1
|
Abstract
Research into cell therapy based cardiac repair and regeneration has experienced explosive growth over the last decade, however further progress is hindered by an inability to serially and non-invasively image cell survival and fate decisions following implantation. Recent advances in magnetic resonance imaging (MRI) reporter gene techniques have enabled in vivo imaging of cell survival, proliferation, migration, and differentiation, however this has mostly been performed in stationary tissues. A small series of recent studies has examined the possibility of using MRI reporter genes to track the survival of cells injected into the heart following myocardial infarction. In this review, we seek to frame the emerging field of MRI reporter gene based cardiac cell tracking within the larger framework of the needs of cardiac regeneration therapy and the more established field of MRI cell tracking. While initial studies have demonstrated a promising ability to track the viability and proliferation of cells used for cell therapy, the ultimate goal of MR reporter gene imaging in the heart remains the ability to simultaneously correlate cell fate decisions with additional measures of structural and functional recovery.
Collapse
Affiliation(s)
- Moriel Vandsburger
- Department of Physiology, University of Kentucky, Lexington, KY USA
- Saha Cardiovascular Research Center, University of Kentucky, 741 South Limestone, BBSRB 355, Lexington, KY 40536 USA
| |
Collapse
|
2
|
Patrick PS, Hammersley J, Loizou L, Kettunen MI, Rodrigues TB, Hu DE, Tee SS, Hesketh R, Lyons SK, Soloviev D, Lewis DY, Aime S, Fulton SM, Brindle KM. Dual-modality gene reporter for in vivo imaging. Proc Natl Acad Sci U S A 2014; 111:415-20. [PMID: 24347640 PMCID: PMC3890795 DOI: 10.1073/pnas.1319000111] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ability to track cells and their patterns of gene expression in living organisms can increase our understanding of tissue development and disease. Gene reporters for bioluminescence, fluorescence, radionuclide, and magnetic resonance imaging (MRI) have been described but these suffer variously from limited depth penetration, spatial resolution, and sensitivity. We describe here a gene reporter, based on the organic anion transporting protein Oatp1a1, which mediates uptake of a clinically approved, Gd(3+)-based, hepatotrophic contrast agent (gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid). Cells expressing the reporter showed readily reversible, intense, and positive contrast (up to 7.8-fold signal enhancement) in T1-weighted magnetic resonance images acquired in vivo. The maximum signal enhancement obtained so far is more than double that produced by MRI gene reporters described previously. Exchanging the Gd(3+) ion for the radionuclide, (111)In, also allowed detection by single-photon emission computed tomography, thus combining the spatial resolution of MRI with the sensitivity of radionuclide imaging.
Collapse
Affiliation(s)
- P. Stephen Patrick
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - Jayne Hammersley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Louiza Loizou
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Mikko I. Kettunen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - Tiago B. Rodrigues
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - De-En Hu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - Sui-Seng Tee
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Robin Hesketh
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Scott K. Lyons
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - Dmitry Soloviev
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - David Y. Lewis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - Silvio Aime
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, 10126 Turin, Italy
| | - Sandra M. Fulton
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Kevin M. Brindle
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| |
Collapse
|
3
|
Pal SN, Kofidis T. Therapeutic potential of genes in cardiac repair. Expert Rev Cardiovasc Ther 2013; 11:1015-28. [PMID: 23945013 DOI: 10.1586/14779072.2013.814867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases remain the primary reason of premature death and contribute to a major percentage of global patient morbidity. Recent knowledge in the molecular mechanisms of myocardial complications have identified novel therapeutic targets along with the availability of vectors that offer the chance for designing gene therapy technique for protection and revival of the diseased heart functions. Gene transfer procedure into the myocardium is demonstrated through direct injection of plasmid DNA or through the coronary vasculature using the direct or indirect delivery of viral vectors. Direct DNA injection to the myocardium is reported to be of immense value in research studies that aims at understanding the activities of various elements in myocardium. It is also deemed vital for investigating the effect of the myocardial pathophysiology on expression of the foreign genes that are transferred. Gene therapies have been reported to heal cardiac pathologies such as myocardial ischemia, heart failure and inherited myopathies in several animal models. The results obtained from these animal studies have also encouraged a flurry of early clinical trials. This translational research has been triggered by an enhanced understanding of the biological mechanisms involved in tissue repair after ischemic injury. While safety concerns take utmost priority in these trials, several combinational therapies, various routes and dose of delivery are being tested before concrete optimization and complete potential of gene therapy is convincingly understood.
Collapse
Affiliation(s)
- Shripad N Pal
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
4
|
Abstract
A heart attack kills off many cells in the heart. Parts of the heart become thin and fail to contract properly following the replacement of lost cells by scar tissue. However, the notion that the same adult cardiomyocytes beat throughout the lifespan of the organ and organism, without the need for a minimum turnover, gives way to a fascinating investigations. Since the late 1800s, scientists and cardiologists wanted to demonstrate that the cardiomyocytes cannot be generated after the perinatal period in human beings. This curiosity has been passed down in subsequent years and has motivated more and more accurate studies in an attempt to exclude the presence of renewed cardiomyocytes in the tissue bordering the ischaemic area, and then to confirm the dogma of the heart as terminally differentiated organ. Conversely, peri-lesional mitosis of cardiomyocytes were discovered initially by light microscopy and subsequently confirmed by more sophisticated technologies. Controversial evidence of mechanisms underlying myocardial regeneration has shown that adult cardiomyocytes are renewed through a slow turnover, even in the absence of damage. This turnover is ensured by the activation of rare clusters of progenitor cells interspersed among the cardiac cells functionally mature. Cardiac progenitor cells continuously interact with each other, with the cells circulating in the vessels of the coronary microcirculation and myocardial cells in auto-/paracrine manner. Much remains to be understood; however, the limited functional recovery in human beings after myocardial injury clearly demonstrates weak regenerative potential of cardiomyocytes and encourages the development of new approaches to stimulate this process.
Collapse
Affiliation(s)
- Lucio Barile
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|