1
|
El-Mahrouk SR, El-Ghiaty MA, El-Kadi AOS. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in arsenic toxicity. J Environ Sci (China) 2025; 150:632-644. [PMID: 39306435 DOI: 10.1016/j.jes.2024.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 09/25/2024]
Abstract
Arsenic, a naturally occurring toxic element, manifests in various chemical forms and is widespread in the environment. Exposure to arsenic is a well-established risk factor for an elevated incidence of various cancers and chronic diseases. The crux of arsenic-mediated toxicity lies in its ability to induce oxidative stress, characterized by an unsettling imbalance between oxidants and antioxidants, accompanied by the rampant generation of reactive oxygen species and free radicals. In response to this oxidative turmoil, cells deploy their defense mechanisms, prominently featuring the redox-sensitive transcription factor known as nuclear factor erythroid 2-related factor 2 (NRF2). NRF2 stands as a primary guardian against the oxidative harm wrought by arsenic. When oxidative stress activates NRF2, it orchestrates a symphony of downstream antioxidant genes, leading to the activation of pivotal antioxidant enzymes like glutathione-S-transferase, heme oxygenase-1, and NAD(P)H: quinone oxidoreductase 1. This comprehensive review embarks on the intricate and diverse ways by which various arsenicals influence the NRF2 antioxidant pathway and its downstream targets, shedding light on their roles in defending against arsenic exposure toxic effects. It offers valuable insights into targeting NRF2 as a strategy for safeguarding against or treating the harmful and carcinogenic consequences of arsenic exposure.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
2
|
Yu C, Xu Y, Zhao M, Song P, Yu J. New insights into mechanism of ellagic acid alleviating arsenic-induced oxidative stress through MAPK/keap1-Nrf2 signaling pathway response, molecular docking and metabolomics analysis in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117029. [PMID: 39277998 DOI: 10.1016/j.ecoenv.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The increase of oxidative stress level is one of the vital mechanisms of liver toxicity induced by arsenic (As). Ellagic acid (EA) is widely known due to its excellent antioxidation. Nevertheless, whether EA could alleviate As-induced oxidative stress and the underlying mechanisms remain unknown. Herein, As (2 and 4 μM) and EA (25 and 50 μM) were selected for alone and combined exposure of HepG2 cells to investigate the effects of EA on As-induced oxidative stress. Results indicated that EA could alleviate the oxidative stress caused by As via decreasing intracellular ROS level and MDA content, as well as improving SOD, CAT and GSH-PX activities. qRT-PCR showed that EA might enhance the expression levels of antioxidant enzymes NQO1, CAT and GPX1 by activating MAPK (JNK, p38 and ERK)/keap1-Nrf2 signaling pathway. EA was found to promote dissociation from keap1 and nuclear translocation of Nrf2 by competing with Nrf2 at ARG-380 and ARG-415 sites on keap1 to exert antioxidation using molecular docking. Moreover, metabolomics revealed that EA might maintain the redox balance of HepG2 cells by modulating or reversing disorders of carbon, amino acid, lipid and other metabolisms caused by As. This study provides diversified new insights for the removal of liver toxicity of As and the application of EA.
Collapse
Affiliation(s)
- Changhao Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yawen Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Mengying Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Jing Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Huertas-Abril PV, Prieto-Álamo MJ, Jurado J, Pérez J, Molina-Hernández V, García-Barrera T, Abril N. Transcriptional and biochemical changes in mouse liver following exposure to a metal/drug cocktail. Attenuating effect of a selenium-enriched diet. Food Chem Toxicol 2024; 191:114845. [PMID: 38945390 DOI: 10.1016/j.fct.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Real-life pollution usually involves simultaneous co-exposure to different chemicals. Metals and drugs are frequently and abundantly released into the environment, where they interact and bioaccumulate. Few studies analyze potential interactions between metals and pharmaceuticals in these mixtures, although their joint effects cannot be inferred from their individual properties. We have previously demonstrated that the mixture (PC) of the metals Cd and Hg, the metalloid As and the pharmaceuticals diclofenac (DCF) and flumequine (FLQ) impairs hepatic proteostasis. To gain a deeper vision of how PC affects mouse liver homeostasis, we evaluated here the effects of PC exposure upon some biochemical and morphometric parameters, and on the transcriptional profiles of selected group of genes. We found that exposure to PC caused oxidative damage that exceeded the antioxidant capacity of cells. The excessive oxidative stress response resulted in an overabundance of reducing equivalents, which hindered the metabolism and transport of metabolites, including cholesterol and bile acids, between organs. These processes have been linked to metabolic and inflammatory disorders, cancer, and neurodegenerative diseases. Therefore, our findings suggest that unintended exposure to mixtures of environmental pollutants may underlie the etiology of many human diseases. Fortunately, we also found that a diet enriched with selenium mitigated the harmful effects of this combination of toxicants.
