1
|
Guo JC, Xu PC, Xu YC, Zhang TH, Liu LL, Liu T, Luo Z. Transcriptional responses of three slc39a/zip members (zip4, zip5 and zip9) and their roles in Zn metabolism in grass carp (Ctenopharyngodon idella). BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195075. [PMID: 39675523 DOI: 10.1016/j.bbagrm.2024.195075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
In order to explore the regulatory mechanism of zip4, zip5 and zip9 in zinc metabolism of grass carp (Ctenopharyngodon idella), the effects of zinc (Zn) on the mRNA expression of zip4, zip5 and zip9 were investigated. Compared to the control, the mRNA levels of zip4 and zip9 were significantly reduced under low and high zinc in L8824 cells; the mRNA expression level of zip5 was significantly increased under low and high zinc incubation. Then, their promoter sequences were cloned, which were 2361 bp, 2004 bp and 2186 bp sequences for zip4, zip5 and zip9 promoters, respectively. The transcriptional activities of the three promoters had different responses to Zn treatment. The transcriptional factor signal transducer and activator of transcription 3 (STAT3) had specific binding sites at -1111/-1121 bp of zip5 promoter and at -1679/-1689 bp of zip9 promoter. Similarly, krüppel-like factor 4 (KLF4) could specifically bind to the -599/-609 bp sequence on the zip5 promoter and the -261/-272 bp sequence on the zip9 promoter. The results of electrophoretic mobility-shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) indicated that Zn incubation increased DNA binding capacity of STAT3 to zip5 and zip9 promoters, and decreased DNA binding capacity of KLF4 to zip5 and zip9 promoters. This study provides a good basis for elucidating the regulatory mechanism of zinc metabolism in the vertebrates.
Collapse
Affiliation(s)
- Jia-Cheng Guo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng-Cheng Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian-Hua Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu-Lu Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Centre, Qingdao 266237, China.
| |
Collapse
|
2
|
Wang X, Ma J, Li W, Hou Z, Li H, Li Y, Wang S, Tie Y. BPA Exacerbates Zinc Deficiency-Induced Testicular Tissue Inflammation in Male Mice Through the TNF-α/NF-κB/Caspase8 Signaling Pathway. Biol Trace Elem Res 2024:10.1007/s12011-024-04464-2. [PMID: 39638945 DOI: 10.1007/s12011-024-04464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical that is toxic to reproduction. Zinc (Zn) plays an important role in male reproductive health. Zn deficiency (ZD) can co-exist with BPA. In order to investigate the specific mechanism of reproductive damage caused by BPA exposure in ZD male mice, a mouse model of ZD, BPA exposure, and their combined exposure was established in this study. Forty 4-week-old SPF male ICR mice with an average body weight of 31.7 ± 4.2 g were divided into four groups including normal Zn diet group 30 mg/(kg•d), BPA exposure group 150 mg/(kg•d), zinc deficiency diet group 7.5 mg/(kg•d), and BPA + ZD combined exposure group (BPA 150 mg/(kg•d) + ZD 7.5 mg/(kg•d)). The mice were kept for 8 weeks. The results showed that the testicular tissue structure was disturbed, and semen quality, serum Zn, testicular tissue Zn, and testicular tissue free Zn ions were decreased in the BPA-exposed and ZD groups. The expression of zinc transporters (ZIP7, ZIP8, ZIP13, and ZIP14) in testicular tissue was changed. The expressions of pro-inflammatory cytokines including TNF-α and IL-1β as well as inflammatory pathway-related proteins (IKB-α, p-IKB-α, NF-κB, p-NF-κB, Caspase8, and Caspase3) were increased, while the expressions of anti-inflammatory cytokines (TGF-β and IL-10) were decreased. The changes in the above indexes in the BPA + ZD group were more obvious. Both BPA exposure and ZD can induce testicular tissue inflammation through the TNF-α/NF-κB/Caspase8 signaling pathway, and BPA further aggravates zinc deficiency-induced testicular tissue inflammation and apoptosis damage.
Collapse
Affiliation(s)
- Xinying Wang
- North China University of Science and Technology, Tangshan, 063210, Hebei Province, China.
