1
|
Wang X, Wang F, Yan L, Gao Z, Yang S, Su Z, Chen W, Li Y, Wang F. Adverse effects and underlying mechanism of rare earth elements. Environ Health 2025; 24:31. [PMID: 40350425 PMCID: PMC12067734 DOI: 10.1186/s12940-025-01178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/31/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Rare earth elements (REEs) have found broad application in a range of industries, including electronics, automotive, agriculture, and healthcare. However, their widespread utilization and release into the environment pose potential risks of human exposure. Despite extensive research on REEs toxicity, the relationship between exposure and subsequent health concerns remains ambiguous. Given that the biological effects of REEs can vary based on their design and application, assessing their toxicity can be highly challenging. OBJECTIVE This review is to offer a thorough comprehension of REEs' application and toxicity, guiding future research and policy-making to safeguard public health and environmental integrity. METHODS A systematic search across PubMed, Web of Science, Cochrane Library, and Embase was conducted using the terms: ("rare earth" OR "lanthanoid") AND ("health hazard" OR "toxic" OR "adverse health effect"). From 5,924 initial records, 89 studies were selected through deduplication and two-stage screening to assess systemic toxicity of REEs. An additional 100 articles on REEs mechanisms and applications were incorporated via citation tracking. All selections followed PRISMA guidelines with dual-author verification to ensure rigor. CONCLUSION The review emphasizes REEs' applications in various domains and documents potential environmental pathways. Furthermore, it elaborates on current processes to assess REEs-related toxicity across different model organisms and cell lines, estimating health threats posed by REEs exposure. Finally, based on the findings of both in vivo and in vitro experiments, the potential toxic mechanisms of REEs are detailed. To guide future research and policy development to safeguard public health and environmental integrity.
Collapse
Affiliation(s)
- Xuemei Wang
- Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Feiyu Wang
- Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Lirong Yan
- Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Zhixiang Gao
- Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Shengbo Yang
- Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Zhigang Su
- Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Wenting Chen
- Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Yanan Li
- Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China.
- School of Public Health, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China.
| | - Fenghong Wang
- Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China.
- School of Public Health, Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, China.
| |
Collapse
|
2
|
Cary CM, Fournier SB, Adams S, Wang X, Yurkow EJ, Stapleton PA. Single pulmonary nanopolystyrene exposure in late-stage pregnancy dysregulates maternal and fetal cardiovascular function. Toxicol Sci 2024; 199:149-159. [PMID: 38366927 PMCID: PMC11057520 DOI: 10.1093/toxsci/kfae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024] Open
Abstract
Large-scale production and waste of plastic materials have resulted in widespread environmental contamination by the breakdown product of bulk plastic materials to micro- and nanoplastics (MNPs). The small size of these particles enables their suspension in the air, making pulmonary exposure inevitable. Previous work has demonstrated that xenobiotic pulmonary exposure to nanoparticles during gestation leads to maternal vascular impairments, as well as cardiovascular dysfunction within the fetus. Few studies have assessed the toxicological consequences of maternal nanoplastic (NP) exposure; therefore, the objective of this study was to assess maternal and fetal health after a single maternal pulmonary exposure to polystyrene NP in late gestation. We hypothesized that this acute exposure would impair maternal and fetal cardiovascular function. Pregnant rats were exposed to nanopolystyrene on gestational day 19 via intratracheal instillation. 24 h later, maternal and fetal health outcomes were evaluated. Cardiovascular function was assessed in dams using vascular myography ex vivo and in fetuses in vivo function was measured via ultrasound. Both fetal and placental weight were reduced after maternal exposure to nanopolystyrene. Increased heart weight and vascular dysfunction in the aorta were evident in exposed dams. Maternal exposure led to vascular dysfunction in the radial artery of the uterus, a resistance vessel that controls blood flow to the fetoplacental compartment. Function of the fetal heart, fetal aorta, and umbilical artery after gestational exposure was dysregulated. Taken together, these data suggest that exposure to NPs negatively impacts maternal and fetal health, highlighting the concern of MNPs exposure on pregnancy and fetal development.
Collapse
Affiliation(s)
- C M Cary
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S Adams
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - X Wang
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - E J Yurkow
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
3
|
Liu G, Bao L, Chen C, Xu J, Cui X. The implication of mesenteric functions and the biological effects of nanomaterials on the mesentery. NANOSCALE 2023; 15:12868-12879. [PMID: 37492026 DOI: 10.1039/d3nr02494f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A growing number of nanomaterials are being broadly used in food-related fields as well as therapeutics. Oral exposure to these widespread nanomaterials is inevitable, with the intestine being a major target organ. Upon encountering the intestine, these nanoparticles can cross the intestinal barrier, either bypassing cells or via endocytosis pathways to enter the adjacent mesentery. The intricate structure of the mesentery and its entanglement with the abdominal digestive organs determine the final fate of nanomaterials in the human body. Importantly, mesentery-governed dynamic processes determine the distribution and subsequent biological effects of nanomaterials that cross the intestine, thus there is a need to understand how nanomaterials interact with the mesentery. This review presents the recent progress in understanding the mesenteric structure and function and highlights the importance of the mesentery in health and disease, with a focus on providing new insights and research directions around the biological effects of nanomaterials on the mesentery. A thorough comprehension of the interactions between nanomaterials and the mesentery will facilitate the design of safer nanomaterial-containing products and the development of more effective nanomedicines to combat intestinal disorders.
Collapse
Affiliation(s)
- Guanyu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| | - Jianfu Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| |
Collapse
|
4
|
Adeniyi OE, Adebayo OA, Akinloye O, Adaramoye OA. Combined cerium and zinc oxide nanoparticles induced hepato-renal damage in rats through oxidative stress mediated inflammation. Sci Rep 2023; 13:8513. [PMID: 37231036 DOI: 10.1038/s41598-023-35453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The toxicity profiles of nanoparticles (NPs) used in appliances nowadays remains unknown. In this study, we investigated the toxicological consequences of exposure to cerium oxide (CeO2) and zinc oxide (ZnO) nanoparticles given singly or in combination on the integrity of liver and kidney of male Wistar rats. Twenty (20) rats were allotted into four groups and treated as: Control (normal saline), CeO2NPs (50 μg/kg), ZnONPs (80 μg/kg) and [CeO2NPs (50 μg/kg) + ZnONPs (80 μg/kg)]. The nanoparticles were given to the animals through the intraperitoneal route, three times per week for four repeated weeks. Results revealed that CeO2 and ZnO NPs (singly) increased serum AST and ALT by 29% & 57%; 41% & 18%, and co-administration by 53% and 23%, respectively. CeO2 and ZnO NPs increased hepatic and renal malondialdehyde (MDA) by 33% and 30%; 38% and 67%, respectively, while co-administration increased hepatic and renal MDA by 43% and 40%, respectively. The combined NPs increased hepatic NO by 28%. Also, CeO2 and ZnO NPs, and combined increased BAX, interleukin-1β and TNF-α by 45, 38, 52%; 47, 23, 82% and 41, 83, 70%, respectively. Histology revealed hepatic necrosis and renal haemorrhagic parenchymal in NPs-treated rats. Summarily, CeO2 and ZnO NPs produced oxidative injury and induced inflammatory process in the liver and kidney of experimental animals.
Collapse
Affiliation(s)
- Olola Esther Adeniyi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olayinka Anthony Adebayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluyemi Akinloye
- Clinical Chemistry and Molecular Diagnostic Laboratory, Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria
| | - Oluwatosin Adekunle Adaramoye
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Biochemistry Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun State, Nigeria.
| |
Collapse
|
5
|
Cary CM, Seymore TN, Singh D, Vayas KN, Goedken MJ, Adams S, Polunas M, Sunil VR, Laskin DL, Demokritou P, Stapleton PA. Single inhalation exposure to polyamide micro and nanoplastic particles impairs vascular dilation without generating pulmonary inflammation in virgin female Sprague Dawley rats. Part Fibre Toxicol 2023; 20:16. [PMID: 37088832 PMCID: PMC10122824 DOI: 10.1186/s12989-023-00525-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation. OBJECTIVE The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP. METHODS Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones. RESULTS Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17β-estradiol were also observed suggesting that MNPs have endocrine disrupting activity. CONCLUSIONS These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.