Collapse
Affiliation(s)
- Paula V Huertas-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain.
| | - María-José Prieto-Álamo
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Juan Jurado
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Tamara García-Barrera
- Centro de Investigación de Recursos Naturales, Salud y Medio Ambiente (RENSMA). Departamento de Química, Facultad de Ciencias Experimentales, Campus El Carmen, Universidad de Huelva, Avda. Fuerzas Armadas, 21007, Huelva, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain.
| |
Collapse
|
4
|
Silva CS, Kudlyk T, Tryndyak VP, Twaddle NC, Robinson B, Gu Q, Beland FA, Fitzpatrick SC, Kanungo J. Gene expression analyses reveal potential mechanism of inorganic arsenic-induced apoptosis in zebrafish. J Appl Toxicol 2023; 43:1872-1882. [PMID: 37501093 DOI: 10.1002/jat.4520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Our previous study showed that sodium arsenite (200 mg/L) affected the nervous system and induced motor neuron development via the Sonic hedgehog pathway in zebrafish larvae. To gain more insight into the effects of arsenite on other signaling pathways, including apoptosis, we have performed quantitative polymerase chain reaction array-based gene expression analyses. The 96-well array plates contained primers for 84 genes representing 10 signaling pathways that regulate several biological functions, including apoptosis. We exposed eggs at 5 h postfertilization until the 72 h postfertilization larval stage to 200 mg/L sodium arsenite. In the Janus kinase/signal transducers and activators of transcription, nuclear factor κ-light-chain-enhancer of activated B cells, and Wingless/Int-1 signaling pathways, the expression of only one gene in each pathway was significantly altered. The expression of multiple genes was altered in the p53 and oxidative stress pathways. Sodium arsenite induced excessive apoptosis in the larvae. This compelled us to analyze specific genes in the p53 pathway, including cdkn1a, gadd45aa, and gadd45ba. Our data suggest that the p53 pathway is likely responsible for sodium arsenite-induced apoptosis. In addition, sodium arsenite significantly reduced global DNA methylation in the zebrafish larvae, which may indicate that epigenetic factors could be dysregulated after arsenic exposure. Together, these data elucidate potential mechanisms of arsenic toxicity that could improve understanding of arsenic's effects on human health.
Collapse
Affiliation(s)
- Camila S Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Tetyana Kudlyk
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Bonnie Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Suzanne C Fitzpatrick
- Office of the Center Director, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
5
|
Mitochondrial ROS, ER Stress, and Nrf2 Crosstalk in the Regulation of Mitochondrial Apoptosis Induced by Arsenite. Antioxidants (Basel) 2022; 11:antiox11051034. [PMID: 35624898 PMCID: PMC9137803 DOI: 10.3390/antiox11051034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023] Open
Abstract
Long-term ingestion of arsenicals, a heterogeneous group of toxic compounds, has been associated with a wide spectrum of human pathologies, which include various malignancies. Although their mechanism of toxicity remains largely unknown, it is generally believed that arsenicals mainly produce their effects via direct binding to protein thiols and ROS formation in different subcellular compartments. The generality of these mechanisms most probably accounts for the different effects mediated by different forms of the metalloid in a variety of cells and tissues. In order to learn more about the molecular mechanisms of cyto- and genotoxicity, there is a need to focus on specific arsenic compounds under tightly controlled conditions. This review focuses on the mechanisms regulating the mitochondrial formation of ROS after exposure to low concentrations of a specific arsenic compound, NaAsO2, and their crosstalk with the nuclear factor (erythroid-2 related) factor 2 antioxidant signaling and the endoplasmic reticulum stress response.
