicity (irritant potency) of toothpaste ingredients, of which some had known to have sensitizing properties. MATERIALS From the wide variety of toothpaste ingredients, Xylitol, Propylene glycol (PEG), Sodium metaphosphate (SMP), Lemon, Peppermint, Fluoride, Cinnamon, and Triclosan and Sodium dodecyl sulphate (SDS) have been selected for evaluation of their cytotoxic properties. METHODS Reconstructed human gingiva (RHG) were topically exposed to toothpaste ingredients at different concentrations. The compound concentration resulting in 50% cell death (EC50) and 10% cell death (EC10) was determined by the MTT assay. Detrimental effects in tissue histology were observed by hematoxylin & eosin staining of tissue sections followed by microscopy. RESULTS While Xylitol, PEG, and SMP did not appear to affect cell viability or tissue histology, the concentrations of Lemon, Peppermint, Cinnamon and SDS present in toothpastes exceeded the EC50 value and resulted in clear detrimental effects in tissue histology, indicating that they could harm the oral mucosa. Triclosan and Fluoride concentrations in the tested toothpastes exceeded the EC10 value but remained below the EC50 value with no clear detrimental effects in tissue histology. CLINICAL SIGNIFICANCE Manufacturers are encouraged to comply with higher standards of quality and safety for toothpaste.
Collapse
Affiliation(s)
- Shaira R. Kasi
- Department of Dental Materials Science, Academic Center for Dentistry (ACTA), University of Amsterdam, Amsterdam, The Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, University of Amsterdam, Academic Center for Dentistry (ACTA), Amsterdam, The Netherlands
| | - Mutlu Özcan
- Clinic for Masticatory Disorders and Dental Biomaterials, University of Zurich, Center for Dental Medicine, Zurich, Switzerland
| | - Susan Gibbs
- Department of Oral Cell Biology, Amsterdam, VU University Medical Centre, Academic Centre for Dentistry (ACTA), Amsterdam, The Netherlands
- Molecular Cell Biology & Immunology, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Immunity and Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Albert J. Feilzer
- Department of Dental Materials Science, Academic Center for Dentistry (ACTA), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Enríquez-Sánchez FM, López-Vázquez MÁ, Olvera-Cortés ME, Valdez-Jiménez L, Villalobos-Gutiérrez PT, Pérez-Vega MI. Effect of Chronic Consumption of Fluoridated Water on Sciatic Nerve Conduction Velocity in Male Wistar Rats. Int J Toxicol 2025; 44:39-45. [PMID: 39501888 DOI: 10.1177/10915818241297082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The long-term effect of fluoridated water consumption during development on the velocity of nerve impulse conduction in the sciatic nerve of rats was assessed. Thirty male Wistar rats, 21 days old, were randomly assigned to five groups. Three groups were given fluoridated water ad libitum (as the only source) at different concentrations (10, 100, and 150 ppm), designated as groups F10, F100, and F150, respectively. The study included a control group (C) that received fluoridated water at the maximum level established by the World Health Organization (1.5 ppm of fluorides) and another group that received deionized water (DW). The animals were treated until they reached 90 days of age. Electrophysiological recordings were performed on the rats' sciatic nerves to determine nerve conduction velocity, and blood plasma was extracted for fluoride concentration analysis. The study found that the F150 group had a lower nerve impulse conduction velocity in the sciatic nerve compared to the C group (P = 0.0015). Additionally, there was a negative correlation between the concentration of fluorides in plasma and the nerve conduction velocity (r = -0.5132, P = 0.0037). These findings indicate that chronic consumption of high concentrations of fluoride leads to a decrease in nerve conduction velocity. This, in conjunction with potential alterations in the central nervous system, may explain the deficits in learning and memory tests that have been documented in numerous studies evaluating individuals exposed to fluoride consumption. These results provide valuable information for understanding the effects and action mechanisms of fluoride in exposed individuals.
Collapse
Affiliation(s)
- Fernanda Marlen Enríquez-Sánchez
- Laboratorio de Ciencias Biomédicas, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos (CULagos), Universidad de Guadalajara, Lagos de Moreno, México
| | | | | | - Liliana Valdez-Jiménez
- Laboratorio de Neuropsicología, Departamento de Humanidades, Artes y Culturas Extranjeras, CULagos, Universidad de Guadalajara, Lagos de Moreno, México
| | - Paola Trinidad Villalobos-Gutiérrez
- Laboratorio de Ciencias Biomédicas, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos (CULagos), Universidad de Guadalajara, Lagos de Moreno, México
| | - María Isabel Pérez-Vega
- Laboratorio de Ciencias Biomédicas, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos (CULagos), Universidad de Guadalajara, Lagos de Moreno, México
- Laboratorio de Neuropsicología, Departamento de Humanidades, Artes y Culturas Extranjeras, CULagos, Universidad de Guadalajara, Lagos de Moreno, México
| |
Collapse
|
5
|
Li B, Zhang L, Wang L, Wei Y, Guan J, Mei Q, Hao N. Antimicrobial activity of yak beta-defensin 116 against Staphylococcus aureus and its role in gut homeostasis. Int J Biol Macromol 2023; 253:126761. [PMID: 37678688 DOI: 10.1016/j.ijbiomac.2023.126761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Staphylococcus aureus (S. aureus) is one of the most common food-borne poisoning microbial agent. However, the antimicrobial activity of β-defensin 116 in yak and its application in S. aureus-induced diarrheal disease have not been reported. In this study, 303 bp cDNA sequence of yak DEFB116 gene was obtained. In addition, the prokaryotic expression vector of DEFB116 protein with a molecular weight of 16 kDa was successfully constructed and expressed. The yak DEFB116 gene can encode 19 amino acids, the percentage of hydrophobic amino acids is 36 % and the total positive charge is 6, which has potential antibacterial potential. Sufficient DEFB116 protein concentration and time can destroy the integrity of the bacterial cell membrane, resulting in leakage of intracellular solutes and thus killing S. aureus. The intestinal histopathological features and the number of inflammatory cells were improved in the diarrhea mouse model under the action of DEFB116 protein. The decrease of goblet cells was reversed, the expression of mucoprotein was increased. DEFB116 protein increased the abundance of Lactobacillus johnsonii, Lactobacillus reuteri and Desulfovibrio, and inhibited the reproduction of pathogenic bacteria. These findings provide new insights into the potential future applications of yak β-defencins in the food industry and medical fields.
