1
|
Abdal Dayem A, Bin Jang S, Lim N, Yeo HC, Kwak Y, Lee SH, Shin HJ, Cho SG. Advances in lacrimal gland organoid development: Techniques and therapeutic applications. Biomed Pharmacother 2025; 183:117870. [PMID: 39870025 DOI: 10.1016/j.biopha.2025.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage. This review explores the recent advancements in LG organoid generation using tissues and stem cells, highlighting cutting-edge techniques in biomaterial-based and scaffold-free technologies. Additionally, we shed light on the complex pathophysiology of LG dysfunction, providing insights into the LG physiological roles while identifying strategies for generating LG organoids and exploring their potential clinical applications. Alterations in LG morphology or secretory function can affect the tear film stability and quality, leading to various ocular pathological conditions. This comprehensive review underlines the critical crosslink of LG organoid development with disease modeling and drug screening, underscoring their potential for advancing therapeutic applications.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nahee Lim
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shin-Hyo Lee
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Republic of Korea; Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Hyun Jin Shin
- Konkuk University School of Medicine, Chungju city, Republic of Korea; Department of Ophthalmology, Konkuk University Medical Center, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea; Institute of Biomedical Science & Technology, Konkuk University, Seoul, Republic of Korea.
| | - Sang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
2
|
Patrício D, Santiago J, Mano JF, Fardilha M. Organoids of the male reproductive system: Challenges, opportunities, and their potential use in fertility research. WIREs Mech Dis 2023; 15:e1590. [PMID: 36442887 DOI: 10.1002/wsbm.1590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/17/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022]
Abstract
Organoids are units of function of a given organ able to reproduce, in culture, a biological structure similar in architecture and function to its counterpart in vivo. Today, it is possible to develop an organoid from a fragment of tissue, a stem cell located in an adult organ, an embryonic stem cell, or an induced pluripotent stem cell. In the past decade, many organoids have been developed which mimic stomach, pancreas, liver and brain tissues, optic cups, among many others. Additionally, different male reproductive system organs have already been developed as organoids, including the prostate and testis. These 3D cultures may be of great importance for urological cancer research and have the potential to be used in fertility research for the study of spermatozoa production and maturation, germ cells-somatic cells interactions, and mechanisms of disease. They also provide an accurate preclinical pipeline for drug testing and discovery, as well as for the study of drug resistance. In this work, we revise the current knowledge on organoid technology and its use in healthcare and research, describe the male reproductive system organoids and other biomaterials already developed, and discuss their current application. Finally, we highlight the research gaps, challenges, and opportunities in the field and propose strategies to improve the use of organoids for the study of male infertility situations. This article is categorized under: Reproductive System Diseases > Stem Cells and Development Reproductive System Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Daniela Patrício
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Joana Santiago
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Asal M, Koçak G, Sarı V, Reçber T, Nemutlu E, Utine CA, Güven S. Development of lacrimal gland organoids from iPSC derived multizonal ocular cells. Front Cell Dev Biol 2023; 10:1058846. [PMID: 36684423 PMCID: PMC9846036 DOI: 10.3389/fcell.2022.1058846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Lacrimal gland plays a vital role in maintaining the health and function of the ocular surface. Dysfunction of the gland leads to disruption of ocular surface homeostasis and can lead to severe outcomes. Approaches evolving through regenerative medicine have recently gained importance to restore the function of the gland. Using human induced pluripotent stem cells (iPSCs), we generated functional in vitro lacrimal gland organoids by adopting the multi zonal ocular differentiation approach. We differentiated human iPSCs and confirmed commitment to neuro ectodermal lineage. Then we identified emergence of mesenchymal and epithelial lacrimal gland progenitor cells by the third week of differentiation. Differentiated progenitors underwent branching morphogenesis in the following weeks, typical of lacrimal gland development. We were able to confirm the presence of lacrimal gland specific acinar, ductal, and myoepithelial cells and structures during weeks 4-7. Further on, we demonstrated the role of miR-205 in regulation of the lacrimal gland organoid development by monitoring miR-205 and FGF10 mRNA levels throughout the differentiation process. In addition, we assessed the functionality of the organoids using the β-Hexosaminidase assay, confirming the secretory function of lacrimal organoids. Finally, metabolomics analysis revealed a shift from amino acid metabolism to lipid metabolism in differentiated organoids. These functional, tear proteins secreting human lacrimal gland organoids harbor a great potential for the improvement of existing treatment options of lacrimal gland dysfunction and can serve as a platform to study human lacrimal gland development and morphogenesis.