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China.
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
| | - Wen Li
- Hebei Chest Hospital, Shijiazhuang, 050041, Hebei, China
| | - Zhan Hou
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China
| | - Yuanjing Li
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
| | - Yanqing Tie
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China.
| |
Collapse
|
3
|
Mori H, Goji A, Hara M. Upregulation of Intracellular Zinc Ion Level after Differentiation of the Neural Stem/Progenitor Cells In Vitro with the Changes in Gene Expression of Zinc Transporters. Biol Trace Elem Res 2024; 202:4699-4714. [PMID: 38180597 DOI: 10.1007/s12011-023-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
We measured the intracellular zinc ion concentration of murine fetal neural stem/progenitor cells (NSPCs) and that in the differentiated cells. The NSPCs cultured with 1.5 μM Zn2+ proliferated slightly faster than that in the zinc-deficient medium and the intracellular zinc concentration of the NSPCs and that of their differentiated cells (DCs) cultured with 1.5 μM Zn2+ was 1.34-fold and 2.00-fold higher than those in the zinc-deficient medium, respectively. The zinc transporter genes upregulated over the 3.5-fold change were Zip1, Zip4, Zip12, Zip13, ZnT1, ZnT8, and ZnT10 whereas the only downregulated one was Zip8 during the differentiation of NSPCs to DCs. The cell morphologies of both NSPCs and DCs in the low oxygen culture condition consisting of 2%O2 and 5%CO2, the high carbon dioxide condition consisting of 21%O2 and 10%CO2, and the normal condition consisting of 21%O2 and 5%CO2 were essentially the same each other. The expression of Zip4, Zip8, Zip12, and Zip14 was not drastically changed depending on the O2 and CO2 concentrations.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Akari Goji
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Hara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
4
|
Ribeiro F, Zhang X, Wen Y, Cacciani N, Hedström Y, Xia Z, Schulz R, Larsson L. The role of zinc and matrix metalloproteinases in myofibrillar protein degradation in critical illness myopathy. Free Radic Biol Med 2024; 222:493-504. [PMID: 38944212 DOI: 10.1016/j.freeradbiomed.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Due to an unexpected activation of different zinc (Zn) transporters in a recent prospective clinical study, we have revisited the role of Zn homeostasis and the activation of matrix metalloproteinases (MMPs) in skeletal muscle exposed to the intensive care unit (ICU) condition (immobilization and mechanical ventilation). ICU patients exposed to 12 days ICU condition were followed longitudinally with six repeated muscle biopsies while they showed a progressive preferential myosin loss, i.e., the hallmark of Critical Illness Myopathy (CIM), in parallel with the activation of Zn-transporters. In this study, we have revisited the expression of Zn-transporters and the activation of MMPs in clinical as well as in experimental studies using an established ICU model. MMPs are a group Zn-dependent endopeptidases which do not only target and cleave extracellular proteins but also intracellular proteins including multiple sarcomeric proteins. MMP-9 is of specific interest since the hallmark of CIM, the preferential myosin loss, has also been reported in dilated cardiomyopathy and coupled to MMP-9 activation. Transcriptional activation of Zn-transporters was observed in both clinical and experimental studies as well as the activation of MMPs, in particular MMP-9, in various limb and respiratory muscles in response to long-term exposure to the ICU condition. The activation of Zn-transporters was paralleled by increased Zn levels in skeletal muscle which in turn showed a negative linear correlation with the preferential myosin loss associated with CIM, offering a potential intervention strategy. Thus, activation of Zn-transporters, increased intramuscular Zn levels, and activation of the Zn-dependent MMPs are forwarded as a probable mechanism involved in CIM pathophysiology. These effects were confirmed in different rat strains subjected to a model of CIM and exacerbated by old age. This is of specific interest since old age and muscle wasting are the two factors most strongly associated with ICU mortality.