Collapse
Affiliation(s)
- Biao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Ling Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Wei
- Animal Science Academy of Sichuan Province, Chengdu 610066, China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China
| | - Qundi Mei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Ninghao Hao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
6
|
Wang Y, Xu J, Chen H, Shu Y, Peng W, Lai C, Kong R, Lan R, Huang L, Xin J, Sun N, Ni X, Bai Y, Wu B. Effects of prolonged fluoride exposure on innate immunity, intestinal mechanical, and immune barriers in mice. Res Vet Sci 2023; 164:105019. [PMID: 37729784 DOI: 10.1016/j.rvsc.2023.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
The aim of this study is to explore the effects of fluoride on the innate immunity, intestinal mechanical barrier, and immune barrier of C57BL/6 mice, as well as to analyze the degree of structural and tissue damage, providing reference data for related research. Mice were randomly divided into four groups and then treated with 0 mg/L (control), 50 mg/L, 100 mg/L, 125 mg/L sodium fluoride solution, respectively, for 120 days. Histological technique, ELISA, MTT colorimetry methods were used to detect and analyze the effects of different concentrations of fluoride on the intestinal morphology, mechanical barrier and the immune functions and innate immunity of mice. The results showed that compared with the control group, the villi were injured in different degrees of the three fluoride groups, the number of goblet cells, the protein expression levels of connexin ZO-1, Claudin-1 and Occludin, the content of Diamine Oxidase (DAO), endotoxin (ET) and D-lactic acid (D-LA), the activity of natural killer cell (NK cells), the number and percentage of neutrophils and erythrocytes, the phagocytic rate of neutrophils, and the rate of C3bR rosette (which is formed by the adhesion of C3b receptors on the red blood cell membrane to complement sensitized yeast) and IC rosette (which is formed by the adhesion of C3b molecules in the immunecomplex adhered to the red blood cell membrane to non sensitized yeast) of red blood cells, the content of interlenkin 1 beta (IL-1β) and interlenkin 8 (IL-8), the number and percentage of lymphocytes decreased with the increasing of fluoride concentration. In addition, the content of the Immunoglobulin A (sIgA) showed a trend of increase at first and then decrease in salivary gland and jejunum. It is concluded that excessive intake of fluoride for a long time has a certain damage effect on the intestinal tract, leading to an increase in the permeability of the intestinal tract, thereby destroying the mechanical and immune barrier function of the intestinal tract.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Jing Xu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641112, China
| | - Hang Chen
- College of Life Science, China West Normal University, Nanchong 637000, Sichuan, PR China
| | - Yuanbin Shu
- College of Life Science, China West Normal University, Nanchong 637000, Sichuan, PR China
| | - Weiqi Peng
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiao Lai
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiyang Kong
- College of Life Science, China West Normal University, Nanchong 637000, Sichuan, PR China
| | - Ruiyang Lan
- College of Life Science, China West Normal University, Nanchong 637000, Sichuan, PR China
| | - Lijing Huang
- College of Life Science, China West Normal University, Nanchong 637000, Sichuan, PR China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Yang Bai
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bangyuan Wu
- College of Life Science, China West Normal University, Nanchong 637000, Sichuan, PR China.
| |
Collapse
|
7
|
Zhao T, Lv J, Peng M, Mi J, Zhang S, Liu J, Chen T, Sun Z, Niu R. Fecal microbiota transplantation and short-chain fatty acids improve learning and memory in fluorosis mice by BDNF-PI3K/AKT pathway. Chem Biol Interact 2023; 387:110786. [PMID: 39491142 DOI: 10.1016/j.cbi.2023.110786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Fluoride, an environmental toxicant, not only arouses intestinal microbiota dysbiosis, but also causes neuronal apoptosis and a decline in learning and memory ability. The purpose of this study was to explore whether fecal microbiota transplantation (FMT) from healthy mice and bacteria-derived metabolites short-chain fatty acids (SCFAs) supplement protect against fluoride-induced learning and memory impairment. Results showed that FMT reversed the elevated percentage of working memory errors (WME) and reference memory errors (RME) in fluorosis mice during the eight-arm maze test. Nissl and TUNEL staining presented that fluoride led to a decreased proportion of Nissl bodies area in the hippocampal CA3 region and an increased apoptotic ratio of nerve cells in CA1, CA3 and DG areas, whereas FMT alleviated those pathological damages. Moreover, the expressions of mRNA in hippocampal BDNF, PDK1, AKT, Bcl-2, and Bcl-xL were downregulated in mice exposed to fluoride, but the levels of PI3K, Bax, Bak, and Caspase-7 mRNA were upregulated. NaF treatment had an increase in PI3K and Caspase-3 protein levels and reduced the expressions of these four proteins, including BDNF, p-PI3K, AKT and p-AKT. By contrast, FMT enhanced the expression of BDNF and thus activated the PI3K/AKT pathway. Besides, the 16S rRNA sequencing revealed that fluoride caused a reduction in certain SCFA producers in the colon as evidenced by a decline in Erysipelatoclostridiaceae, and a downward trend in Akkermansia, Blautia and Alistipes. However, the disordered gut microbiome was restored via frequent FMT. Of note, SCFAs administration also increased BDNF levels and regulated its downstream pathways, which contributed to cell survival and learning and memory function recovery. In conclusion, FMT and SCFAs may activate the BDNF-PI3K/AKT pathway to play an anti-apoptotic role and ultimately improve learning and memory deficits in fluorosis mice.