Collapse
Affiliation(s)
- Chelsea M Cary
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Talia N Seymore
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 02115, Boston, MA, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, 08854, Piscataway, NJ, USA
| | - Samantha Adams
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Marianne Polunas
- Research Pathology Services, Rutgers University, 08854, Piscataway, NJ, USA
| | - Vasanthi R Sunil
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 02115, Boston, MA, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
- Department of Environmental and Occupational Health and Justice, Rutgers School of Public Health, Rutgers University, 08854, Piscataway, NJ, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA.
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Ferdous Z, Beegam S, Zaaba NE, Elzaki O, Tariq S, Greish YE, Ali BH, Nemmar A. Exacerbation of Thrombotic Responses to Silver Nanoparticles in Hypertensive Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2079630. [PMID: 35111278 PMCID: PMC8802099 DOI: 10.1155/2022/2079630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
With advent of nanotechnology, silver nanoparticles, AgNPs owing majorly to their antibacterial properties, are used widely in food industry and biomedical applications implying human exposure by various routes including inhalation. Several reports have suggested AgNPs induced pathophysiological effects in a cardiovascular system. However, cardiovascular diseases such as hypertension may interfere with AgNPs-induced response, yet majority of them are understudied. The aim of this work was to evaluate the thrombotic complications in response to polyethylene glycol- (PEG-) coated AgNPs using an experimental hypertensive (HT) mouse model. Saline (control) or PEG-AgNPs (0.5 mg/kg) were intratracheally (i.t.) instilled four times, i.e., on days 7, 14, 21, and 28 post-angiotensin II-induced HT, or vehicle (saline) infusion. On day 29, various parameters were assessed including thrombosis in pial arterioles and venules, platelet aggregation in whole blood in vitro, plasma markers of coagulation, and fibrinolysis and systemic oxidative stress. Pulmonary exposure to PEG-AgNPs in HT mice induced an aggravation of in vivo thrombosis in pial arterioles and venules compared to normotensive (NT) mice exposed to PEG-AgNPs or HT mice given saline. The prothrombin time, activated partial thromboplastin time, and platelet aggregation in vitro were exacerbated after exposure to PEG-AgNPs in HT mice compared with either NT mice exposed to nanoparticles or HT mice exposed to saline. Elevated concentrations of fibrinogen, plasminogen activator inhibitor-1, and von Willebrand factor were seen after the exposure to PEG-AgNPs in HT mice compared with either PEG-AgNPs exposed NT mice or HT mice given with saline. Likewise, the plasma levels of superoxide dismutase and nitric oxide were augmented by PEG-AgNPs in HT mice compared with either NT mice exposed to nanoparticles or HT mice exposed to saline. Collectively, these results demonstrate that PEG-AgNPs can potentially exacerbate the in vivo and in vitro procoagulatory and oxidative stress effect in HT mice and suggest that population with hypertension are at higher risk of the toxicity of PEG-AgNPs.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE
| | - Nur E. Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Science, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE
| | - Yaser E. Greish
- Department of Chemistry, College of Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE
| | - Badreldin H. Ali
- Department of Pharmacology and Clinical Pharmacy, Sultan Qaboos University, P.O. Box 35, Muscat 123, Al-Khod, Oman
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, UAE
| |
Collapse
|
7
|
Nemati A, Beyranvand F, Assadollahi V, Salahshoor MR, Alasvand M, Gholami MR. The effect of different concentrations of cerium oxide during pregnancy on ovarian follicle development in neonatal mice. Birth Defects Res 2020; 113:349-358. [PMID: 33283456 DOI: 10.1002/bdr2.1844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Cerium is a member of the rare metals group and widely used in drug delivery, gene therapy, molecular imaging and medicine. In this study, we investigated the effect of different doses of Cerium (IV) oxide (CeO2 ) during pregnancy on neonatal mice ovaries, as well as its effect on blood biochemical parameters. METHODS Thirty pregnant NMRI mice were divided into five groups: Control and 4 groups treated with CeO2 (10, 25, 80, 250 mg/kg.bw i.p) at the GD7 and GD14. The ovarian histological of neonatal (2 and 6 day-olds), as well as blood serum of neonates at 15-dpp were analyzed. RESULTS Count of ovarian primordial follicles in neonates at 2 dpp showed a significant decrease in the groups treated with 80 and 250 mg/kg.bw doses of CeO2 . There was also a significant decrease in ovarian primordial and primary follicles in neonates at 6-dpp at 250 mg/kg.bw doses of CeO2 in the control (P < 0.05). There was no significant difference in serum levels of malondialdehyde and total antioxidant capacity between the experimental and control groups. CONCLUSIONS Our results suggest that the effects of CeO2 on the ovarian tissue of neonatal mice during pregnancy may be dose-dependent.
Collapse
Affiliation(s)
- Afsaneh Nemati
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Beyranvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahideh Assadollahi
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Masoud Alasvand
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Gholami
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Fournier SB, D'Errico JN, Adler DS, Kollontzi S, Goedken MJ, Fabris L, Yurkow EJ, Stapleton PA. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol 2020; 17:55. [PMID: 33099312 PMCID: PMC7585297 DOI: 10.1186/s12989-020-00385-9] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Plastic is everywhere. It is used in food packaging, storage containers, electronics, furniture, clothing, and common single-use disposable items. Microplastic and nanoplastic particulates are formed from bulk fragmentation and disintegration of plastic pollution. Plastic particulates have recently been detected in indoor air and remote atmospheric fallout. Due to their small size, microplastic and nanoplastic particulate in the atmosphere can be inhaled and may pose a risk for human health, specifically in susceptible populations. When inhaled, nanosized particles have been shown to translocate across pulmonary cell barriers to secondary organs, including the placenta. However, the potential for maternal-to-fetal translocation of nanosized-plastic particles and the impact of nanoplastic deposition or accumulation on fetal health remain unknown. In this study we investigated whether nanopolystyrene particles can cross the placental barrier and deposit in fetal tissues after maternal pulmonary exposure. RESULTS Pregnant Sprague Dawley rats were exposed to 20 nm rhodamine-labeled nanopolystyrene beads (2.64 × 1014 particles) via intratracheal instillation on gestational day (GD) 19. Twenty-four hours later on GD 20, maternal and fetal tissues were evaluated using fluorescent optical imaging. Fetal tissues were fixed for particle visualization with hyperspectral microscopy. Using isolated placental perfusion, a known concentration of nanopolystyrene was injected into the uterine artery. Maternal and fetal effluents were collected for 180 min and assessed for polystyrene particle concentration. Twenty-four hours after maternal exposure, fetal and placental weights were significantly lower (7 and 8%, respectively) compared with controls. Nanopolystyrene particles were detected in the maternal lung, heart, and spleen. Polystyrene nanoparticles were also observed in the placenta, fetal liver, lungs, heart, kidney, and brain suggesting maternal lung-to-fetal tissue nanoparticle translocation in late stage pregnancy. CONCLUSION These studies confirm that maternal pulmonary exposure to nanopolystyrene results in the translocation of plastic particles to placental and fetal tissues and renders the fetoplacental unit vulnerable to adverse effects. These data are vital to the understanding of plastic particulate toxicology and the developmental origins of health and disease.
Collapse
Affiliation(s)
- Sara B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Derek S Adler
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Stamatina Kollontzi
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Laura Fabris
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Edward J Yurkow
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Phoebe A Stapleton
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int J Mol Sci 2020; 21:ijms21197310. [PMID: 33022979 PMCID: PMC7582686 DOI: 10.3390/ijms21197310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Engineered nanomaterials (ENMs) are products of the emerging nanotechnology industry and many different types of ENMs have been shown to cause chronic inflammation in the lungs of rodents after inhalation exposure, suggesting a risk to human health. Due to the increasing demand and use of ENMs in a variety of products, a careful evaluation of the risks to human health is urgently needed. An assessment of the immunotoxicity of ENMs should consider susceptibility factors including sex, pre-existing diseases, deficiency of specific genes encoding proteins involved in the innate or adaptive immune response, and co-exposures to other chemicals. This review will address evidence from experimental animal models that highlights some important issues of susceptibility to chronic lung inflammation and systemic immune dysfunction after pulmonary exposure to ENMs.