Collapse
|
6
|
Kirilovsky ER, Anguiano OL, Bongiovanni GA, Ferrari A. Effects of acute arsenic exposure in two different populations of Hyalella curvispina amphipods from North Patagonia Argentina. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:71-88. [PMID: 34496719 DOI: 10.1080/15287394.2021.1975589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a toxic metalloid present in high levels in diverse regions of Argentina. The aim of this study was to determine acute As-mediated toxicity in two different populations of autochthonous Hyalella curvispina amphipods from a reference site (LB) and an agricultural one (FO) within North Patagonia Argentina. Previously, both populations exhibited significant differences in pesticide susceptibility. Lab assays were performed to determine acute lethal concentrations, as well as some biochemical parameters. Lethal concentration (LC50) values obtained after 48 and 96 hr As exposure were not significantly different between these populations, although FO amphipods appeared slightly less susceptible. LC50-48 hr values were 3.33 and 3.92 mg/L As, while LC50-96 hr values were 1.76 and 2.14 mg/L As for LB and FO amphipods. The no observed effect concentration (NOEC) values were 0.5 mg/L As. Cholinesterase (ChE) activity was significantly diminished by As acute exposure (0.5-1.5 mg/L As), indicative of a significant neurotoxic action for this metalloid in both amphipod populations. Activities of catalase (CAT) and glutathione S-transferase (GST) and levels of reduced glutathione (GSH) were differentially altered following As exposure. CAT activity was increased after 96 hr As exposure. GST activity and GSH levels were significantly elevated followed by either a decrease or a return to control values after 96 hr treatment. However, additional studies are necessary to understand the mechanisms underlying the As-mediated oxidative effects in H. curvispina. Our findings suggest that measurement of ChE activity in H. curvispina amphipods might serve as a useful biomarker of As exposure and effect.
Collapse
Affiliation(s)
- Eva R Kirilovsky
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Médicas, Universidad Nacional Del Comahue (UNCo), Río Negro, Argentina
| | - Olga L Anguiano
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ingeniería, Universidad Nacional Del Comahue (UNCo), Neuquén, Argentina
| | - Guillermina A Bongiovanni
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Agrarias, Universidad Nacional Del Comahue (UNCo), Neuquén, Argentina
| | - Ana Ferrari
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Médicas, Universidad Nacional Del Comahue (UNCo), Río Negro, Argentina
| |
Collapse
|
7
|
Ling C, An H, Li L, Wang J, Lu T, Wang H, Hu Y, Song G, Liu S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vitro: a Systematic Review of the Literature and Meta-analysis. Biol Trace Elem Res 2021; 199:2057-2076. [PMID: 32770326 DOI: 10.1007/s12011-020-02311-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
With the wide use of titanium dioxide nanoparticles (TiO2-NPs), the genotoxicity of TiO2-NPs, which is a factor for safety assessment, has attracted people's attention. However, their genotoxic effects in vitro remain controversial due to inconsistent reports. Therefore, a systematic review was conducted followed by a meta-analysis to reveal whether TiO2-NPs cause genotoxicity in vitro. A total of 59 studies were identified in this review through exhaustive database retrieval and exclusion. Meta-analysis results were presented based on different evaluation methods. The results showed that TiO2-NP exposure considerably increased the percentage of DNA in tail and olive tail moment in comet assay. Gene mutation assay revealed that TiO2-NPs could also induce gene mutation. However, TiO2-NP exposure had no effect on micronucleus (MN) formation in the MN assay. Subgroup analysis showed that normal cells were more vulnerable to toxicity induced by TiO2-NPs. Moreover, mixed form and small particles of TiO2-NPs increased the percentage of DNA in tail. In addition, short-term exposure could detect more DNA damage. The size, coating, duration, and concentration of TiO2-NPs influenced MN formation. This study presented that TiO2-NP exposure could cause genotoxicity in vitro. The physicochemical properties of TiO2-NPs and experimental protocols influence the genotoxic effects in vitro. Comet and gene mutation assays may be more sensitive to the detection of TiO2-NP genotoxic effects.