Collapse
Affiliation(s)
- Taotao Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jia Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mingyuan Peng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jiahui Mi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Shaosan Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jie Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Tong Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
8
|
Chen J, Zhao BC, Dai XY, Xu YR, Kang JX, Li JL. Drinking alkaline mineral water confers diarrhea resistance in maternally separated piglets by maintaining intestinal epithelial regeneration via the brain-microbe-gut axis. J Adv Res 2023; 52:29-43. [PMID: 36539076 PMCID: PMC10555785 DOI: 10.1016/j.jare.2022.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diarrhea has the fourth-highest mortality rate of all diseases and causes a large number of infant deaths each year. The maternally separated (MS) piglet (newly weaned piglet) is an excellent model to investigate the treatment of diarrhea in infants. Drinking alkaline mineral water has the potential to be therapeutic in gastrointestinal disorders, particularly diarrhea, but the supporting evidence from system studies and the mechanisms involved have yet to be reported. OBJECTIVES This study aims to determine whether drinking alkaline mineral water confers diarrhea resistance in MS piglets under weaning stress and what the fundamental mechanisms involved are. METHODS MS piglets were used to create a stress-induced intestinal disorder-diarrhea susceptibility model. A total of 240 MS piglets were randomly divided into two groups (6 pens/group and 20 piglets/pen). IPEC-J2 cell line was used for in vitro evaluation. An alkaline mineral complex (AMC) water was employed, and its effect on the hypothalamus-pituitary-adrenocortical (HPA) axis, gut microbes, gut morphology, and intestinal epithelial cell (IEC) proliferation and differentiation were investigated using a variety of experimental methodology. RESULTS AMC water reduced diarrhea rate in MS piglets by inhibiting the HPA axis, ameliorating gut microbiota structure, and stimulating IEC proliferation and differentiation. Apparently, the brain-microbe-gut axis is linked with AMC water conferring diarrhea resistance in piglets. Mechanistically, AMC water decreased stress hormones (COR and Hpt) secretion by suppressing HPA axis, which then increased the abundance of beneficial gut microbes; accordingly, maintained the proliferation of IEC and promoted the differentiation of intestinal stem cells (ISC) into goblet cell and Paneth cell by activating the Wnt/β-catenin signaling pathway. In the absence of gut microbiota (in vitro), AMC activated the LPS-induced Wnt/β-catenin signaling inhibition in IPEC-J2 cells and significantly increased the number of Lgr5 + cells, whereas had no effect on IPEC-J2 differentiation. CONCLUSION Drinking alkaline mineral water confers diarrhea resistance in MS piglets by maintaining intestinal epithelial regeneration via the brain-microbe-gut axis; thus, this study provides a potential prevention strategy for young mammals at risk of diarrhea.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Bi-Chen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jian-Xun Kang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
9
|
Gao XY, Jin Y, Zhao J, Zhang YL, Wang HW, Zhou BH. Th17-Related Cytokines Involved in Fluoride-Induced Cecal and Rectal Barrier Damage of Ovariectomized Rats. Biol Trace Elem Res 2022:10.1007/s12011-022-03519-6. [PMID: 36538210 DOI: 10.1007/s12011-022-03519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
To investigate fluoride (F)-induced intestine barrier damage and the role of estrogen deficiency in this progress, a rat model of estrogen deficiency was established through bilateral surgical removal of ovaries. The F exposure model was then continued by adding sodium fluoride (0, 25, 50, and 100 mg/L, calculated on a fluorine ion basis) to drinking water for 90 days. Afterward, intestinal mucosal structure, barrier function, and inflammatory cytokines were evaluated. The results showed that excessive F decreased the developmental parameters (crypt depth) of the cecum and rectum and inhibited the proliferation capacity of the intestinal epithelia, which are more obvious in the state of estrogen deficiency. The distribution of goblet cells and glycoproteins in the intestinal mucosa decreased with the increase in F concentration, and estrogen deficiency led to a further decline, especially in the rectum. Using the immunofluorescence method, the study showed that excessive F caused interleukin-17A (IL-17A) significantly decrease in the cecum and increase in the rectum. Meanwhile, F treatment remarkably upregulated the expression of intestinal IL-1β, IL-23, and IL-22, while the level of IL-6 was downregulated. In addition, estrogen deficiency increased IL-1β, IL-6, IL-23, and IL-22, but decreased IL-17A expression in the cecum and rectum. Collectively, F exposure damaged intestinal morphological structure, inhibited epithelial cell proliferation and mucus barrier function, and resulted in the disturbance of T helper (Th) 17 cell-related cytokines expression. Estrogen deficiency may further aggravate F-induced damage to the cecum and rectum.
Collapse
Affiliation(s)
- Xiao-Ying Gao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Ye Jin
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Yu-Ling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
10
|
Wan Y, Huang M, Xu X, Cao X, Chen H, Duan R. Effects of short-term continuous and pulse cadmium exposure on gut histology and microbiota of adult male frogs (Pelophylax nigromaculatus) during pre-hibernation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103926. [PMID: 35787952 DOI: 10.1016/j.etap.2022.103926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is an environmental endocrine-disrupting pollutant which mainly occurs in pulsed manner in natural waters, while traditional toxicology experiments have less examined the effects of pulsed exposure. Here, we studied the effects of short-term (7 days) continuous and pulse exposure to 100 μg/L Cd on gut morphology and microbiota of frogs (Pelophylax nigromaculatus) during pre-hibernation. Compared to continuous exposure, Cd pulse exposure significantly increased individual mortality and decreased the villi height and the ratio of villi height to crypt depth of the gut. Cd continuous and pulse exposure both changed the community structure and relative abundance of intestinal microbiota. Compared to continuous exposure, Cd pulse exposure significantly decreased the relative abundance of beneficial bacteria (e.g., Cetobacterium and Aeromonas genus), and significantly increased the relative abundance of harmful bacteria (e.g., Parabacteroides, Odoribacter, and Acinetobacter genus). This study shows that the gut histology and microbiota of amphibians during pre-hibernation are more susceptible to Cd pulse exposure than continuous exposure.