Collapse
Affiliation(s)
- Fernando Ribeiro
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; MediData Research Hub, San Biomedical Technology Co., Ltd, Jinhua, 321300, China
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; Laboratory of MediModel Translational Research, San Biomedical Technology Co., Ltd, Jinhua, 321300, China
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden
| | - Yvette Hedström
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden
| | - Zhidan Xia
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet Bioclinicum, Stockholm, 171 64, Sweden; Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, 171 76, Sweden; Viron Molecular Medicine Institute, Boston, MA, 02108, United States.
| |
Collapse
|
5
|
Zhang D, Zhu Y, Li H, Wang Y, Niu Z, Zhou W, Wang D. Associations of Whole Blood Zinc Levels with Coronary Artery Calcification and Future Cardiovascular Events in CKD Patients. Biol Trace Elem Res 2024; 202:46-55. [PMID: 37071258 DOI: 10.1007/s12011-023-03655-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
This study was conducted to compare the differences of the whole blood zinc concentration in patients with chronic kidney disease (CKD) as compared to healthy controls, and to explore the correlations of the whole blood zinc level with coronary artery calcification (CAC) and cardiovascular event (CVE) in CKD patients. A total of 170 CKD patients and 62 healthy controls were recruited. The whole blood zinc concentration was determined in using atomic absorption spectroscopy (AAS) method. The degrees of CAC were evaluated by Agatston score based on computed tomography (CT). Regular follow-up visits were performed to record the incidence of CVE, and risk factors were analyzed by COX proportional hazard model and Kaplan-Meier survival curve. There were statistically significant lower zinc levels in CKD patients than in healthy population. The prevalence of CAC was 58.82% in CKD patients. Correlation analysis showed that dialysis duration, intact parathyroid hormone (iPTH), alkaline phosphatase (ALP), 25-hydroxyvitamin D3 (25(OH)D3), neutrophil-lymphocyte ratio (NLR), total cholesterol (TC), and high-sensitive C-reactive protein (Hs-CRP) were positively correlated with CAC, while albumin (ALB), hemoglobin (Hb), and zinc levels were negatively associated with CAC. Further COX proportional hazard model demonstrated that moderate to severe CAC, NLR, phosphate, 25(OH)D3, iPTH, and high-density lipoprotein (HDL) were associated with an increased risk for CVE, while zinc levels, Hb, and ALB were inversely associated with a reduced risk for CVE. Kaplan-Meier curve showed that low zinc (zinc < 86.62 μmol/L) patients and moderate to severe CAC patients had lower survival respectively. Our study found the lower levels of zinc and higher prevalence of CAC in CKD patients; the low zinc is involved in the high incidence rate of moderate to severe CAC and CVE in CKD patients.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yuyu Zhu
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Huan Li
- Department of Radiology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yunfei Wang
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zheng Niu
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Wenli Zhou
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Deguang Wang
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
6
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Briassoulis G, Briassoulis P, Ilia S, Miliaraki M, Briassouli E. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants (Basel) 2023; 12:1942. [PMID: 38001795 PMCID: PMC10669546 DOI: 10.3390/antiox12111942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Zinc is a structural component of proteins, functions as a catalytic co-factor in DNA synthesis and transcription of hundreds of enzymes, and has a regulatory role in protein-DNA interactions of zinc-finger proteins. For many years, zinc has been acknowledged for its anti-oxidative and anti-inflammatory functions. Furthermore, zinc is a potent inhibitor of caspases-3, -7, and -8, modulating the caspase-controlled apoptosis and necroptosis. In recent years, the immunomodulatory role of zinc in sepsis and COVID-19 has been investigated. Both sepsis and COVID-19 are related to various regulated cell death (RCD) pathways, including apoptosis and necroptosis. Lack of zinc may have a negative effect on many immune functions, such as oxidative burst, cytokine production, chemotaxis, degranulation, phagocytosis, and RCD. While plasma zinc concentrations decline swiftly during both sepsis and COVID-19, this reduction is primarily attributed to a redistribution process associated with the inflammatory response. In this response, hepatic metallothionein production increases in reaction to cytokine release, which is linked to inflammation, and this protein effectively captures and stores zinc in the liver. Multiple regulatory mechanisms come into play, influencing the uptake of zinc, the binding of zinc to blood albumin and red blood cells, as well as the buffering and modulation of cytosolic zinc levels. Decreased zinc levels are associated with increasing severity of organ dysfunction, prolonged hospital stay and increased mortality in septic and COVID-19 patients. Results of recent studies focusing on these topics are summarized and discussed in this narrative review. Existing evidence currently does not support pharmacological zinc supplementation in patients with sepsis or COVID-19. Complementation and repletion should follow current guidelines for micronutrients in critically ill patients. Further research investigating the pharmacological mechanism of zinc in programmed cell death caused by invasive infections and its therapeutic potential in sepsis and COVID-19 could be worthwhile.