Collapse
Affiliation(s)
- Chunmei Ling
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Hongmei An
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Li Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Jiaqi Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Tianjiao Lu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Haixia Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Yunhua Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Guanling Song
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| | - Sixiu Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Xiong L, Huang J, Gao Y, Gao Y, Wu C, He S, Zou L, Yang D, Han Y, Yuan Q, Zheng Z, Hu G. Sodium arsenite induces spatial learning and memory impairment associated with oxidative stress and activates the Nrf2/PPARγ pathway against oxidative injury in mice hippocampus. Toxicol Res (Camb) 2021; 10:277-283. [PMID: 33884178 PMCID: PMC8045596 DOI: 10.1093/toxres/tfab007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/06/2020] [Accepted: 01/11/2021] [Indexed: 11/14/2022] Open
Abstract
Arsenic (As) is a ubiquitous environmental and industrial toxin with known correlates of oxidative stress and cognitive deficits in the brain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that represents a central cellular antioxidant defense mechanism and transcribes many antioxidant genes. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a well-known nuclear receptor to regulate lipid metabolism in many tissues, and it has been also associated with the control of oxidative stress, neuronal death, neurogenesis and differentiation. The role of Nrf2 and PPARγ in As-induced neurotoxicity is still debated. The present study was designed to investigate the neurobehavioral toxic effect of sub-chronic and middle-dose sodium arsenite exposure in mice hippocampus, as well as the response of Nrf2/PPARγ expression and influence on protein expression levels of their downstream antioxidant genes. Our results showed that mice treated with intraperitoneal injection of sodium arsenite (50 mg/kg body wt.) twice a week for 7 weeks resulted in increased generation of reactive oxygen species and impairment of spatial cognitive function. The present study also found a positive association between Nrf2/PPARγ expression in hippocampus of mice, and activation of antioxidant defenses by the evidently upregulated expression of their downstream genes, including superoxide dismutase, heme oxygenase-1 and glutathione peroxidase-3. Therefore, our findings were helpful for further understanding the role of Nrf2/PPARγ feedback loop in As-induced neurobehavioral toxicity.
Collapse
Affiliation(s)
- Liang Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Jinyu Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
- Department of Anatomy, School of Basic Medicine Sciences, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Ying Gao
- Department of rehabilitation medicine, School of Rehabilitation, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Yanfang Gao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Chunmei Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Shengfa He
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Lijun Zou
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Dongmei Yang
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Yuhao Han
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Qiong Yuan
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| | - Zuobing Zheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
| | - Gonghua Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, China
- School of Public Health and Health Management, Gannan Medical University, Number 1 Yixueyuan Road, Ganzhou 341000, Jiangxi, China
| |
Collapse
|
9
|
Wang F, Zhang Y, Shen J, Yang B, Dai W, Yan J, Maimouni S, Daguplo HQ, Coppola S, Gao Y, Wang Y, Du Z, Peng K, Liu H, Zhang Q, Tang F, Wang P, Gao S, Wang Y, Ding WX, Guo G, Wang F, Zong WX. The Ubiquitin E3 Ligase TRIM21 Promotes Hepatocarcinogenesis by Suppressing the p62-Keap1-Nrf2 Antioxidant Pathway. Cell Mol Gastroenterol Hepatol 2021; 11:1369-1385. [PMID: 33482392 PMCID: PMC8024979 DOI: 10.1016/j.jcmgh.2021.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS TRIM21 is a ubiquitin E3 ligase that is implicated in numerous biological processes including immune response, cell metabolism, redox homeostasis, and cancer development. We recently reported that TRIM21 can negatively regulate the p62-Keap1-Nrf2 antioxidant pathway by ubiquitylating p62 and prevents its oligomerization and protein sequestration function. As redox homeostasis plays a pivotal role in many cancers including liver cancer, we sought to determine the role of TRIM21 in hepatocarcinogenesis. METHODS We examined the correlation between TRIM21 expression and the disease using publicly available data sets and 49 cases of HCC clinical samples. We used TRIM21 genetic knockout mice to determine how TRIM21 ablation impact HCC induced by the carcinogen DEN plus phenobarbital (PB). We explored the mechanism that loss of TRIM21 protects cells from DEN-induced oxidative damage and cell death. RESULTS There is a positive correlation between TRIM21 expression and HCC. Consistently, TRIM21-knockout mice are resistant to DEN-induced hepatocarcinogenesis. This is accompanied by decreased cell death and tissue damage upon DEN treatment, hence reduced hepatic tissue repair response and compensatory proliferation. Cells deficient in TRIM21 display enhanced p62 sequestration of Keap1 and are protected from DEN-induced ROS induction and cell death. Reconstitution of wild-type but not the E3 ligase-dead and the p62 binding-deficient mutant TRIM21 impedes the protection from DEN-induced oxidative damage and cell death in TRIM21-deficient cells. CONCLUSIONS Increased TRIM21 expression is associated with human HCC. Genetic ablation of TRIM21 leads to protection against oxidative hepatic damage and decreased hepatocarcinogenesis, suggesting TRIM21 as a preventive and therapeutic target.