Collapse
|
10
|
Chien CY, Wen TJ, Cheng YH, Tsai YT, Chiang CY, Chien CT. Diabetes Upregulates Oxidative Stress and Downregulates Cardiac Protection to Exacerbate Myocardial Ischemia/Reperfusion Injury in Rats. Antioxidants (Basel) 2020; 9:E679. [PMID: 32751309 PMCID: PMC7465304 DOI: 10.3390/antiox9080679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes exacerbates myocardial ischemia/reperfusion (IR) injury by incompletely understood mechanisms. We explored whether diabetes diminished BAG3/Bcl-2/Nrf-2/HO-1-mediated cardioprotection and overproduced oxidative stress contributing to exaggerated IR injury. Streptozotocin-induced diabetes enhanced hyperglycemia, cardiac NADPH oxidase p22/p67 expression, malondialdehyde amount and leukocyte infiltration, altered the mesenteric expression of 4-HNE, CaSR, p-eNOS and BAG3 and impaired microvascular reactivity to the vasoconstrictor/vasodilator by a wire myography. In response to myocardial IR, diabetes further depressed BAG3/Bcl-2/Nrf-2/HO-1 expression, increased cleaved-caspase 3/poly(ADP-ribose) polymerase (PARP)/TUNEL-mediated apoptosis and exacerbated IR-induced left ventricular dysfunction characterized by further depressed microcirculation, heart rate, left ventricular systolic pressure and peak rate of pressure increase/decrease (±dp/dt) and elevated left ventricular end-diastolic pressure (LVEDP) and Evans blue-2,3,5-triphenyltetrazolium chloride-stained infarct size in diabetic hearts. Our results implicated diabetes exacerbated IR-induced myocardial dysfunction through downregulated BAG3/Bcl-2/Nrf-2/HO-1 expression, increased p22/p67/caspase 3/PARP/apoptosis-mediated oxidative injury and impaired microvascular reactivity.
Collapse
Affiliation(s)
- Chen-Yen Chien
- Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City 11260, Taiwan
| | - Ting-Jui Wen
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (T.-J.W.); (Y.-H.C.)
| | - Yu-Hsiuan Cheng
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (T.-J.W.); (Y.-H.C.)
| | - Yi-Ting Tsai
- Division of Cardiovascular Surgery, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chih-Yao Chiang
- Division of Cardiovascular Surgery, National Defense Medical Center, Taipei 11490, Taiwan;
- Division of Cardiovascular Surgery, Heart Center, Cheng Hsin General Hospital, Taipei 11220, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (T.-J.W.); (Y.-H.C.)
| |
Collapse
|
11
|
Examining the in vivo pulmonary toxicity of engineered metal oxide nanomaterials using a genetic algorithm-based dose-response-recovery clustering model. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.comtox.2019.100113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Ferdous Z, Al-Salam S, Greish YE, Ali BH, Nemmar A. Pulmonary exposure to silver nanoparticles impairs cardiovascular homeostasis: Effects of coating, dose and time. Toxicol Appl Pharmacol 2019; 367:36-50. [PMID: 30639276 DOI: 10.1016/j.taap.2019.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
Abstract
Pulmonary exposure to silver nanoparticles (AgNPs) revealed the potential of nanoparticles to cause pulmonary toxicity, cross the alveolar-capillary barrier, and distribute to remote organs. However, the mechanism underlying the effects of AgNPs on the cardiovascular system remains unclear. Hence, we investigated the cardiovascular mechanisms of pulmonary exposure to AgNPs (10 nm) with varying coatings [polyvinylpyrrolidone (PVP) and citrate (CT)], concentrations (0.05, 0.5 and 5 mg/kg body weight), and time points (1 and 7 days) in BALB/C mice. Silver ions (Ag+) were used as ionic control. Exposure to AgNPs induced lung inflammation. In heart, tumor necrosis factor α, interleukin 6, total antioxidants, reduced glutathione and 8-isoprostane significantly increased for both AgNPs. Moreover, AgNPs caused oxidative DNA damage and apoptosis in the heart. The plasma concentration of fibrinogen, plasminogen activation inhibitor-1 and brain natriuretic peptide were significantly increased for both coating AgNPs. Likewise, the prothrombin time and activated partial thromboplastin time were significantly decreased. Additionally, the PVP- and CT- AgNPs induced a significant dose-dependent increase in thrombotic occlusion time in cerebral microvessels at both time points. In vitro study on mice whole blood exhibited significant platelet aggregation for both particle types. Compared with AgNPs, Ag+ increased thrombogenicity and markers of oxidative stress, but did not induce either DNA damage or apoptosis in the heart. In conclusion, pulmonary exposure to AgNPs caused cardiac oxidative stress, DNA damage and apoptosis, alteration of coagulation markers and thrombosis. Our findings provide a novel mechanistic insight into the cardiovascular pathophysiological effects of lung exposure to AgNPs.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O Box 17666, Al Ain, United Arab Emirates
| | - Yaser E Greish
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 17551, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Al-Khod, Oman
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
13
|
Holland NA, Fraiser CR, Sloan RC, Devlin RB, Brown DA, Wingard CJ. Ultrafine Particulate Matter Increases Cardiac Ischemia/Reperfusion Injury via Mitochondrial Permeability Transition Pore. Cardiovasc Toxicol 2018; 17:441-450. [PMID: 28194639 DOI: 10.1007/s12012-017-9402-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ultrafine particulate matter (UFP) has been associated with increased cardiovascular morbidity and mortality. However, the mechanisms that drive PM-associated cardiovascular disease and dysfunction remain unclear. We examined the impact of oropharyngeal aspiration of 100 μg UFP from the Chapel Hill, NC, air shed in Sprague-Dawley rats on cardiac function, arrhythmogenesis, and cardiac ischemia/reperfusion (I/R) injury using a Langendorff working heart model. We found that exposure to UFP was capable of significantly exacerbating cardiac I/R injury without changing overall cardiac function or major changes in arrhythmogenesis. Cardiac I/R injury was attenuable with administration of cyclosporin A (CsA), suggesting a role for the mitochondrial permeability transition pore (mPTP) in UFP-associated cardiovascular toxicity. Isolated cardiac mitochondria displayed decreased Ca2+ buffering before opening of the mPTP. These findings suggest that UFP-induced expansion of cardiac I/R injury may be a result of mPTP Ca2+ sensitization resulting in increased mitochondrial permeability transition and potential initiation of mPTP-associated cell death pathways.
Collapse
Affiliation(s)
- Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Chad R Fraiser
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Ruben C Sloan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Robert B Devlin
- National Health and Environmental Effects Research Laboratory, Environmental Public Health Division, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - David A Brown
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA. .,Lansing School of Nursing and Health Sciences, Physical Therapy Department, Bellarmine University, 2001 Newburg Rd, Louisville, KY, 40205, USA.
| |
Collapse
|
14
|
Adebayo OA, Akinloye O, Adaramoye OA. Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice. Andrologia 2017; 50. [DOI: 10.1111/and.12920] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- O. A. Adebayo
- Faculty of Basic Medical Sciences; Department of Biochemistry; College of Medicine; University of Ibadan; Ibadan Nigeria
| | - O. Akinloye
- Faculty of Basic Medical Sciences; Department of Medical Laboratory Science; University of Lagos; Lagos Nigeria
| | - O. A. Adaramoye
- Faculty of Basic Medical Sciences; Department of Biochemistry; College of Medicine; University of Ibadan; Ibadan Nigeria
| |
Collapse
|
15
|
Inhalation exposure to three-dimensional printer emissions stimulates acute hypertension and microvascular dysfunction. Toxicol Appl Pharmacol 2017; 335:1-5. [PMID: 28942003 DOI: 10.1016/j.taap.2017.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 01/19/2023]
Abstract
Fused deposition modeling (FDM™), or three-dimensional (3D) printing has become routine in industrial, occupational and domestic environments. We have recently reported that 3D printing emissions (3DPE) are complex mixtures, with a large ultrafine particulate matter component. Additionally, we and others have reported that inhalation of xenobiotic particles in this size range is associated with an array of cardiovascular dysfunctions. Sprague-Dawley rats were exposed to 3DPE aerosols via nose-only exposure for ~3h. Twenty-four hours later, intravital microscopy was performed to assess microvascular function in the spinotrapezius muscle. Endothelium-dependent and -independent arteriolar dilation were stimulated by local microiontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). At the time of experiments, animals exposed to 3DPE inhalation presented with a mean arterial pressure of 125±4mmHg, and this was significantly higher than that for the sham-control group (94±3mmHg). Consistent with this pressor response in the 3DPE group, was an elevation of ~12% in resting arteriolar tone. Endothelium-dependent arteriolar dilation was significantly impaired after 3DPE inhalation across all iontophoretic ejection currents (0-27±15%, compared to sham-control: 15-120±21%). Endothelium-independent dilation was not affected by 3DPE inhalation. These alterations in peripheral microvascular resistance and reactivity are consistent with elevations in arterial pressure that follow 3DPE inhalation. Future studies must identify the specific toxicants generated by FDM™ that drive this acute pressor response.