Collapse
Affiliation(s)
- Melis Asal
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gamze Koçak
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Vedat Sarı
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Canan Aslı Utine
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Department of Ophthalmology, Dokuz Eylül University Hospital, Dokuz Eylül University, Izmir, Turkey
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey,*Correspondence: Sinan Güven,
| |
Collapse
|
4
|
Miotti G, Parodi PC, Ferrari A, Salati C, Zeppieri M. Stem Cells in Ophthalmology: From the Bench to the Bedside. HANDBOOK OF STEM CELL APPLICATIONS 2023:1-24. [DOI: 10.1007/978-981-99-0846-2_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 09/13/2023]
|
5
|
Miotti G, Parodi PC, Ferrari A, Salati C, Zeppieri M. Stem Cells in Ophthalmology: From the Bench to the Bedside. HANDBOOK OF STEM CELL APPLICATIONS 2023:1-24. [DOI: https:/doi.org/10.1007/978-981-99-0846-2_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 08/28/2023]
|
6
|
Miotti G, Parodi PC, Zeppieri M. Stem cell therapy in ocular pathologies in the past 20 years. World J Stem Cells 2021; 13:366-385. [PMID: 34136071 PMCID: PMC8176844 DOI: 10.4252/wjsc.v13.i5.366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/12/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Stem cell therapies are successfully used in various fields of medicine. This new approach of research is also expanding in ophthalmology. Huge investments, resources and important clinical trials have been performed in stem cell research and in potential therapies. In recent years, great strides have been made in genetic research, which permitted and enhanced the differentiation of stem cells. Moreover, the possibility of exploiting stem cells from other districts (such as adipose, dental pulp, bone marrow stem cells, etc.) for the treatment of ophthalmic diseases, renders this topic fascinating. Furthermore, great strides have been made in biomedical engineering, which have proposed new materials and three-dimensional structures useful for cell therapy of the eye. The encouraging results obtained on clinical trials conducted on animals have given a significant boost in the creation of study protocols also in humans. Results are limited to date, but clinical trials continue to evolve. Our attention is centered on the literature reported over the past 20 years, considering animal (the most represented in literature) and human clinical trials, which are limiting. The aim of our review is to present a brief overview of the main types of treatments based on stem cells in the field of ophthalmic pathologies.
Collapse
Affiliation(s)
- Giovanni Miotti
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| |
Collapse
|
7
|
In vitro reconstructed 3D corneal tissue models for ocular toxicology and ophthalmic drug development. In Vitro Cell Dev Biol Anim 2021; 57:207-237. [PMID: 33544359 DOI: 10.1007/s11626-020-00533-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Testing of all manufactured products and their ingredients for eye irritation is a regulatory requirement. In the last two decades, the development of alternatives to the in vivo Draize eye irritation test method has substantially advanced due to the improvements in primary cell isolation, cell culture techniques, and media, which have led to improved in vitro corneal tissue models and test methods. Most in vitro models for ocular toxicology attempt to reproduce the corneal epithelial tissue which consists of 4-5 layers of non-keratinized corneal epithelial cells that form tight junctions, thereby limiting the penetration of chemicals, xenobiotics, and pharmaceuticals. Also, significant efforts have been directed toward the development of more complex three-dimensional (3D) equivalents to study wound healing, drug permeation, and bioavailability. This review focuses on in vitro reconstructed 3D corneal tissue models and their utilization in ocular toxicology as well as their application to pharmacology and ophthalmic research. Current human 3D corneal epithelial cell culture models have replaced in vivo animal eye irritation tests for many applications, and substantial validation efforts are in progress to verify and approve alternative eye irritation tests for widespread use. The validation of drug absorption models and further development of models and test methods for many ophthalmic and ocular disease applications is required.