Collapse
Affiliation(s)
- Yuyue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| | - Xiang Xu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Xiaohong Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Hongping Chen
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| |
Collapse
|
11
|
Wu S, Wang Y, Iqbal M, Mehmood K, Li Y, Tang Z, Zhang H. Challenges of fluoride pollution in environment: Mechanisms and pathological significance of toxicity - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119241. [PMID: 35378201 DOI: 10.1016/j.envpol.2022.119241] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Fluoride is an important trace element in the living body. A suitable amount of fluoride has a beneficial effect on the body, but disproportionate fluoride entering the body will affect various organs and systems, especially the liver, kidneys, nervous system, endocrine system, reproductive system, bone, and intestinal system. In recent years, with the rapid development of agriculture and industry, fluoride pollution has become one of the important factors of environmental pollution, and fluoride pollution in any form is becoming a serious problem. Although countries around the world have made great breakthroughs in controlling fluoride pollution, however fluorosis still exists. A large amount of fluoride accumulated in animals will not only produce the toxic effects, but it also causes cell damage and affect the normal physiological activities of the body. There is no systematic description of the damage mechanism of fluoride. Therefore, the study on the toxicity mechanism of fluoride is still in progress. This review summarizes the existing information of several molecular mechanisms of the fluoride toxicity comprehensively, aiming to clarify the toxic mechanism of fluoride on various body systems. We have also summerized the pathological changes of those organ systems after fluoride poisoning in order to provide some ideas and solutions to the reader for the prevention and control of modern fluoride pollution.
Collapse
Affiliation(s)
- Shouyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Li C, Cheng X, Cao W, Wang Y, Xue C, Tang Q. Enzymatic hydrolysate of porphyra enhances the intestinal mucosal functions in obese mice. J Food Biochem 2022; 46:e14175. [PMID: 35510340 DOI: 10.1111/jfbc.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Intestinal mucosal immunity is important to human body; however, obesity induced by high-fat diet may bring a series of problems, such as chronic inflammation which may damage intestinal mucosal immunity. In this study, the effects of two different enzymatic hydrolysates of porphyra on the function of intestinal mucosal were explored in obese mice. The results showed that 10 consecutive weeks of high-fat dietary intake resulted in weight gain and intestinal abnormalities in C57BL/6 mice. However, the administration of enzymatic hydrolysate of porphyra effectively protected the intestinal mucosa from these injuries while reducing levels of oxidative stress (MDA, GSH, and GSH-Px). Specifically, they were found to improve small intestine morphological structure, increase growth of goblet cells and mucous, raise expression levels of lysozyme, and stimulate SIgA secretion, especially in the group administered with the enzymatic hydrolysate containing protease and polysaccharide enzyme (EHPP). The results showed that the enzymatic hydrolysates of porphyra may provide a protective measure to maintain intestinal mucosal barriers, which is beneficial to overall health. Porphyra is widely distributed all over the world. Moreover, an increasing number of studies have described its diverse biological functions. Therefore, it is necessary to find a way to develop products related to porphyra. In this study, a new type of polysaccharide enzyme of porphyra found in our previous research was used to make a clear porphyra energy drink with a lower molecular weight polysaccharide. Our findings highlighted the repaired intestinal barriers in obese bodies after the treatment with the enzymatic hydrolysate. PRACTICAL APPLICATIONS: Porphyra is widely distributed all over the world. Moreover, an increasing number of studies have described its diverse biological functions. Therefore, it is necessary to find a way to develop products related to porphyra. In this study, a new type of polysaccharide enzyme of porphyra found in our previous research was used to make a clear porphyra energy drink with a lower molecular weight polysaccharide. Our findings highlighted the repaired intestinal barriers in obese bodies after the treatment with the enzymatic hydrolysate.
Collapse
Affiliation(s)
- Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Xiaojie Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Wanxiu Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P. R. China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P. R. China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
13
|
Albab LU, Claudya TI, Oktafianti R, Salsabila N, Putri RD, Saragih HTSSG. Growth performance, morphometric of the small intestine, lymphoid organ, and ovary of laying hens supplemented with Dates (Phoenix dactylifera L.) extract in drinking water. Vet World 2022; 15:350-359. [PMID: 35400969 PMCID: PMC8980375 DOI: 10.14202/vetworld.2022.350-359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aim: Antibiotic, improves the growth performance of laying hens when used as a feed additive; however, it has been banned in Europe. Furthermore, secondary metabolites used as a substitute for antibiotics are compounds produced by plants. Therefore, this aims to determine the effect of dates water extract (DWE) on the performance of laying hens. This study used dates containing secondary metabolites as a feed additive and substitute for antibiotics. Materials and Methods: A completely randomized design was used, dividing 400 Lohmann brown day old chick into five groups (each group has five replications and each replication consisted of 16 laying hens). Furthermore, there were two control groups such as mineral water control group and antibiotic growth promoters (basal feed+50 mg/kg of bacitracin), and three DWE groups such as 5% DWE (50 mg/mL), 10% DWE (100 mg/mL), and 20% DWE (200 mg/mL). Dates extract treatment was administered through drinking water for 54 days, whereby three laying hens from each replication were taken randomly and decapitated on the neck. Afterwards, a necropsy was performed for histological preparations of the small intestine, ovary, and lymphoid organs. The structure and morphology of the small intestine, and ovaries were observed through histological preparations, while lymphoid organs were observed through histological preparation and morphometry, and body morphometry, body weight, feed intake and weight gain were observed by measurements and weighing. Results: Small intestine morphology, ovarian follicle, and growth performance of the DWE2 group increased significantly compared to the control group, but the lymphoid organs index was influenced by DWE1. Conclusion: The administration of 10% dates extract (100 mg/mL) in drinking water improves the morphology of the small intestine, ovarian follicles, lymphoid organs, and growth performance.