Collapse
|
16
|
Health risk assessment of rare earth elements in cereals from mining area in Shandong, China. Sci Rep 2017; 7:9772. [PMID: 28852170 PMCID: PMC5575011 DOI: 10.1038/s41598-017-10256-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/08/2017] [Indexed: 11/23/2022] Open
Abstract
To investigate the concentrations of rare earth elements in cereals and assess human health risk through cereal consumption, a total of 327 cereal samples were collected from rare earth mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma—Mass Spectrometry (ICP—MS). The medians of total rare earth elements in cereals from mining and control areas were 74.22 μg/kg and 47.83 μg/kg, respectively, and the difference was statistically significant (P < 0.05). The wheat had the highest rare earth elements concentrations (109.39 μg/kg and 77.96 μg/kg for mining and control areas, respectively) and maize had the lowest rare earth elements concentrations (42.88 μg/kg and 30.25 μg/kg for mining and control areas, respectively). The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes of rare earth elements through cereal consumption were considerably lower than the acceptable daily intake (70 μg/kg bw). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to rare earth elements on children.
Collapse
|
17
|
Abukabda AB, Stapleton PA, McBride CR, Yi J, Nurkiewicz TR. Heterogeneous Vascular Bed Responses to Pulmonary Titanium Dioxide Nanoparticle Exposure. Front Cardiovasc Med 2017; 4:33. [PMID: 28596957 PMCID: PMC5442182 DOI: 10.3389/fcvm.2017.00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/01/2017] [Indexed: 01/06/2023] Open
Abstract
A growing body of research links engineered nanomaterial (ENM) exposure to adverse cardiovascular endpoints. The purpose of this study was to evaluate the impact of ENM exposure on vascular reactivity in discrete segments so that we may determine the most sensitive levels of the vasculature where these negative cardiovascular effects are manifest. We hypothesized that acute nano-TiO2 exposure differentially affects reactivity with a more robust impairment in the microcirculation. Sprague-Dawley rats (8–10 weeks) were exposed to nano-TiO2via intratracheal instillation (20, 100, or 200 µg suspended per 250 µL of vehicle) 24 h prior to vascular assessments. A serial assessment across distinct compartments of the vascular tree was then conducted. Wire myography was used to evaluate macrovascular active tension generation specifically in the thoracic aorta, the femoral artery, and third-order mesenteric arterioles. Pressure myography was used to determine vascular reactivity in fourth- and fifth-order mesenteric arterioles. Vessels were treated with phenylephrine, acetylcholine (ACh), and sodium nitroprusside. Nano-TiO2 exposure decreased endothelium-dependent relaxation in the thoracic aorta and femoral arteries assessed via ACh by 53.96 ± 11.6 and 25.08 ± 6.36%, respectively. Relaxation of third-order mesenteric arterioles was impaired by 100 and 20 µg nano-TiO2 exposures with mean reductions of 50.12 ± 8.7 and 68.28 ± 8.7%. Cholinergic reactivity of fourth- and fifth-order mesenteric arterioles was negatively affected by nano-TiO2 with diminished dilations of 82.86 ± 12.6% after exposure to 200 µg nano-TiO2, 42.6 ± 12.6% after 100 µg nano-TiO2, and 49.4 ± 12.6% after 20 µg nano-TiO2. Endothelium-independent relaxation was impaired in the thoracic aorta by 34.05 ± 25% induced by exposure to 200 µg nano-TiO2 and a reduction in response of 49.31 ± 25% caused by 100 µg nano-TiO2. Femoral artery response was reduced by 18 ± 5%, while third-order mesenteric arterioles were negatively affected by 20 µg nano-TiO2 with a mean decrease in response of 38.37 ± 10%. This is the first study to directly compare the differential effect of ENM exposure on discrete anatomical segments of the vascular tree. Pulmonary ENM exposure produced macrovascular and microvascular dysfunction resulting in impaired responses to endothelium-dependent, endothelium-independent, and adrenergic agonists with a more robust dysfunction at the microvascular level. These results provide additional evidence of an endothelium-dependent and endothelium-independent impairment in vascular reactivity.
Collapse
Affiliation(s)
- Alaeddin B Abukabda
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Carroll R McBride
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jinghai Yi
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
18
|
Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice. Int J Nanomedicine 2017; 12:2913-2922. [PMID: 28435267 PMCID: PMC5391826 DOI: 10.2147/ijn.s127180] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cerium oxide nanoparticles (CeO2 NPs), used as a diesel fuel catalyst, can be emitted into the ambient air, resulting in exposure to humans by inhalation. Recent studies have reported the development of lung toxicity after pulmonary exposure to CeO2 NPs. However, little is known about the possible thrombotic effects of these NPs. The present study investigated the acute (24 hours) effect of intratracheal (IT) instillation of either CeO2 NPs (0.1 or 0.5 mg/kg) or saline (control) on pulmonary and systemic inflammation and oxidative stress and thrombosis in mice. CeO2 NPs induced a significant increase of neutrophils into the bronchoalveolar lavage (BAL) fluid with an elevation of tumor necrosis factor α (TNFα) and a decrease in the activity of the antioxidant catalase. Lung sections of mice exposed to CeO2 NPs showed a dose-dependent infiltration of inflammatory cells consisting of macrophages and neutrophils. Similarly, the plasma levels of C-reactive protein and TNFα were significantly increased, whereas the activities of catalase and total antioxidant were significantly decreased. Interestingly, CeO2 NPs significantly and dose dependently induced a shortening of the thrombotic occlusion time in pial arterioles and venules. Moreover, the plasma concentrations of fibrinogen and plasminogen activator inhibitor-1 were significantly elevated by CeO2 NPs. The direct addition of CeO2 NPs (1, 5, or 25 μg/mL) to mouse whole blood, collected from the inferior vena cava, in vitro neither caused significant platelet aggregation nor affected prothrombin time or partial thromboplastin time, suggesting that the thrombotic events observed in vivo may have resulted from systemic inflammation and/or oxidative stress induced by CeO2 NPs. This study concludes that acute pulmonary exposure to CeO2 NPs induces pulmonary and systemic inflammation and oxidative stress and promotes thrombosis in vivo.
Collapse
Affiliation(s)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | | | - Priya Yuvaraju
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Al-Khod, Sultanate of Oman
| |
Collapse
|
19
|
Zhuang M, Zhao J, Li S, Liu D, Wang K, Xiao P, Yu L, Jiang Y, Song J, Zhou J, Wang L, Chu Z. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China. CHEMOSPHERE 2017; 168:578-582. [PMID: 27842718 DOI: 10.1016/j.chemosphere.2016.11.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/25/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg-1 and 38.67 μg kg-1, respectively, and the difference was statistically significant (p < 0.05). The leaf vegetable had the highest rare earth elements concentration (984.24 μg kg-1 and 81.24 μg kg-1 for mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg-1 and 24.63 μg kg-1 for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg-1 d-1 and 0.28 μg kg-1 d-1 for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg-1 d-1). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children.