Collapse
Affiliation(s)
- George Briassoulis
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Panagiotis Briassoulis
- Second Department of Anesthesiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stavroula Ilia
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Marianna Miliaraki
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Efrossini Briassouli
- Infectious Diseases Department “MAKKA”, First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
8
|
Kitala K, Tanski D, Godlewski J, Krajewska-Włodarczyk M, Gromadziński L, Majewski M. Copper and Zinc Particles as Regulators of Cardiovascular System Function-A Review. Nutrients 2023; 15:3040. [PMID: 37447366 DOI: 10.3390/nu15133040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Copper and zinc are micronutrients that play a crucial role in many cellular pathways, act as cofactors in enzymatic systems, and hence, modulate enzyme activity. The regulation of these elements in homeostasis is precisely controlled by various mechanisms. Superoxide dismutase (SOD) is an enzyme requiring both copper and zinc for proper functioning. Additionally, there is an interaction between the concentrations of copper and zinc. Dietary ingestion of large amounts of zinc augments intestinal absorption of this trace element, resulting in copper deficiency secondary to zinc excess. The presence of an overabundance of copper and zinc has a detrimental impact on the cardiovascular system; however, the impact on vascular contractility varies. Copper plays a role in the modulation of vascular remodeling in the cardiac tissue, and the phenomenon of cuproptosis has been linked to the pathogenesis of coronary artery disease. The presence of copper has an observable effect on the vasorelaxation mediated by nitric oxide. The maintenance of proper levels of zinc within an organism influences SOD and is essential in the pathogenesis of myocardial ischemia/reperfusion injury. Recently, the effects of metal nanoparticles have been investigated due to their unique characteristics. On the other hand, dietary introduction of metal nanoparticles may result in vascular dysfunction, oxidative stress, and cellular DNA damage. Copper and zinc intake affect cardiovascular function, but more research is needed.
Collapse
Affiliation(s)
- Klaudia Kitala
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Damian Tanski
- Department of Human Histology and Embryology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Magdalena Krajewska-Włodarczyk
- Department of Mental and Psychosomatic Diseases, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
9
|
Abstract
Zinc plays a critical role in many physiological processes, and disruption of zinc homeostasis induces various disorders, such as growth retardation, osteopenia, immune deficiency, and inflammation. However, how the imbalance in zinc homeostasis leads to heart disease is not yet fully understood. Cardiovascular diseases are a major cause of death worldwide, and the development of novel therapeutic targets to treat it is urgently needed. We report that a zinc transporter, ZIP13, regulates cardiovascular homeostasis. We found that the expression level of Zip13 mRNA was diminished in both primary neonatal cardiomyocytes and mouse heart tissues treated with the cardiotoxic agent doxycycline. Primary neonatal cardiomyocytes from Zip13 gene-knockout (KO) mice exhibited abnormal irregular arrhythmic beating. RNA-seq analysis identified 606 differentially expressed genes in Zip13-KO mouse-derived primary neonatal cardiomyocytes and Gene ontology (GO) analysis revealed that both inflammation- and cell adhesion-related genes were significantly enriched. In addition, telemetry echocardiography analysis suggested that arrhythmias were likely to occur in Zip13-KO mice, in which elevated levels of the cardiac fibrosis marker Col1a1, vascular inflammation-related gene eNOS, and Golgi-related molecule GM130 were observed. These results indicate the physiological importance of ZIP13-it maintains cardiovascular homeostasis by resolving inflammation and stress response. Our findings suggest that optimizing ZIP13 expression and/or function may improve cardiovascular disease management.