Collapse
Affiliation(s)
- L. U. Albab
- Post Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - T. I. Claudya
- Post Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - R. Oktafianti
- Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - N. Salsabila
- Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - R. D. Putri
- Graduate Program of Biology, Department of Tropical Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - H. T. S. S. G. Saragih
- Laboratory of Animal Development Structure, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Mlati, Sleman, Yogyakarta 55281, Indonesia
| |
Collapse
|
14
|
Fu R, Niu R, Zhao F, Wang J, Cao Q, Yu Y, Liu C, Zhang D, Sun Z. Exercise alleviated intestinal damage and microbial disturbances in mice exposed to fluoride. CHEMOSPHERE 2022; 288:132658. [PMID: 34710452 DOI: 10.1016/j.chemosphere.2021.132658] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Gastrointestinal reaction is an important symptom of fluorosis and is associated with intestinal morphological and functional impairment. Regular moderate exercise may reduce the incidence of infection and contribute to the maintenance of intestinal mucosal function and immune homeostasis. In this study, the mice were randomly divided to four groups: control group (C, distilled water), exercise group (E, distilled water and treadmill exercise), fluoride group (F, 100 mg/L NaF), and exercise plus fluoride group (EF, 100 mg/L NaF and treadmill exercise). The treadmill exercise was performed as 5 m/min, 5 min; 10 or 12 m/min, 20 min; 5 m/min, 5 min, with 5 consecutive days per week. After 6 months, exercise alleviated the intestinal morphological structure damage and restored the villus height (VH) and VH/crypt depth (VH/CD) in the duodenum of fluoride-exposed mice. Exercise decreased the mRNA expressions of IL-1β, IL-6, TNF-α, TLR2 and NF-κB (p65) in fluoride-exposed mice, and restored the gene levels of Occludin and ZO-1 in the duodenum, as well as Occludin, ZO-1, and Claudin-1 in the colon. Although there were no significant differences in the Occludin and ZO-1 protein expressions between F and EF, two proteins in EF presented statistical homogeneousness when compared with the C. The 16S rDNA high-throughput sequencing found that exercise restored the variations in intestinal microbiota composition and the abundances of specific bacteria in fluoride-exposed mice, including increasing the abundances of Epsilonbacteraenta and Firmicutes, reducing the Bacteroidetes abundance at the phylum level, and restoring the abundances of 13 bacterial genera. In conclusion, exercise improved intestinal morphological structure damage in fluoride-exposed mice, inhibited the secretion of duodenal inflammatory factors, increased the expression of tight junctions, and alleviated the microbial disorder in mice caused by fluoride exposure for 6 months through actively regulating the composition of intestinal microorganisms and the abundance of specific bacteria.
Collapse
Affiliation(s)
- Rong Fu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Fangye Zhao
- College of Physical Education, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jixiang Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Qiqi Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yanghuan Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ci Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
15
|
Zhong N, Ma Y, Meng X, Sowanou A, Wu L, Huang W, Gao Y, Pei J. Effect of Fluoride in Drinking Water on Fecal Microbial Community in Rats. Biol Trace Elem Res 2022; 200:238-246. [PMID: 33576944 DOI: 10.1007/s12011-021-02617-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
Intestinal nutrition has a close association with the onset and development of fluorosis. Intestinal microbes play a major role in intestinal nutrition. However, the effect of fluoride on intestinal microbes is still not fully understood. This study aimed to evaluate the dose-response of fluoride on fecal microbes as well as the link between fluorosis and fecal microbes. The results showed that fluoride did not significantly alter the diversity of fecal microbiota, but richness estimators (ACE and Chao) increased first, and then decreased with the increase of water fluoride. At the genus level, 150 mg/L fluoride significantly reduced the abundances of Roseburia and Clostridium sensu stricto, and 100 mg/L and 150 mg/L fluoride obviously increased the abundances of Unclassified Ruminococcaceaes and Unclassified Bdellovibrionales, respectively. The correlation analysis showed fluoride exposure had a negative association with Roseburia and Turicibacter and was positively associated with Pelagibacterium, Unclassified Ruminococcaceae, and Unclassified Bdellovibrionales. Dental fluorosis was negatively associated with Clostridium sensu stricto, Roseburia, Turicibacter, and Paenalcaligenes and had a positive association with Pelagibacterium, Unclassified Ruminococcaceae, and Unclassified Bdellovibrionales. In conclusion, this study firstly reports fluoride in drinking water has a remarkable biphasic effect on fecal microbiota in rats, and some bacteria are significantly associated with fluoride exposure and dental fluorosis. These results indicate the gut microbiota may play an important role in fluorosis, and some bacteria are likely to be developed as biomarkers for fluorosis.
Collapse
Affiliation(s)
- Nan Zhong
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Kaschin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yongzheng Ma
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Kaschin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Xinyue Meng
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Kaschin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Alphonse Sowanou
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Kaschin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Liaowei Wu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Wei Huang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanhui Gao
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Junrui Pei
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Kaschin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
16
|
Xin J, Sun N, Wang H, Ma H, Wu B, Li L, Wang Y, Huang H, Zeng D, Bai X, Chen A, Gong S, Ni X, Bai Y. Preventive effects of Lactobacillus johnsonii on the renal injury of mice induced by high fluoride exposure: Insights from colonic microbiota and co-occurrence network analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113006. [PMID: 34826728 DOI: 10.1016/j.ecoenv.2021.113006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Fluoride (F) exposure was widely reported to be associated with renal diseases. Since absorbed F enters the organism from drinking water mostly through the gastrointestinal tract, investigating changes of gut microbes may have profound implications for the prevention of chronic F exposure because increasing evidence supported the existence of the gut-kidney axis. In the present study, we aimed to explore the potential positive effects of probiotics on high F exposure-induced renal lesions and dysfunction in mice by the modulation of the colonic microbiota. Mice were fed with normal (Ctrl group) or sodium-fluoride (F and Prob groups; 100 mg/L sodium fluoride (NaF)) drinking water with or without Lactobaillus johnsonii BS15, a probiotic strain proven to be preventive for F exposure. Mice fed with sodium-fluoride drinking water alone exhibited renal tissue damages, decreased the renal antioxidant capability and dysfunction. In contrast, L. johnsonii BS15 reversed these F-induced renal changes. 16S rRNA gene sequencing shows that L. johnsonii BS15 alleviated the increased community diversity (Shannon diversity) and richness index (number of observed features) as well as the distured structure of colon microbiota in F-exposed mice. A total of 13 OTUs with increased relative abundance were identified as the keystone OTUs in F-exposed mice based on the analysis of degree of co-occurrence and abundance of OTUs. Moreover, Spearman's rank correlation shows that the 13 keystone OTUs had negative effect on renal health and intestinal integrity. L. johnsonii BS15 reversed four of keystone OTUs (OTU 5, OTU 794, OTU 1035, and OTU 868) changes which might be related to the underlying protected mechanism of L. johnsonii BS15 against F-induced renal damages.