Collapse
Affiliation(s)
- Maoqiang Zhuang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jinshan Zhao
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China
| | - Suyun Li
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China
| | - Danru Liu
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China
| | - Kebo Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China
| | - Peirui Xiao
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China
| | - Lianlong Yu
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China
| | - Ying Jiang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jian Song
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jingyang Zhou
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China
| | - Liansen Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China
| | - Zunhua Chu
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, PR China; Shandong Center for Food Safety Risk Assessment, Jinan, Shandong, PR China; Academy of Preventive Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
20
|
Armstead AL, Li B. Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine 2016; 11:6421-6433. [PMID: 27942214 PMCID: PMC5138053 DOI: 10.2147/ijn.s121238] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As the number of commercial and consumer products containing engineered nanomaterials (ENMs) continually rises, the increased use and production of these ENMs presents an important toxicological concern. Although ENMs offer a number of advantages over traditional materials, their extremely small size and associated characteristics may also greatly enhance their toxic potentials. ENM exposure can occur in various consumer and industrial settings through inhalation, ingestion, or dermal routes. Although the importance of accurate ENM characterization, effective dosage metrics, and selection of appropriate cell or animal-based models are universally agreed upon as important factors in ENM research, at present, there is no “standardized” approach used to assess ENM toxicity in the research community. Of particular interest is occupational exposure to tungsten carbide cobalt (WC-Co) “dusts,” composed of nano- and micro-sized particles, in hard metal manufacturing facilities and mining and drilling industries. Inhalation of WC-Co dust is known to cause “hard metal lung disease” and an increased risk of lung cancer; however, the mechanisms underlying WC-Co toxicity, the inflammatory disease state and progression to cancer are poorly understood. Herein, a discussion of ENM toxicity is followed by a review of the known literature regarding the effects of WC-Co particle exposure. The risk of WC-Co exposure in occupational settings and the updates of in vitro and in vivo studies of both micro- and nano-WC-Co particles are discussed.
Collapse
Affiliation(s)
- Andrea L Armstead
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University; Mary Babb Randolph Cancer Center, Morgantown, WV, USA
| |
Collapse
|
21
|
Abukabda AB, Stapleton PA, Nurkiewicz TR. Metal Nanomaterial Toxicity Variations Within the Vascular System. Curr Environ Health Rep 2016; 3:379-391. [PMID: 27686080 PMCID: PMC5112123 DOI: 10.1007/s40572-016-0112-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Engineered nanomaterials (ENM) are anthropogenic materials with at least one dimension less than 100 nm. Their ubiquitous employment in biomedical and industrial applications in the absence of full toxicological assessments raises significant concerns over their safety on human health. This is a significant concern, especially for metal and metal oxide ENM as they may possess the greatest potential to impair human health. A large body of literature has developed that reflects adverse systemic effects associated with exposure to these materials, but an integrated mechanistic framework for how ENM exposure influences morbidity remains elusive. This may be due in large part to the tremendous diversity of existing ENM and the rate at which novel ENM are produced. In this review, the influence of specific ENM physicochemical characteristics and hemodynamic factors on cardiovascular toxicity is discussed. Additionally, the toxicity of metallic and metal oxide ENM is presented in the context of the cardiovascular system and its discrete anatomical and functional components. Finally, future directions and understudied topics are presented. While it is clear that the nanotechnology boom has increased our interest in ENM toxicity, it is also evident that the field of cardiovascular nanotoxicology remains in its infancy and continued, expansive research is necessary in order to determine the mechanisms via which ENM exposure contributes to cardiovascular morbidity.
Collapse
Affiliation(s)
- Alaeddin B. Abukabda
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Phoebe A. Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Timothy R. Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
22
|
Holland NA, Thompson LC, Vidanapathirana AK, Urankar RN, Lust RM, Fennell TR, Wingard CJ. Impact of pulmonary exposure to gold core silver nanoparticles of different size and capping agents on cardiovascular injury. Part Fibre Toxicol 2016; 13:48. [PMID: 27558113 PMCID: PMC4997661 DOI: 10.1186/s12989-016-0159-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The uses of engineered nanomaterials have expanded in biomedical technology and consumer manufacturing. Furthermore, pulmonary exposure to various engineered nanomaterials has, likewise, demonstrated the ability to exacerbate cardiac ischemia reperfusion (I/R) injury. However, the influence of particle size or capping agent remains unclear. In an effort to address these influences we explored response to 2 different size gold core nanosilver particles (AgNP) with two different capping agents at 2 different time points. We hypothesized that a pulmonary exposure to AgNP induces cardiovascular toxicity influenced by inflammation and vascular dysfunction resulting in expansion of cardiac I/R Injury that is sensitive to particle size and the capping agent. METHODS Male Sprague-Dawley rats were exposed to 200 μg of 20 or 110 nm polyvinylprryolidone (PVP) or citrate capped AgNP. One and 7 days following intratracheal instillation serum was analyzed for concentrations of selected cytokines; cardiac I/R injury and isolated coronary artery and aorta segment were assessed for constrictor responses and endothelial dependent relaxation and endothelial independent nitric oxide dependent relaxation. RESULTS AgNP instillation resulted in modest increase in selected serum cytokines with elevations in IL-2, IL-18, and IL-6. Instillation resulted in a derangement of vascular responses to constrictors serotonin or phenylephrine, as well as endothelial dependent relaxations with acetylcholine or endothelial independent relaxations by sodium nitroprusside in a capping and size dependent manner. Exposure to both 20 and 110 nm AgNP resulted in exacerbation cardiac I/R injury 1 day following IT instillation independent of capping agent with 20 nm AgNP inducing marginally greater injury. Seven days following IT instillation the expansion of I/R injury persisted but the greatest injury was associated with exposure to 110 nm PVP capped AgNP resulted in nearly a two-fold larger infarct size compared to naïve. CONCLUSIONS Exposure to AgNP may result in vascular dysfunction, a potentially maladaptive sensitization of the immune system to respond to a secondary insult (e.g., cardiac I/R) which may drive expansion of I/R injury at 1 and 7 days following IT instillation where the extent of injury could be correlated with capping agents and AgNP size.
Collapse
Affiliation(s)
- Nathan A. Holland
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Leslie C. Thompson
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Achini K. Vidanapathirana
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Rahkee N. Urankar
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Robert M. Lust
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Timothy R. Fennell
- RTI International, Discovery Sciences, Research Triangle Park, NC 27709 USA
| | - Christopher J. Wingard
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| |
Collapse
|
23
|
Davidson DC, Derk R, He X, Stueckle TA, Cohen J, Pirela SV, Demokritou P, Rojanasakul Y, Wang L. Direct stimulation of human fibroblasts by nCeO2 in vitro is attenuated with an amorphous silica coating. Part Fibre Toxicol 2016; 13:23. [PMID: 27142434 PMCID: PMC4855843 DOI: 10.1186/s12989-016-0134-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/26/2016] [Indexed: 01/07/2023] Open
Abstract
Background Nano-scaled cerium oxide (nCeO2) is used in a variety of applications, including use as a fuel additive, catalyst, and polishing agent, yet potential adverse health effects associated with nCeO2 exposure remain incompletely understood. Given the increasing utility and demand for engineered nanomaterials (ENMs) such as nCeO2, “safety-by-design” approaches are currently being sought, meaning that the physicochemical properties (e.g., size and surface chemistry) of the ENMs are altered in an effort to maximize functionality while minimizing potential toxicity. In vivo studies have shown in a rat model that inhaled nCeO2 deposited deep in the lung and induced fibrosis. However, little is known about how the physicochemical properties of nCeO2, or the coating of the particles with a material such as amorphous silica (aSiO2), may affect the bio-activity of these particles. Thus, we hypothesized that the physicochemical properties of nCeO2 may explain its potential to induce fibrogenesis, and that a nano-thin aSiO2 coating on nCeO2 may counteract that effect. Results Primary normal human lung fibroblasts were treated at occupationally relevant doses with nCeO2 that was either left uncoated or was coated with aSiO2 (amsCeO2). Subsequently, fibroblasts were analyzed for known hallmarks of fibrogenesis, including cell proliferation and collagen production, as well as the formation of fibroblastic nodules. The results of this study are consistent with this hypothesis, as we found that nCeO2 directly induced significant production of collagen I and increased cell proliferation in vitro, while amsCeO2 did not. Furthermore, treatment of fibroblasts with nCeO2, but not amsCeO2, significantly induced the formation of fibroblastic nodules, a clear indicator of fibrogenicity. Such in vitro data is consistent with recent in vivo observations using the same nCeO2 nanoparticles and relevant doses. This effect appeared to be mediated through TGFβ signaling since chemical inhibition of the TGFβ receptor abolished these responses. Conclusions These results indicate that differences in the physicochemical properties of nCeO2 may alter the fibrogenicity of this material, thus highlighting the potential benefits of “safety-by-design” strategies. In addition, this study provides an efficient in vitro method for testing the fibrogenicity of ENMs that strongly correlates with in vivo findings.