Collapse
|
10
|
Interplay between Zn2+ Homeostasis and Mitochondrial Functions in Cardiovascular Diseases and Heart Ageing. Int J Mol Sci 2022; 23:ijms23136890. [PMID: 35805904 PMCID: PMC9266371 DOI: 10.3390/ijms23136890] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc plays an important role in cardiomyocytes, where it exists in bound and histochemically reactive labile Zn2+ forms. Although Zn2+ concentration is under tight control through several Zn2+-transporters, its concentration and intracellular distribution may vary during normal cardiac function and pathological conditions, when the protein levels and efficacy of Zn2+ transporters can lead to zinc re-distribution among organelles in cardiomyocytes. Such dysregulation of cellular Zn2+ homeostasis leads to mitochondrial and ER stresses, and interrupts normal ER/mitochondria cross-talk and mitophagy, which subsequently, result in increased ROS production and dysregulated metabolic function. Besides cardiac structural and functional defects, insufficient Zn2+ supply was associated with heart development abnormalities, induction and progression of cardiovascular diseases, resulting in accelerated cardiac ageing. In the present review, we summarize the recently identified connections between cellular and mitochondrial Zn2+ homeostasis, ER stress and mitophagy in heart development, excitation–contraction coupling, heart failure and ischemia/reperfusion injury. Additionally, we discuss the role of Zn2+ in accelerated heart ageing and ageing-associated rise of mitochondrial ROS and cardiomyocyte dysfunction.
Collapse
|
11
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
12
|
The Oxidative Balance Orchestrates the Main Keystones of the Functional Activity of Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7714542. [PMID: 35047109 PMCID: PMC8763515 DOI: 10.1155/2022/7714542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
This review is aimed at providing an overview of the key hallmarks of cardiomyocytes in physiological and pathological conditions. The main feature of cardiac tissue is the force generation through contraction. This process requires a conspicuous energy demand and therefore an active metabolism. The cardiac tissue is rich of mitochondria, the powerhouses in cells. These organelles, producing ATP, are also the main sources of ROS whose altered handling can cause their accumulation and therefore triggers detrimental effects on mitochondria themselves and other cell components thus leading to apoptosis and cardiac diseases. This review highlights the metabolic aspects of cardiomyocytes and wanders through the main systems of these cells: (a) the unique structural organization (such as different protein complexes represented by contractile, regulatory, and structural proteins); (b) the homeostasis of intracellular Ca2+ that represents a crucial ion for cardiac functions and E-C coupling; and (c) the balance of Zn2+, an ion with a crucial impact on the cardiovascular system. Although each system seems to be independent and finely controlled, the contractile proteins, intracellular Ca2+ homeostasis, and intracellular Zn2+ signals are strongly linked to each other by the intracellular ROS management in a fascinating way to form a "functional tetrad" which ensures the proper functioning of the myocardium. Nevertheless, if ROS balance is not properly handled, one or more of these components could be altered resulting in deleterious effects leading to an unbalance of this "tetrad" and promoting cardiovascular diseases. In conclusion, this "functional tetrad" is proposed as a complex network that communicates continuously in the cardiomyocytes and can drive the switch from physiological to pathological conditions in the heart.