Collapse
Affiliation(s)
- Jinge Xin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hesong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangzhou Beneco biotechnology Co. Ltd., Guangzhou, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa 850012, China; Plateau Brain Science Research Center, South China Normal University, Guangzhou 510631, China
| | - Bangyuan Wu
- College of Life Sciences, China West Normal University,Nanchong,Sichuan, China
| | - Lianxin Li
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanyan Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haonan Huang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiuquan Bai
- Guangzhou Beneco biotechnology Co. Ltd., Guangzhou, China
| | - Ali Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Li M, Wang J, Wu P, Manthari RK, Zhao Y, Li W, Wang J. Self-recovery study of the adverse effects of fluoride on small intestine: Involvement of pyroptosis induced inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140533. [PMID: 32721723 DOI: 10.1016/j.scitotenv.2020.140533] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Increasing investigations suggest that fluoride (F) exposure was associated with gastrointestinal diseases, but related literatures were still largely insufficient and the underlying mechanisms have not been fully elucidated. Moreover, previous study in our lab reported F toxicity has the reversible tendency, but it still needs to be further explored. To address this issue, we established a 90 days F exposure and 15 days & 30 days self-recovery mice model, including control and three F groups (25, 50 and 100 mg/L sodium fluoride (NaF)) in each period. The results revealed that after 90 days F exposure, histological structure and ultrastructure of small intestine were markedly disrupted; the value of villus height to crypt depth, and expressions of tight junctions related mRNA and proteins were significantly decreased; intestinal permeability, pro-inflammatory cytokines and pyroptosis related mRNA and proteins were notably increased in duodenum, jejunum and ileum. However, intriguingly, after 30 days recovery period, indices in F groups almost all have recovered towards normalcy. Collectively, this study demonstrated that F exposure could impair the structure and epithelial barrier function of small intestine, leading to the intestinal inflammation, and pyroptosis may contribute to this damage; Furthermore, F toxicity on small intestine is reversible, and could be restored when off the F exposure environment for a certain period of time. Additionally, among the three regions of small intestine, duodenum seems more vulnerable to F exposure than jejunum and ileum.
Collapse
Affiliation(s)
- Meiyan Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jinming Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Panhong Wu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Wanpan Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
18
|
Zhang Y, Zhou BH, Tan PP, Chen Y, Miao CY, Wang HW. Key Role of Pro-inflammatory Cytokines in the Toxic Effect of Fluoride on Hepa1-6 Cells. Biol Trace Elem Res 2020; 197:115-122. [PMID: 31983054 DOI: 10.1007/s12011-019-01967-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
The role of pro-inflammatory cytokines in the toxicity of fluoride to tumor cells was investigated by culturing Hepa1-6 cells in medium containing gradient concentrations of fluoride (0, 0.5, 1, 1.5, 2, 3, 4, and 5 mmol/L). The viability of Hepa1-6 cells was detected via MTT assay. Interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-α, and IL-1β levels in the supernatant were determined via an enzyme-linked immunosorbent assay, and the protein expression levels of these enzymes in Hepa1-6 cells were evaluated by immunofluorescence staining. Results showed that the viability of Hepa1-6 cells remarkably decreases after fluoride exposure, especially at concentration of 3, 4, and 5 mmol/L fluoride. Levels of IL-2, TNF-α, and IL-1β in the supernatant markedly decreased when cells were exposed to fluoride at concentrations of 1 mmol/L or higher. However, levels of TNF-α and IL-1β substantially increased and IL-2 showed no remarkable change when the fluoride concentration was 0.5 mmol/L. The content of IL-6 remarkably increased with increasing fluoride concentrations up to 2 mmol/L, and then markedly decreased at 3, 4, and 5 mmol/L fluoride; the decreasing trend of IL-6 content under high fluoride exposure is consistent with the decrease in Hepa1-6 cell viability observed at the same concentration. The protein expression levels of IL-2, IL-6, TNF-α, and IL-1β were in accordance with their contents in the supernatant. In summary, our study demonstrated that fluoride inhibits Hepa1-6 cell growth and results in disorders in the expression and secretion pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China
| | - Pan-Pan Tan
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China
| | - Yu Chen
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China
| | - Cheng-Yi Miao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China.
| |
Collapse
|
19
|
Fu R, Niu R, Li R, Yue B, Zhang X, Cao Q, Wang J, Sun Z. Fluoride-Induced Alteration in the Diversity and Composition of Bacterial Microbiota in Mice Colon. Biol Trace Elem Res 2020; 196:537-544. [PMID: 31741202 DOI: 10.1007/s12011-019-01942-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/18/2019] [Indexed: 01/20/2023]
Abstract
Fluoride, as an environmental toxin, causes damage to intestinal mucosa. It may promote pathogen infection by increasing the intestinal mucosa permeability. In this study, the colonic fecal samples from the control group (C group, 0 mg/L NaF for 60 days) and the fluoride group (F group, 100 mg/L NaF for 60 days) were subjected to high-throughput 16S rRNA sequencing to verify the effects of fluoride on the colonic flora of animals. Results revealed a total of 253 operative taxonomical units (OTUs) in two groups, and 22 unique OTUs occurred in the F group. Fluoride increased the microbiota diversity and species richness of the colon. Concretely, the abundance of the Tenericutes was increased at the level of the phyla in the F group. In addition, in the F group, significant differences at the genus level were observed in Faecalibaculum, Alloprevotella, [Eubacterium]_xylanophilum_group, Prevotellaceae_UCG-001, and Ruminiclostridium_9, compared to the C group. Among them, except for the reduction in Faecalibaculum, the other four bacteria were increased in the F group. In summary, the intestinal microbial composition of mice was reconstituted by the presence of fluoride, and the significantly changing bacteria may partly account for the pathogenesis of fluoride-induced intestinal dysfunction.