Collapse
Affiliation(s)
- Donna C Davidson
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Raymond Derk
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Xiaoqing He
- Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, USA
| | - Todd A Stueckle
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Joel Cohen
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sandra V Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, USA
| | - Liying Wang
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| |
Collapse
|
24
|
Møller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia ACD, Andersen MHG, Kermanizadeh A, Jensen DM, Danielsen PH, Roursgaard M, Jantzen K, Loft S. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol 2016; 46:437-76. [DOI: 10.3109/10408444.2016.1149451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Thompson LC, Holland NA, Snyder RJ, Luo B, Becak DP, Odom JT, Harrison BS, Brown JM, Gowdy KM, Wingard CJ. Pulmonary instillation of MWCNT increases lung permeability, decreases gp130 expression in the lungs, and initiates cardiovascular IL-6 transsignaling. Am J Physiol Lung Cell Mol Physiol 2015; 310:L142-54. [PMID: 26589480 DOI: 10.1152/ajplung.00384.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 11/06/2015] [Indexed: 12/24/2022] Open
Abstract
Pulmonary instillation of multiwalled carbon nanotubes (MWCNT) has the potential to promote cardiovascular derangements, but the mechanisms responsible are currently unclear. We hypothesized that exposure to MWCNT would result in increased epithelial barrier permeability by 24 h postexposure and initiate a signaling process involving IL-6/gp130 transsignaling in peripheral vascular tissue. To test this hypothesis we assessed the impact of 1 and 10 μg/cm(2) MWCNT on transepithelial electrical resistance (TEER) and expression of barrier proteins and cell activation in vitro using normal human bronchial epithelial primary cells. Parallel studies using male Sprague-Dawley rats instilled with 100 μg MWCNT measured bronchoalveolar lavage (BAL) differential cell counts, BAL fluid total protein, and lung water-to-tissue weight ratios 24 h postexposure and quantified serum concentrations of IL-6, soluble IL-6r, and soluble gp130. Aortic sections were examined immunohistochemically for gp130 expression, and gp130 mRNA/protein expression was evaluated in rat lung, heart, and aortic tissue homogenates. Our in vitro findings indicate that 10 μg/cm(2) MWCNT decreased the development of TEER and zonula occludens-1 expression relative to the vehicle. In rats MWCNT instillation increased BAL protein, lung water, and induced pulmonary eosinophilia. Serum concentrations of soluble gp130 decreased, aortic endothelial expression of gp130 increased, and expression of gp130 in the lung was downregulated in the MWCNT-exposed group. We propose that pulmonary exposure to MWCNT can manifest as a reduced epithelial barrier and activator of vascular gp130-associated transsignaling that may promote susceptibility to cardiovascular derangements.
Collapse
Affiliation(s)
- Leslie C Thompson
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Ryan J Snyder
- NanoHealth Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina; and
| | - Bin Luo
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Daniel P Becak
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Jillian T Odom
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Benjamin S Harrison
- Wake Forest University Institute of Regenerative Medicine, Winston-Salem, North Carolina
| | - Jared M Brown
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Kymberly M Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina;
| |
Collapse
|
26
|
Minarchick VC, Stapleton PA, Sabolsky EM, Nurkiewicz TR. Cerium Dioxide Nanoparticle Exposure Improves Microvascular Dysfunction and Reduces Oxidative Stress in Spontaneously Hypertensive Rats. Front Physiol 2015; 6:339. [PMID: 26635625 PMCID: PMC4646966 DOI: 10.3389/fphys.2015.00339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022] Open
Abstract
The elevated production of reactive oxygen species (ROS) in the vascular wall is associated with cardiovascular diseases such as hypertension. This increase in oxidative stress contributes to various mechanisms of vascular dysfunction, such as decreased nitric oxide bioavailability. Therefore, anti-oxidants are being researched to decrease the high levels of ROS, which could improve the microvascular dysfunction associated with various cardiovascular diseases. From a therapeutic perspective, cerium dioxide nanoparticles (CeO2 NP) hold great anti-oxidant potential, but their in vivo activity is unclear. Due to this potential anti-oxidant action, we hypothesize that injected CeO2 NP would decrease microvascular dysfunction and oxidative stress associated with hypertension. In order to simulate a therapeutic application, spontaneously hypertensive (SH) and Wistar-Kyoto (WKY) rats were intravenously injected with either saline or CeO2 NP (100 μg suspended in saline). Twenty-four hours post-exposure mesenteric arteriolar reactivity was assessed via intravital microscopy. Endothelium-dependent and –independent function was assessed via acetylcholine and sodium nitroprusside. Microvascular oxidative stress was analyzed using fluorescent staining in isolated mesenteric arterioles. Finally, systemic inflammation was examined using a multiplex analysis and venular leukocyte flux was counted. Endothelium-dependent dilation was significantly decreased in the SH rats (29.68 ± 3.28%, maximal response) and this microvascular dysfunction was significantly improved following CeO2 NP exposure (43.76 ± 4.33%, maximal response). There was also an increase in oxidative stress in the SH rats, which was abolished following CeO2 NP treatment. These results provided evidence that CeO2 NP act as an anti-oxidant in vivo. There were also changes in the inflammatory profile in the WKY and SH rats. In WKY rats, IL-10 and TNF-α were increased following CeO2 NP treatment. Finally, leukocyte flux was increased in the SH rats (34 ± 4 vs. 17 ± 3 cells/min in the normotensive controls), but this activation was decreased following exposure (15 ± 2 vs. 34 ± 4 cells/min). These results indicated that CeO2 NP may alter the inflammatory response in both SH and WKY rats. Taken together, these results provide evidence that CeO2 NP act as an anti-oxidant in vivo and may improve microvascular reactivity in a model of hypertension.
Collapse
Affiliation(s)
- Valerie C Minarchick
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine Morgantown, WV, USA ; Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown, WV, USA
| | - Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine Morgantown, WV, USA ; Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown, WV, USA
| | - Edward M Sabolsky
- Department of Mechanical and Aerospace Engineering, West Virginia University Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine Morgantown, WV, USA ; Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown, WV, USA
| |
Collapse
|
27
|
Nichols CE, Shepherd DL, Knuckles TL, Thapa D, Stricker JC, Stapleton PA, Minarchick VC, Erdely A, Zeidler-Erdely PC, Alway SE, Nurkiewicz TR, Hollander JM. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol 2015; 309:H2017-30. [PMID: 26497962 DOI: 10.1152/ajpheart.00353.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/05/2015] [Indexed: 01/29/2023]
Abstract
Throughout the United States, air pollution correlates with adverse health outcomes, and cardiovascular disease incidence is commonly increased following environmental exposure. In areas surrounding active mountaintop removal mines (MTM), a further increase in cardiovascular morbidity is observed and may be attributed in part to particulate matter (PM) released from the mine. The mitochondrion has been shown to be central in the etiology of many cardiovascular diseases, yet its roles in PM-related cardiovascular effects are not realized. In this study, we sought to elucidate the cardiac processes that are disrupted following exposure to mountaintop removal mining particulate matter (PM MTM). To address this question, we exposed male Sprague-Dawley rats to PM MTM, collected within one mile of an active MTM site, using intratracheal instillation. Twenty-four hours following exposure, we evaluated cardiac function, apoptotic indices, and mitochondrial function. PM MTM exposure elicited a significant decrease in ejection fraction and fractional shortening compared with controls. Investigation into the cellular impacts of PM MTM exposure identified a significant increase in mitochondrial-induced apoptotic signaling, as reflected by an increase in TUNEL-positive nuclei and increased caspase-3 and -9 activities. Finally, a significant increase in mitochondrial transition pore opening leading to decreased mitochondrial function was identified following exposure. In conclusion, our data suggest that pulmonary exposure to PM MTM increases cardiac mitochondrial-associated apoptotic signaling and decreases mitochondrial function concomitant with decreased cardiac function. These results suggest that increased cardiovascular disease incidence in populations surrounding MTM mines may be associated with increased cardiac cell apoptotic signaling and decreased mitochondrial function.