Collapse
|
13
|
Zhao H, Liu D, Yan Q, Bian X, Yu J, Wang J, Cheng X, Xu Z. Endoplasmic Reticulum Stress/Ca 2+-Calmodulin-Dependent Protein Kinase/Signal Transducer and Activator of Transcription 3 Pathway Plays a Role in the Regulation of Cellular Zinc Deficiency in Myocardial Ischemia/Reperfusion Injury. Front Physiol 2022; 12:736920. [PMID: 35069232 PMCID: PMC8766834 DOI: 10.3389/fphys.2021.736920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Zinc homeostasis has been known to play a role in myocardial ischemia/reperfusion (I/R) injury, but the precise molecular mechanisms regulating the expression of ZIP transporters during reperfusion are still unclear. The aim of this study was to determine whether ER Stress/CaMKII/STAT3 pathway plays a role in the regulation of cellular zinc homeostasis. Zinc deficiency increased mRNA and protein expressions of the ER stress relevant markers Chop and Bip, and STAT3 phosphorylation in H9c2 or HL-1 cells, an effect that was abolished by ZnCl2. ER calcium concentration [(Ca2+)ER] was decreased and cytosolic calcium concentration [(Ca2+)I] was increased at the condition of normoxia or ischemia/reperfusion, indicating that zinc deficiency triggers ER stress and Ca2+ leak. Further studies showed that upregulation of STAT3 phosphorylation was reversed by Ca2+ chelator, indicating that intracellular Ca2+ is important for zinc deficiency-induced STAT3 activation. In support, zinc deficiency enhanced ryanodine receptors (RyR), a channel in the ER that mediate Ca2+ release, and Ca2+-calmodulin-dependent protein kinase (CaMKII) phosphorylation, implying that zinc deficiency provoked Ca2+ leak from ER via RyR and p-CaMKII is involved in STAT3 activation. Moreover, inhibition of STAT3 activation blocked zinc deficiency induced ZIP9 expression, and resulted in increased Zn2+ loss in cardiomyocytes, further confirming that STAT3 activation during reperfusion promotes the expression of ZIP9 zinc transporter to correct the imbalance in zinc homeostasis. In addition, suppressed STAT3 activation aggravated reperfusion injury. These data suggest that the ER Stress/CaMKII/STAT3 axis may be an endogenous protective mechanism, which increases the resistance of the heart to I/R.
Collapse
Affiliation(s)
- Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Dan Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qiumei Yan
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xiyun Bian
- Central Laboratory, Tianjin, China.,Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Jing Yu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jingjing Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Hu Y, Fu QY, Fu DN, Wang XL, Wang ZH, Zhang JT, Xu WJ, Zhou GK, Chen LH, Liu T. The Role of Transient Receptor Potential A1 and G Protein-Coupled Receptor 39 in Zinc-Mediated Acute and Chronic Itch in Mice. Front Mol Neurosci 2022; 14:768731. [PMID: 35095413 PMCID: PMC8790520 DOI: 10.3389/fnmol.2021.768731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
Itching is a common symptom of many skin or systemic diseases and has a negative impact on the quality of life. Zinc, one of the most important trace elements in an organism, plays an important role in the regulation of pain. Whether and how zinc regulates itching is largely unclear. Herein, we explored the role of Zn2+ in the regulation of acute and chronic itch in mice. It is found that intradermal injection (i.d.) of Zn2+ dose-dependently induced acute itch and transient receptor potential A1 (TRPA1) participated in Zn2+-induced acute itch in mice. Moreover, the pharmacological analysis showed the involvement of histamine, mast cells, opioid receptors, and capsaicin-sensitive C-fibers in Zn2+-induced acute itch in mice. Systemic administration of Zn2+ chelators, such as N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), pyrithione, and clioquinol were able to attenuate both acute itch and dry skin-induced chronic itch in mice. Quantitative polymerase chain reaction (Q-PCR) analysis showed that the messenger RNA (mRNA) expression levels of zinc transporters (ZIPs and ZnTs) significantly changed in the dorsal root ganglia (DRG) under dry skin-induced chronic itch condition in mice. Activation of extracellular signal-regulated kinase (ERK) pathway was induced in the DRG and skin by the administration of zinc or under dry skin condition, which was inhibited by systemic administration of Zn2+ chelators. Finally, we found that the expression of GPR39 (a zinc-sensing GPCR) was significantly upregulated in the dry skin mice model and involved in the pathogenesis of chronic itch. Together, these results indicated that the TRPA1/GPR39/ERK axis mediated the zinc-induced itch and, thus, targeting zinc signaling may be a promising strategy for anti-itch therapy.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qing-Yue Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan-Ni Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital Beijing, Beijing, China
| | - Zhi-Hong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Wen-Jing Xu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Guo-Kun Zhou
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Li-Hua Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
- Li-Hua Chen
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- College of Life Sciences, Yanan University, Yan'an, China