Collapse
Affiliation(s)
- Fang Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China; Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Ye Zhang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China; Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Bin Yang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Weiwei Dai
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Junrong Yan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Sara Maimouni
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Heineken Q Daguplo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Sara Coppola
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Yijun Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Zhi Du
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Kesong Peng
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hui Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Qin Zhang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Fei Tang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Peng Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Grace Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Fengmei Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| |
Collapse
|
10
|
Delaney P, Ramdas Nair A, Palmer C, Khan N, Sadler KC. Arsenic induced redox imbalance triggers the unfolded protein response in the liver of zebrafish. Toxicol Appl Pharmacol 2020; 409:115307. [PMID: 33147493 DOI: 10.1016/j.taap.2020.115307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Inorganic arsenic (iAs) is one of the most endemic toxicants worldwide and oxidative stress is a key cellular pathway underlying iAs toxicity. Other cellular stress response pathways, such as the unfolded protein response (UPR), are also impacted by iAs exposure, however it is not known how these pathways intersect to cause disease. We optimized the use of zebrafish larvae to identify the relationship between these cellular stress response pathways and arsenic toxicity. We found that the window of iAs susceptibility during zebrafish development corresponds with the development of the liver, and that even a 24-h exposure can cause lethality if administered to mature larvae, but not to early embryos. Acute exposure of larvae to iAs generates reactive oxygen species (ROS), an antioxidant response, endoplasmic reticulum (ER) stress and UPR activation in the liver. An in vivo assay using transgenic larvae expressing a GFP-tagged secreted glycoprotein in hepatocytes (Tg(fabp10a:Gc-EGFP)) revealed acute iAs exposure selectively decreased expression of Gc-EGFP, indicating that iAs impairs secretory protein folding in the liver. The transcriptional output of UPR activation is preceded by ROS production and activation of genes involved in the oxidative stress response. These studies implicate redox imbalance as the mechanism of iAs-induced ER stress and suggest that crosstalk between these pathways underlie iAs-induced hepatic toxicity.
Collapse
Affiliation(s)
- Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Catherine Palmer
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Nouf Khan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates.
| |
Collapse
|
11
|
A Systematic Review of the Various Effect of Arsenic on Glutathione Synthesis In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9414196. [PMID: 32802886 PMCID: PMC7411465 DOI: 10.1155/2020/9414196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Background Arsenic is a toxic metalloid widely present in nature, and arsenic poisoning in drinking water is a serious global public problem. Glutathione is an important reducing agent that inhibits arsenic-induced oxidative stress and participates in arsenic methylation metabolism. Therefore, glutathione plays an important role in regulating arsenic toxicity. In recent years, a large number of studies have shown that arsenic can regulate glutathione synthesis in many ways, but there are many contradictions in the research results. At present, the mechanism of the effect of arsenic on glutathione synthesis has not been elucidated. Objective We will conduct a meta-analysis to illustrate the effects of arsenic on GSH synthesis precursors Glu, Cys, Gly, and rate-limiting enzyme γ-GCS in mammalian models, as well as the regulation of p38/Nrf2 of γ-GCS subunit GCLC, and further explore the molecular mechanism of arsenic affecting glutathione synthesis. Results This meta-analysis included 30 studies in vivo and 58 studies in vitro, among which in vivo studies showed that arsenic exposure could reduce the contents of GSH (SMD = -2.86, 95% CI (-4.45, -1.27)), Glu (SMD = -1.11, 95% CI (-2.20,-0.02)), and Cys (SMD = -1.48, 95% CI (-2.63, -0.33)), with no statistically significant difference in p38/Nrf2, GCLC, and GCLM. In vitro studies showed that arsenic exposure increased intracellular GSH content (SMD = 1.87, 95% CI (0.18, 3.56)) and promoted the expression of p-p38 (SMD = 4.19, 95% CI (2.34, 6.05)), Nrf2 (SMD = 4.60, 95% CI (2.34, 6.86)), and GCLC (SMD = 1.32, 95% CI (0.23, 2.41)); the p38 inhibitor inhibited the expression of Nrf2 (SMD = -1.27, 95% CI (-2.46, -0.09)) and GCLC (SMD = -5.37, 95% CI (-5.37, -2.20)); siNrf2 inhibited the expression of GCLC, and BSO inhibited the synthesis of GSH. There is a dose-dependent relationship between the effects of exposure on GSH in vitro. Conclusions. These indicate the difference between in vivo and in vitro studies of the effect of arsenic on glutathione synthesis. In vivo studies have shown that arsenic exposure can reduce glutamate and cysteine levels and inhibit glutathione synthesis, while in vitro studies have shown that chronic low-dose arsenic exposure can activate the p38/Nrf2 pathway, upregulate GCLC expression, and promote glutathione synthesis.
Collapse
|