Collapse
Affiliation(s)
- Cody E Nichols
- West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia
| | - Danielle L Shepherd
- West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia
| | - Travis L Knuckles
- Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia; West Virginia University, School of Public Health, Morgantown, West Virginia
| | - Dharendra Thapa
- West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia
| | - Janelle C Stricker
- Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia
| | - Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia; West Virginia University, Department of Physiology and Pharmacology, Morgantown, West Virginia
| | - Valerie C Minarchick
- Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia; West Virginia University, Department of Physiology and Pharmacology, Morgantown, West Virginia
| | - Aaron Erdely
- West Virginia University, Department of Physiology and Pharmacology, Morgantown, West Virginia; National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Patti C Zeidler-Erdely
- West Virginia University, Department of Physiology and Pharmacology, Morgantown, West Virginia; National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Stephen E Alway
- West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia
| | - Timothy R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia; West Virginia University, Department of Physiology and Pharmacology, Morgantown, West Virginia
| | - John M Hollander
- West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, Morgantown, West Virginia;
| |
Collapse
|
28
|
Stapleton PA, Nichols CE, Yi J, McBride CR, Minarchick VC, Shepherd DL, Hollander JM, Nurkiewicz TR. Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology 2015; 9:941-51. [PMID: 25475392 DOI: 10.3109/17435390.2014.984251] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Due to the ongoing evolution of nanotechnology, there is a growing need to assess the toxicological outcomes in under-studied populations in order to properly consider the potential of engineered nanomaterials (ENM) and fully enhance their safety. Recently, we and others have explored the vascular consequences associated with gestational nanomaterial exposure, reporting microvascular dysfunction within the uterine circulation of pregnant dams and the tail artery of fetal pups. It has been proposed (via work derived by the Barker Hypothesis) that mitochondrial dysfunction and subsequent oxidative stress mechanisms as a possible link between a hostile gestational environment and adult disease. Therefore, in this study, we exposed pregnant Sprague-Dawley rats to nanosized titanium dioxide aerosols after implantation (gestational day 6). Pups were delivered, and the progeny grew into adulthood. Microvascular reactivity, mitochondrial respiration and hydrogen peroxide production of the coronary and uterine circulations of the female offspring were evaluated. While there were no significant differences within the maternal or litter characteristics, endothelium-dependent dilation and active mechanotransduction in both coronary and uterine arterioles were significantly impaired. In addition, there was a significant reduction in maximal mitochondrial respiration (state 3) in the left ventricle and uterus. These studies demonstrate microvascular dysfunction and coincide with mitochondrial inefficiencies in both the cardiac and uterine tissues, which may represent initial evidence that prenatal ENM exposure produces microvascular impairments that persist throughout multiple developmental stages.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Cody E Nichols
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Jinghai Yi
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Carroll R McBride
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Valerie C Minarchick
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Danielle L Shepherd
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - John M Hollander
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Timothy R Nurkiewicz
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| |
Collapse
|
29
|
Gagnon J, Fromm KM. Toxicity and Protective Effects of Cerium Oxide Nanoparticles (Nanoceria) Depending on Their Preparation Method, Particle Size, Cell Type, and Exposure Route. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500643] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Dunnick KM, Pillai R, Pisane KL, Stefaniak AB, Sabolsky EM, Leonard SS. The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity. Biol Trace Elem Res 2015; 166:96-107. [PMID: 25778836 PMCID: PMC4469090 DOI: 10.1007/s12011-015-0297-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/03/2015] [Indexed: 11/01/2022]
Abstract
Cerium oxide (CeO2) nanoparticles, which are used in a variety of products including solar cells, gas sensors, and catalysts, are expected to increase in industrial use. This will subsequently lead to additional occupational exposures, making toxicology screenings crucial. Previous toxicology studies have presented conflicting results as to the extent of CeO2 toxicity, which is hypothesized to be due to the ability of Ce to exist in both a +3 and +4 valence state. Thus, to study whether valence state and oxygen vacancy concentration are important in CeO2 toxicity, CeO2 nanoparticles were doped with gadolinium to adjust the cation (Ce, Gd) and anion (O) defect states. The hypothesis that doping would increase toxicity and decrease antioxidant abilities as a result of increased oxygen vacancies and inhibition of +3 to +4 transition was tested. Differences in toxicity and reactivity based on valence state were determined in RLE-6TN rat alveolar epithelial and NR8383 rat alveolar macrophage cells using enhanced dark field microscopy, electron paramagnetic resonance (EPR), and annexin V/propidium iodide cell viability stain. Results from EPR indicated that as doping increased, antioxidant potential decreased. Alternatively, doping had no effect on toxicity at 24 h. The present results imply that as doping increases, thus subsequently increasing the Ce(3+)/Ce(4+) ratio, antioxidant potential decreases, suggesting that differences in reactivity of CeO2 are due to the ability of Ce to transition between the two valence states and the presence of increased oxygen vacancies, rather than dependent on a specific valence state.
Collapse
Affiliation(s)
- Katherine M Dunnick
- National Institute for Occupational Safety and Health, HELD, 1095 Willowdale Rd, Morgantown, WV, 26505, USA,
| | | | | | | | | | | |
Collapse
|
31
|
Armstead AL, Minarchick VC, Porter DW, Nurkiewicz TR, Li B. Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model. PLoS One 2015; 10:e0118778. [PMID: 25738830 PMCID: PMC4349695 DOI: 10.1371/journal.pone.0118778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/22/2015] [Indexed: 12/30/2022] Open
Abstract
Exposure to hard metal tungsten carbide cobalt (WC-Co) "dusts" in enclosed industrial environments is known to contribute to the development of hard metal lung disease and an increased risk for lung cancer. Currently, the influence of local and systemic inflammation on disease progression following WC-Co exposure remains unclear. To better understand the relationship between WC-Co nanoparticle (NP) exposure and its resultant effects, the acute local pulmonary and systemic inflammatory responses caused by WC-Co NPs were explored using an intra-tracheal instillation (IT) model and compared to those of CeO2 (another occupational hazard) NP exposure. Sprague-Dawley rats were given an IT dose (0-500 μg per rat) of WC-Co or CeO2 NPs. Following 24-hr exposure, broncho-alveolar lavage fluid and whole blood were collected and analyzed. A consistent lack of acute local pulmonary inflammation was observed in terms of the broncho-alveolar lavage fluid parameters examined (i.e. LDH, albumin, and macrophage activation) in animals exposed to WC-Co NP; however, significant acute pulmonary inflammation was observed in the CeO2 NP group. The lack of acute inflammation following WC-Co NP exposure contrasts with earlier in vivo reports regarding WC-Co toxicity in rats, illuminating the critical role of NP dose and exposure time and bringing into question the potential role of impurities in particle samples. Further, we demonstrated that WC-Co NP exposure does not induce acute systemic effects since no significant increase in circulating inflammatory cytokines were observed. Taken together, the results of this in vivo study illustrate the distinct differences in acute local pulmonary and systemic inflammatory responses to NPs composed of WC-Co and CeO2; therefore, it is important that the outcomes of pulmonary exposure to one type of NPs may not be implicitly extrapolated to other types of NPs.
Collapse
Affiliation(s)
- Andrea L. Armstead
- Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, West Virginia, United States of America
| | - Valerie C. Minarchick
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Dale W. Porter
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Timothy R. Nurkiewicz
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Bingyun Li
- Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- Mary Babb Randolph Cancer Center, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Minarchick VC, Stapleton PA, Fix NR, Leonard SS, Sabolsky EM, Nurkiewicz TR. Intravenous and gastric cerium dioxide nanoparticle exposure disrupts microvascular smooth muscle signaling. Toxicol Sci 2014; 144:77-89. [PMID: 25481005 DOI: 10.1093/toxsci/kfu256] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cerium dioxide nanoparticles (CeO2 NP) hold great therapeutic potential, but the in vivo effects of non-pulmonary exposure routes are unclear. The first aim was to determine whether microvascular function is impaired after intravenous and gastric CeO2 NP exposure. The second aim was to investigate the mechanism(s) of action underlying microvascular dysfunction following CeO2 NP exposure. Rats were exposed to CeO2 NP (primary diameter: 4 ± 1 nm, surface area: 81.36 m(2)/g) by intratracheal instillation, intravenous injection, or gastric gavage. Mesenteric arterioles were harvested 24 h post-exposure and vascular function was assessed using an isolated arteriole preparation. Endothelium-dependent and independent function and vascular smooth muscle (VSM) signaling (soluble guanylyl cyclase [sGC] and cyclic guanosine monophosphate [cGMP]) were assessed. Reactive oxygen species (ROS) generation and nitric oxide (NO) production were analyzed. Compared with controls, endothelium-dependent and independent dilation were impaired following intravenous injection (by 61% and 45%) and gastric gavage (by 63% and 49%). However, intravenous injection resulted in greater microvascular impairment (16% and 35%) compared with gastric gavage at an identical dose (100 µg). Furthermore, sGC activation and cGMP responsiveness were impaired following pulmonary, intravenous, and gastric CeO2 NP treatment. Finally, nanoparticle exposure resulted in route-dependent, increased ROS generation and decreased NO production. These results indicate that CeO2 NP exposure route differentially impairs microvascular function, which may be mechanistically linked to decreased NO production and subsequent VSM signaling. Fully understanding the mechanisms behind CeO2 NP in vivo effects is a critical step in the continued therapeutic development of this nanoparticle.