Collapse
Affiliation(s)
- Rong Fu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Rui Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Baijuan Yue
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Xuhua Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Qiqi Cao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
20
|
Miao L, Gong Y, Li H, Xie C, Xu Q, Dong X, Elwan HAM, Zou X. Alterations in cecal microbiota and intestinal barrier function of laying hens fed on fluoride supplemented diets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110372. [PMID: 32114238 DOI: 10.1016/j.ecoenv.2020.110372] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
The objective of this study was to investigate the effects of fluorine at levels of 31, 431, 1237 mg/kg feed on cecum microbe, short-chain fatty acids (SCFAs) and intestinal barrier function of laying hens. The results showed that the intestinal morphology and ultrastructure were damaged by dietary high F intake. The mRNA expression levels of zonula occludens-1, zonula occludens-2, claudin-1, and claudin-4 were decreased in jejunum and ileum. However, the concentrations of serum diamine oxidase, and D-lactic acid and intestinal contents of interleukin 1 beta, interleukin 6, and Tumor necrosis factor-alpha were increased. Consistent with this, dietary high F intake altered the cecum microbiota, with increasing the concentration of pathogens, such as Proteobacteria and Escherichia-Shigella, as well as, decreasing the contents of beneficial bacteria, such as Lactobacillus, and expectedly, reduced the SCFAs concentrations. In conclusion, the actual results confirmed that (1) high dietary F intake could damage the intestinal structure and function, with impaired intestinal barrier and intestinal inflammation, and (2) destroy the cecum microbial homeostasis, and decrease the concentrations of SCFAs, which aggravate the incidence of intestinal inflammation in laying hens.
Collapse
Affiliation(s)
- Liping Miao
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yujie Gong
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Huaiyu Li
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chao Xie
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Qianqian Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xinyang Dong
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Hamada A M Elwan
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China; Animal and Poultry Production Department, Faculty of Agriculture, Minia University, 61519, El-Minya, Egypt
| | - Xiaoting Zou
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
21
|
Cao Q, Li R, Fu R, Zhang X, Yue B, Wang J, Sun Z, Niu R. Intestinal fungal dysbiosis in mice induced by fluoride. CHEMOSPHERE 2020; 245:125617. [PMID: 31855763 DOI: 10.1016/j.chemosphere.2019.125617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
To explore the effects of fluoride on intestinal fungi in mice, the internal transcriptional spacer (ITS) region in colon feces of mice exposed to 100 mg sodium fluoride (NaF)/L of distilled water for 60 days were sequenced. Results showed that, there were 305 operational taxonomic units (OTUs) unique to the control group, 154 OTUs to the fluoride group, and 295 OTUs were detected in both groups. There was no significant difference in relative species abundance between the two groups at phylum levels. Compared with control group, Ustilaginomycetes class, showed a significant change in fluoride group. At the genus level, Epicoccum, Penicillium, Microdochium, Plectosphaerella and Pluteus were significantly affected by fluoride exposure. Among them, there was a strong positive correlation between Penicillium and Pluteus (+0.43). Therefore, it showed that fluoride can influence the relative species abundance of intestinal fungi in mice, mainly at the genus levels. It can provide some new ideas about the harmful effects of fluorosis on intestinal fungal homeostasis.
Collapse
Affiliation(s)
- Qiqi Cao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Rui Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Rong Fu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xuhua Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Baijuan Yue
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
22
|
Zhang L, Cao W, Gao Y, Yang R, Zhang X, Xu J, Tang Q. Astaxanthin (ATX) enhances the intestinal mucosal functions in immunodeficient mice. Food Funct 2020; 11:3371-3381. [PMID: 32232254 DOI: 10.1039/c9fo02555c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing pressure of life may bring some disease risks and stress injuries, which may destroy the immune system and result in intestinal mucosal immune disorders. In this study, the effects of different doses of ATX (30 mg per kg b.w., 60 mg per kg b.w. and 120 mg per kg b.w.) on intestinal mucosal functions were explored in cyclophosphamide (Cy)-induced immunodeficient mice. The results showed that continuous intraperitoneal injection of 100 mg per kg b.w. Cy for three days led to a persistent decrease of body weight and a range of abnormalities in the intestine of C57BL/6 mice. However, administration of ATX at 60 and 120 mg per kg b.w. could effectively prevent intestinal mucosa from this damage, including reduced levels of oxidative stress (MDA, GSH and GSH-PX), increased intestinal morphological structural integrity, stimulative growth of goblet cells and mucous secretion, decreased development of Paneth cells and expression levels of antimicrobial peptides (AMPs) (Reg-3γ and lysozyme), increased IgA secretion, ameliorative main gut flora (especially total bacteria, Lactobacillus and Enterobacteriaceae spp. ) and its metabolites (acetic acid, propionic acid and butyric acid). These protective effects of ATX were better than those of control-β-carotene in general. Our results may provide a new protective measure to keep intestinal mucosal barriers, which is of great significance for maintaining immune function in the body.