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Soochow University, Suzhou, China
- *Correspondence: Tong Liu
| |
Collapse
|
15
|
Dai P, Lv Y, Gong X, Han J, Gao P, Xu H, Zhang Y, Zhang X. RNA-Seq Analysis of the Effect of Zinc Deficiency on Microsporum canis, ZafA Gene Is Important for Growth and Pathogenicity. Front Cell Infect Microbiol 2021; 11:727665. [PMID: 34604111 PMCID: PMC8481874 DOI: 10.3389/fcimb.2021.727665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Microsporum canis, a common pathogenic skin fungus, can cause dermatophytosis in humans and animals. Zinc is an important trace element and plays an important role in the growth and metabolism of fungi. Currently, the effects of zinc deficiency on growth, gene expression, and metabolic pathway have not been clarified in M. canis. Therefore, M. canis was cultured under zinc restriction, and RNA-Seq was conducted in this study. The growth of M. canis was severely inhibited, and many genes showed significant upregulation and downregulation in M. canis with zinc deficiency. Zinc deficiency could negatively affect the gene expression and biological metabolic pathway in M. canis. The zinc-responsiveness transcriptional activator (ZafA) gene was significantly upregulated and shared homology with Zap1. Thus, the ZafA gene might be the main transcription factor regulating M. canis zinc homeostasis. The ZafA gene knockout strain, ZafA-hph, was constructed via Agrobacterium tumefaciens-mediated transformation (ATMT) in M. canis for the first time to assess its function. In vitro growth ability, hair biodegradation ability, virulence test, and zinc absorption capacity in ZafA-hph and wild-type M. canis strains were compared. Results showed that the ZafA gene plays an important role in zinc absorption, expression of zinc transporter genes, and growth and pathogenicity in M. canis and can be used as a new drug target. Cutting off the zinc absorption pathway can be used as a way to prevent and control infection in M. canis.
Collapse
Affiliation(s)
- Pengxiu Dai
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Yangou Lv
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiaowen Gong
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Jianye Han
- The Animal Health Supervision Institute of Xi'an, Xi'an, China
| | - Peng Gao
- The Animal Health Supervision Institute of Yanta, Xi'an, China
| | - Haojie Xu
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Yihua Zhang
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Xinke Zhang
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
16
|
Zinc ionophores isolated from Terminalia bellirica fruit rind extract protect against cardiomyocyte hypoxia/reoxygenation injury. Bioorg Med Chem 2021; 46:116394. [PMID: 34509160 DOI: 10.1016/j.bmc.2021.116394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022]
Abstract
The study aimed to isolate and characterize zinc ionophores from Terminalia bellirica fruit using a liposome assay and test its utility in H9c2 rat cardiomyoblasts cells subjected to hypoxia/reoxygenation. Ethyl acetate extract that exhibited zinc ionophore activity was resolved to yield three polyphenols that were characterized as epicatechin-3-gallate (ECG), epigallocatechin-3-gallate (EGCG) and epigallocatechin (EGC) by nuclear magnetic resonance and electrospray ionization-mass spectra. The polyphenols enhanced the uptake of zinc into the liposomes and increased FluoZin-3 fluorescence. These polyphenols in the presence of 10 μM ZnCl2 enhanced the zinc import into H9c2 cells, whose intracellular zinc levels were otherwise lowered upon hypoxia/reoxygenation. EGCG proved to be more potent than ECG, which indeed was more effective than EGC in improving cellular zinc levels and in attenuating the apoptosis of H9c2 cells after hypoxia/reoxygenation injury. The polyphenols required zinc for anti-apoptotic effect. The cardioprotective effect is indeed due to enhanced zinc uptake mediated by these polyphenols.
Collapse
|
17
|
Song CC, Chen GH, Zhong CC, Chen F, Chen SW, Luo Z. Transcriptional responses of four slc30a/znt family members and their roles in Zn homeostatic modulation in yellow catfish Pelteobagrus fulvidraco. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194723. [PMID: 34116248 DOI: 10.1016/j.bbagrm.2021.194723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/09/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
The study characterized their regulatory functions of four znt members (znt1, znt2, znt6 and znt8) in Zn homeostasis in vertebrates. We found that the -1281/-1296 bp locus on the znt1 promoter, the -1/-16 bp locus on the znt2 promoter, the -825/-839 bp locus on the znt6 promoter, the -165/-180 bp locus and the -274/-292 bp STAT3 locus on the znt8 promoter were functional MTF-1 binding sites and had metal responsive element (MRE). Zn incubation increased activities of four znt promoters, which was mediated by MRE sites on znt1, znt2, znt6 and znt8 promoters and by STAT3 binding site on znt8 promoter. Moreover, Zn activated the transcription of these znts genes through MTF-1-MRE-dependent pathway. Zn incubation up-regulated the mRNA and total protein expression of ZnT1, ZnT2 and ZnT8 at both 24 h and 48 h. Overall, for the first time, this study offered novel insights for regulatory mechanism of Zn homeostasis in vertebrates.