Collapse
|
8
|
Effect of Stem Cell-Derived Extracellular Vesicles on Damaged Human Corneal Endothelial Cells. Stem Cells Int 2021; 2021:6644463. [PMID: 33531909 PMCID: PMC7834816 DOI: 10.1155/2021/6644463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/19/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Human corneal endothelial cells (HCECs) are essential to visual function; however, since they have limited proliferative capacity in vivo, they are prone to corneal endothelial dysfunction. At present, the only treatment is a corneal transplantation from donor cadavers. Also, due to a global shortage of donor corneas, it is important to find alternative strategies. Recent studies highlight that stem cell–derived extracellular vesicles (EVs) play a relevant role in stem cell-induced regeneration by reprogramming injured cells and inducing proregenerative pathways. The aim of this work is to evaluate whether EVs derived from mesenchymal stem cells (MSC-EVs) are able to promote regeneration of damaged HCECs. Methods We isolated HCECs from discarded corneas in patients undergoing corneal transplantation or enucleation (N = 23 patients). Bone marrow mesenchymal stem cells (MSCs) were obtained from Lonza, cultured, and characterized. MSC-EVs were obtained from supernatants of MSCs. In order to establish a valid in vitro damage model to test the regenerative potential of EVs on HCECs, we evaluated the proliferation rate and the apoptosis after exposing the cells to serum-deprived medium at different concentrations for 24 hours. We then evaluated the HCEC migration through a wound healing assay. Results In the selected serum deprivation damage conditions, the treatment with different doses of MSC-EVs resulted in a significantly higher proliferation rate of HCECs at all the tested concentrations of EVs (5‐20 × 103 MSC-EV/cell). MSC-EVs/cell induced a significant decrease in number of total apoptotic cells after 24 hours of serum deprivation. Finally, the wound healing assay showed a significantly faster repair of the wound after HCEC treatment with MSC-EVs. Conclusions Results highlight the already well-known proregenerative potential of MSC-EVs in a totally new biological model, the endothelium of the cornea. MSC-EVs, indeed, induced proliferation and survival of HCECs, promoting the migration of HCECs in vitro.
Collapse
|
9
|
Manafi N, Shokri F, Achberger K, Hirayama M, Mohammadi MH, Noorizadeh F, Hong J, Liebau S, Tsuji T, Quinn PMJ, Mashaghi A. Organoids and organ chips in ophthalmology. Ocul Surf 2020; 19:1-15. [PMID: 33220469 DOI: 10.1016/j.jtos.2020.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Recent advances have driven the development of stem cell-derived, self-organizing, three-dimensional miniature organs, termed organoids, which mimic different eye tissues including the retina, cornea, and lens. Organoids and engineered microfluidic organ-on-chips (organ chips) are transformative technologies that show promise in simulating the architectural and functional complexity of native organs. Accordingly, they enable exploration of facets of human disease and development not accurately recapitulated by animal models. Together, these technologies will increase our understanding of the basic physiology of different eye structures, enable us to interrogate unknown aspects of ophthalmic disease pathogenesis, and serve as clinically-relevant surrogates for the evaluation of ocular therapeutics. Both the burden and prevalence of monogenic and multifactorial ophthalmic diseases, which can cause visual impairment or blindness, in the human population warrants a paradigm shift towards organoids and organ chips that can provide sensitive, quantitative, and scalable phenotypic assays. In this article, we review the current situation of organoids and organ chips in ophthalmology and discuss how they can be leveraged for translational applications.
Collapse
Affiliation(s)
- Navid Manafi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands; Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Fereshteh Shokri
- Department of Epidemiology, Erasmus Medical Center, 3000 CA, Rotterdam, the Netherlands
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany
| | - Masatoshi Hirayama
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Chiba, 272-8513, Japan; Department of Ophthalmology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Melika Haji Mohammadi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands
| | | | - Jiaxu Hong
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands; Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, China; Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Key Laboratory of Myopia, National Health and Family Planning Commission, Shanghai, China
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan; Organ Technologies Inc., Minato, Tokyo, 105-0001, Japan
| | - Peter M J Quinn
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University. New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center - New York-Presbyterian Hospital, New York, NY, USA.