Collapse
Affiliation(s)
- Lirong Zhang
- College of Food Science and Engineering, Ocean University of China, Yushan Road 5th, Qingdao, Shandong Province 266003, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wang HW, Miao CY, Liu J, Zhang Y, Zhu SQ, Zhou BH. Fluoride-induced rectal barrier damage and microflora disorder in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7596-7607. [PMID: 31885060 DOI: 10.1007/s11356-019-07201-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Intestinal microflora plays a key role in maintaining the homeostasis between immune and host health. Here, we reported the fluoride-induced changes of rectal structure and microflora in mice. The morphology of rectal tissue was observed by hematoxylin and eosin staining. The rectal development parameters (the thickness of mucosa, intestinal gland and muscle layer) were evaluated. The proliferation of rectal epithelial cells was evaluated via BrdU labeling. The distribution of goblet, glycoprotein and mast cell were evaluated by specific staining. Rectal microflora was detected using 16S rRNA high-throughput sequencing. The results showed that the rectal structure was seriously damaged and the proliferation of rectal epithelial cells was significantly inhibited by fluoride. The distribution of goblet cells, glycoprotein and mast cells decreased significantly after fluoride exposure. The relative richness of microfloras was changed after fluoride treatment, such as increased Bacteroidetes and decreased Firmicutes. In summary, this study indicated that excessive fluoride damages the intestinal structure, disturbs the intestinal micro-ecology and causes intestinal microflora disorder in mice. Findings mentioned in the present study enrich a new scope for elucidating fluoride toxicity from intestinal homeostasis.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Cheng-Yi Miao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Jing Liu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Yan Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Shi-Quan Zhu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
24
|
Effects of Eimeria tenella infection on the barrier damage and microbiota diversity of chicken cecum. Poult Sci 2020; 99:1297-1305. [PMID: 32111306 PMCID: PMC7587721 DOI: 10.1016/j.psj.2019.10.073] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023] Open
Abstract
The symbiosis of host and intestinal microbiota constitutes a microecosystem and plays an important role in maintaining intestinal homeostasis and regulating the host's immune system. Eimeria tenella, an obligate intracellular apicomplexan parasite, can cause coccidiosis, a serious intestinal disease. In this study, the effects of E. tenella infection on development parameters (villus height, crypt depth, mucosa thickness, muscularis thickness, and serosa thickness) and microbiota in chicken cecum were investigated. Fourteen-day-old male Hy-Line Variety Brown layer chickens were inoculated with sporulated oocysts of E. tenella. Cecal tissues were collected 7 d after inoculation. Relative density of goblet cells and glycoproteins were determined by Alcian blue periodic acid–Schiff staining and periodic acid–Schiff staining, respectively. Intestinal development parameters were also evaluated. Cecal contents were extracted, and the composition of cecal microflora was examined by Illumine sequencing in the V3–V4 region of the 16S rRNA gene. Results indicated that E. tenella infection destroyed the structure of cecal tissue and reduced the relative density of goblet cells and glycoproteins. Sequencing analysis indicated that E. tenella infection altered the diversity and composition of cecal microbiota. The populations of Proteobacteria, Enterococcus, Incertae, and Escherichia–Shigella decreased, and those of Bacteroidales and Rikenella significantly increased in the infected group compared with those in the control group. Hence, the pathological damage caused by E. tenella infection is associated with cecal microbiota dysbiosis, and this finding may be used to develop an alternative measure for alleviating the effect of coccidiosis on the poultry industry.
Collapse
|
25
|
Dietary High Sodium Fluoride Impairs Digestion and Absorption Ability, Mucosal Immunity, and Alters Cecum Microbial Community of Laying Hens. Animals (Basel) 2020; 10:ani10020179. [PMID: 31973036 PMCID: PMC7070338 DOI: 10.3390/ani10020179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: This study was conducted to investigate the effects of dietary fluoride (F) on tissue retention, digestive enzymes activities, mucosal immunity, and cecum microbial community of laying hens. (2) Methods: Total of 288 37-week-old Hy-Line Gray laying hens with similar laying rate (85.16% ± 3.87%) were adapted to the basal diets for ten days, and then allocated into three groups at random (n = 9, 6, 6 replicates/group). The concentrations of F in the diets were 31.19 (the control group, CON), 431.38 (F400, low-F group) and 1237.16 mg/kg (F1200, high-F group), respectively. The trial lasted for 59 days. (3) Results: Results suggested that F residuals in duodenum responded to dietary F concentrations positively. The activities of amylase, maltase and lactase were decreased in high-F group, compared with those in the control group. The mRNA expression levels of jejunum and ileum secretory immunoglobulin A (sIgA) and Mucin 2, and sIgA concentrations were decreased inhigh-F group, than those in the control group. The observed operational taxonomic units (OTUs) of laying hens in high-F group were higher than the CON and low-F groups, and the bacterial structure was different from the other two groups. The Lactobacillus was higher in the control group, while Gammaproteobacteria, Escherichia-Shigella, Streptococcaceae, and Enterobacteriaceae were higher in the high-F group. (4) Conclusions: The actual results confirmed that dietary high F intake increased the F residuals in duodenum, and reduced the digestion and absorption of nutrients and immunity via decreasing the activities of digestive enzymes, impairing intestine mucosal immunity, and disturbing the cecum microbial homeostasis of laying hens.
Collapse
|
26
|
Liu J, Wang HW, Lin L, Miao CY, Zhang Y, Zhou BH. Intestinal barrier damage involved in intestinal microflora changes in fluoride-induced mice. CHEMOSPHERE 2019; 234:409-418. [PMID: 31228844 DOI: 10.1016/j.chemosphere.2019.06.080] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Intestinal microflora play an important role in maintaining the homeostasis of the intestinal microenvironment, but fluoride-induced changes in intestinal mechanical barrier and intestinal microflora have not been well studied. Given this paucity of information, this study aims to determine the effects of high fluoride level on intestinal mechanical barrier and intestinal microflora in the cecum of mice. Seventy-two female 21-day-old Kunming mice were randomly assigned to three groups and raised for 70 days. Changes in intestinal pathomorphology and intestinal epithelial cell proliferation were observed by haematoxylin and eosin-staining and Brdu measurement, respectively. The distribution of goblet cells, glycoproteins and mast cells was analysed through Alcian blue and periodic acid-Schiff (AB-PAS) staining, Periodic Acid-Schiff (PAS) staining, and toluidine blue staining. Results showed that excessive fluoride damaged the structure of the cecal tissues, inhibited epithelial cell proliferation and decreased the relative distribution of goblet cells, glycoproteins and mast cells that are involved in defense responses. Intestinal microflora sequencing analysis revealed that the composition of the diversity and composition of intestinal microflora was altered by excessive fluoride based on 16S rRNA amplicon sequencing. The relative abundance of Firmicutes (P = 0.03174), Bacteroidetes (P = 0.04462), Actinobacteria (P = 0.01085) and Spirochacteria (P = 0.04084) was significantly changed in the fluoride group as compared with the control group. In conclusion, excessive fluoride intake induced intestinal barrier damage, leading to changes in cecal composition, epithelium secretion and intestinal microflora.
Collapse
Affiliation(s)
- Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China.
| | - Lin Lin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China
| | - Cheng-Yi Miao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China
| | - Yan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, PR China.
| |
Collapse
|