Collapse
Affiliation(s)
- Chang-Chun Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chong-Chao Zhong
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Wei Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
18
|
Huang L, Zuo Y, Qin Y, Zhao L, Lin M, Yan Q. The Zinc Nutritional Immunity of Epinephelus coioides Contributes to the Importance of znuC During Pseudomonas plecoglossicida Infection. Front Immunol 2021; 12:678699. [PMID: 34017347 PMCID: PMC8129501 DOI: 10.3389/fimmu.2021.678699] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Previously, the dual RNA-seq was carried out in a Pseudomonas plecoglossicida- Epinephelus coioides infection model to investigate the dynamics of pathogen-host interplay in vivo. ZnuC, a member of ZnuCBA Zn importer, was found transcriptionally up-regulated during infection. Thus, this study aimed to assess its role during the trade-off for Zn between host and P. plecoglossicida. ICP-MS analysis and fluorescent staining showed that Zn was withheld from serum and accumulated in the spleen, with increased Zn uptake in the Golgi apparatus of macrophages after infection. Additionally, growth assay, macrophage infection and animal infection after gene knockout / silencing revealed that znuC was necessary for growth in Zn-limiting conditions, colonization, intracellular viability, immune escape and virulence of P. plecoglossicida. Further analysis with dual RNA-seq revealed associations of host's Zn nutritional immunity genes with bacterial Zn assimilation genes. IL6 and ZIP4 played key roles in this network, and markedly affected znuB expression, intracellular viability and immune escape, as revealed by gene silencing. Moreover, EMSA and GFP reporter gene analysis showed that Fur sensed changes in Fe concentration to regulate znuCBA in P. plecoglossicida. Jointly, these findings suggest a trade-off for Zn between host and P. plecoglossicida, while ZnuC is important for P. plecoglossicida Zn acquisition.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, China
| | - Yanfei Zuo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Mao Lin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| |
Collapse
|
19
|
Hu Y, Wang Y, Wang X, Wu X, Fu L, Liu X, Wen Y, Sheng J, Zhang J. The Role of Cation Diffusion Facilitator CDF-1 in Lipid Metabolism in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2021; 11:6237889. [PMID: 33871589 PMCID: PMC8495940 DOI: 10.1093/g3journal/jkab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 11/20/2022]
Abstract
Zinc is one of the most important trace elements as it plays a vital role in many biological processes. As well, aberrant zinc metabolism has been implicated in lipid-related metabolic diseases. Previously, we showed that zinc antagonizes iron to regulate sterol regulatory element-binding proteins and the stearoyl-CoA desaturase (SREBP-SCD) pathway in lipid metabolism in the model organism Caenorhabditis elegans. In this study, we present the identification of another cation diffusion facilitator, CDF-1, which regulates lipid metabolism along with SUR-7 in response to zinc. Inactivation of SBP-1, the only homolog of SREBPs, leads to an increased zinc level but decreased lipid accumulation. However, either the cdf-1(n2527) or sur-7(tm6523) mutation could successfully restore the altered fatty acid profile, fat content, and zinc level of the sbp-1(ep79) mutant. Furthermore, we found that CDF-1/SUR-7 may functionally bypass SBP-1 to directly affect the conversion activity of SCD in the biosynthesis of unsaturated fatty acids and lipid accumulation. Collectively, these results consistently support the link between zinc homeostasis and lipid metabolism via the SREBP-SCD axis by the cation diffusion facilitators CDF-1 and SUR-7.
Collapse
Affiliation(s)
- Ying Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanli Wang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xuanjun Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyun Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lin Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiayu Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yu Wen
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|