Collapse
Affiliation(s)
- Valerie C Minarchick
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506 *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| | - Phoebe A Stapleton
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506 *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| | - Natalie R Fix
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| | - Stephen S Leonard
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| | - Edward M Sabolsky
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| | - Timothy R Nurkiewicz
- *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506 *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506 *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
33
|
Erdakos GB, Bhave PV, Pouliot GA, Simon H, Mathur R. Predicting the effects of nanoscale cerium additives in diesel fuel on regional-scale air quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12775-82. [PMID: 25271762 DOI: 10.1021/es504050g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissions and alter the emissions of carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbon (HC) species, including several hazardous air pollutants (HAPs). To predict their net effect on regional air quality, we review the emissions literature and develop a multipollutant inventory for a hypothetical scenario in which nCe additives are used in all on-road and nonroad diesel vehicles. We apply the Community Multiscale Air Quality (CMAQ) model to a domain covering the eastern U.S. for a summer and a winter period. Model calculations suggest modest decreases of average PM2.5 concentrations and relatively larger decreases in particulate elemental carbon. The nCe additives also have an effect on 8 h maximum ozone in summer. Variable effects on HAPs are predicted. The total U.S. emissions of fine-particulate cerium are estimated to increase 25-fold and result in elevated levels of airborne cerium (up to 22 ng/m3), which might adversely impact human health and the environment.
Collapse
Affiliation(s)
- Garnet B Erdakos
- Atmospheric Modeling and Analysis Division, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | | | | | | | | |
Collapse
|
34
|
Yokel RA, Hussain S, Garantziotis S, Demokritou P, Castranova V, Cassee FR. The Yin: An adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. ENVIRONMENTAL SCIENCE. NANO 2014; 1:406-428. [PMID: 25243070 PMCID: PMC4167411 DOI: 10.1039/c4en00039k] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This critical review evolved from a SNO Special Workshop on Nanoceria panel presentation addressing the toxicological risks of nanoceria: accumulation, target organs, and issues of clearance; how exposure dose/concentration, exposure route, and experimental preparation/model influence the different reported effects of nanoceria; and how can safer by design concepts be applied to nanoceria? It focuses on the most relevant routes of human nanoceria exposure and uptake, disposition, persistence, and resultant adverse effects. The pulmonary, oral, dermal, and topical ocular exposure routes are addressed as well as the intravenous route, as the latter provides a reference for the pharmacokinetic fate of nanoceria once introduced into blood. Nanoceria reaching the blood is primarily distributed to mononuclear phagocytic system organs. Available data suggest nanoceria's distribution is not greatly affected by dose, shape, or dosing schedule. Significant attention has been paid to the inhalation exposure route. Nanoceria distribution from the lung to the rest of the body is less than 1% of the deposited dose, and from the gastrointestinal tract even less. Intracellular nanoceria and organ burdens persist for at least months, suggesting very slow clearance rates. The acute toxicity of nanoceria is very low. However, large/accumulated doses produce granuloma in the lung and liver, and fibrosis in the lung. Toxicity, including genotoxicity, increases with exposure time; the effects disappear slowly, possibly due to nanoceria's biopersistence. Nanoceria may exert toxicity through oxidative stress. Adverse effects seen at sites distal to exposure may be due to nanoceria translocation or released biomolecules. An example is elevated oxidative stress indicators in the brain, in the absence of appreciable brain nanoceria. Nanoceria may change its nature in biological environments and cause changes in biological molecules. Increased toxicity has been related to greater surface Ce3+, which becomes more relevant as particle size decreases and the ratio of surface area to volume increases. Given its biopersistence and resulting increased toxicity with time, there is a risk that long-term exposure to low nanoceria levels may eventually lead to adverse health effects. This critical review provides recommendations for research to resolve some of the many unknowns of nanoceria's fate and adverse effects.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, US ; Graduate Center for Toxicology, University of Kentucky, US
| | - Salik Hussain
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, US
| | - Stavros Garantziotis
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, US
| | | | - Vincent Castranova
- National Institute for Occupational Safety and Health, US ; West Virginia University School of Pharmacy, Morgantown, WV, US
| | - Flemming R Cassee
- Centre for Sustainability, Environmental & Health, National Institute for Public Health and the Environment, Bilthoven, the Netherlands ; Institute of Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
35
|
Li Y, Zhang Y, Yan B. Nanotoxicity overview: nano-threat to susceptible populations. Int J Mol Sci 2014; 15:3671-97. [PMID: 24590128 PMCID: PMC3975361 DOI: 10.3390/ijms15033671] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/09/2014] [Accepted: 02/13/2014] [Indexed: 01/12/2023] Open
Abstract
Due to the increasing applications of nanomaterials and nanotechnology, potential danger of nanoparticle exposure has become a critical issue. However, recent nanotoxicity studies have mainly focused on the health risks to healthy adult population. The nanotoxicity effects on susceptible populations (such as pregnant, neonate, diseased, and aged populations) have been overlooked. Due to the alterations in physiological structures and functions in susceptible populations, they often suffer more damage from the same exposure. Thus, it is urgent to understand the effects of nanoparticle exposure on these populations. In order to fill this gap, the potential effects of nanoparticles to pregnant females, neonate, diseased, and aged population, as well as the possible underlying mechanisms are reviewed in this article. Investigations show that responses from susceptible population to nanoparticle exposure are often more severe. Reduced protection mechanism, compromised immunity, and impaired self-repair ability in these susceptible populations may contribute to the aggravated toxicity effects. This review will help minimize adverse effects of nanoparticles to susceptible population in future nanotechnology applications.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
36
|
Thompson LC, Urankar RN, Holland NA, Vidanapathirana AK, Pitzer JE, Han L, Sumner SJ, Lewin AH, Fennell TR, Lust RM, Brown JM, Wingard CJ. C₆₀ exposure augments cardiac ischemia/reperfusion injury and coronary artery contraction in Sprague Dawley rats. Toxicol Sci 2014; 138:365-78. [PMID: 24431213 DOI: 10.1093/toxsci/kfu008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The potential uses of engineered C₆₀ fullerene (C₆₀) have expanded in recent decades to include industrial and biomedical applications. Based on clinical findings associated with particulate matter exposure and our data with multi-walled carbon nanotubes, we hypothesized that ischemia/reperfusion (I/R) injury and pharmacological responses in isolated coronary arteries would depend upon the route of exposure and gender in rats instilled with C₆₀. Male and female Sprague Dawley rats were used to test this hypothesis by surgical induction of cardiac I/R injury in situ 24 h after intratracheal (IT) or intravenous (IV) instillation of 28 μg of C₆₀ formulated in polyvinylpyrrolidone (PVP) or PVP vehicle. Serum was collected for quantification of various cytokines. Coronary artery segments were isolated for assessment of vasoactive pharmacology via wire myography. Both IV and IT exposure to C₆₀ resulted in expansion of myocardial infarction in male and female rats following I/R injury. Serum-collected post-I/R showed elevated concentrations of interleukin-6 and monocyte chemotactic protein-1 in male rats exposed to IV C₆₀. Coronary arteries isolated from male rats exposed to IT C₆₀ demonstrated augmented vasocontraction in response to endothelin-1 that was attenuated with Indomethacin. IV C₆₀ exposure resulted in impaired acetylcholine relaxation in male rats and IT C₆₀ exposure resulted in depressed vasorelaxation in response to sodium nitroprusside in female rats. Based on these data, we conclude that IT and IV exposure to C₆₀ results in unique cardiovascular consequences that may favor heightened coronary resistance and myocardial susceptibility to I/R injury.
Collapse
Affiliation(s)
- Leslie C Thompson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|