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
10
|
Bandeira F, Goh TW, Setiawan M, Yam GHF, Mehta JS. Cellular therapy of corneal epithelial defect by adipose mesenchymal stem cell-derived epithelial progenitors. Stem Cell Res Ther 2020; 11:14. [PMID: 31900226 PMCID: PMC6942321 DOI: 10.1186/s13287-019-1533-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background Persistent epithelial defects (PED), associated with limbal stem cell deficiency (LSCD), require ocular surface reconstruction with a stable corneal epithelium (CE). This study investigated CE reformation using human adipose mesenchymal stem cells (ADSC), which derived epithelial progenitors via mesenchymal-epithelial transition (MET). Methods STEMPRO human ADSC were cultured with specific inhibitors antagonizing glycogen synthase kinase-3 and transforming growth factor-β signaling, followed by culture under a defined progenitor cell targeted-epithelial differentiation condition to generate epithelial-like cells (MET-Epi), which were characterized for cell viability, mesenchymal, and epithelial phenotypes using immunofluorescence and flow cytometry. Tissue-engineered (TE) MET-Epi cells on fibrin gel were transplanted to corneal surface of the rat LSCD model caused by alkali injury. Epithelial healing, corneal edema, and haze grading, CE formation were assessed by fluorescein staining, slit lamp bio-microscopy, anterior segment optical coherence tomography, and immunohistochemistry. Results CD73high/CD90high/CD105high/CD166high/CD14negative/CD31negative human ADSC underwent MET, giving viable epithelial-like progenitors expressing δNp63, CDH1 (E-cadherin), epidermal growth factor receptor, integrin-β4, and cytokeratin (CK)-5, 9. Under defined epithelial differentiation culture, these progenitors generated MET-Epi cells expressing cell junction proteins ZO1 and occludin. When transplanted onto rat corneal surface with LSCD-induced PED, TE-MET-Epi achieved more efficient epithelial healing, suppressed corneal edema, and opacities, when compared to corneas without treatment or transplanted with TE-ADSC. CE markers (CK3, 12, and CDH1) were expressed on TE-MET-Epi-transplanted corneas but not in other control groups. Conclusion Human ADSC-derived epithelial-like cells, via MET, recovered the CE from PED associated with LSCD. ADSC can be a viable adult stem cell source for potential autologous epithelial cell-based therapy for corneal surface disorders.
Collapse
Affiliation(s)
- Francisco Bandeira
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore.,Federal University of São Paulo, Sao Paulo, Brazil
| | - Tze-Wei Goh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore
| | - Melina Setiawan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore
| | - Gary Hin-Fai Yam
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore. .,Eye-Academic Clinical Program, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore.
| | - Jodhbir S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore. .,Eye-Academic Clinical Program, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
11
|
Bremond-Gignac D, Copin H, Benkhalifa M. Corneal epithelial stem cells for corneal injury. Expert Opin Biol Ther 2018; 18:997-1003. [PMID: 30092649 DOI: 10.1080/14712598.2018.1508443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Ocular surface diseases with limbal insufficiency represent a therapeutic challenge for restoring vision. This corneal deficiency includes both classical ocular diseases (as chemical burns) and rare ocular diseases (as congenital aniridia and ocular cicatricial pemphigoid). AREAS COVERED Our understanding of limbal epithelial stem cells (LESCs) has increased the potential for treatment options. Pharmacological treatment strategies (as regenerating agent ophthalmic solutions) and especially surgical treatment strategies are available. Isolated LESCs can be produced by limbal primary cultures obtained from explants or cell suspensions. We review the latest cornea surgery techniques. EXPERT OPINION The adjunction of human limbal mesenchymal cells as a support for limbal stem cell primary cultures appears to be of great interest. Recently, human-induced pluripotent stem cells have allowed the generation of minicorneal organoids. This potential means of creating a three-dimensional cornea with in vitro maturation opens up important research areas for corneal regeneration therapy.
Collapse
Affiliation(s)
- Dominique Bremond-Gignac
- a Ophthalmology Department , University Hospital Necker-Enfants Malades , Paris , France.,b CNRS FR3636 , Paris V René Descartes University , Paris , France
| | - Henri Copin
- c Reproductive Medicine, Developmental Biology & Reproduction , University Hospital & School of Medicine, Picardie University Jules Verne , Amiens , France
| | - Moncef Benkhalifa
- c Reproductive Medicine, Developmental Biology & Reproduction , University Hospital & School of Medicine, Picardie University Jules Verne , Amiens , France
| |
Collapse
|
12
|
Peng Y, Baulier E, Ke Y, Young A, Ahmedli NB, Schwartz SD, Farber DB. Human embryonic stem cells extracellular vesicles and their effects on immortalized human retinal Müller cells. PLoS One 2018; 13:e0194004. [PMID: 29538408 PMCID: PMC5851617 DOI: 10.1371/journal.pone.0194004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) released by virtually every cell of all organisms are involved in processes of intercellular communication through the delivery of their functional mRNAs, proteins and bioactive lipids. We previously demonstrated that mouse embryonic stem cell-released EVs (mESEVs) are able to transfer their content to different target retinal cells, inducing morphological and biochemical changes in them. The main objective of this paper is to characterize EVs derived from human embryonic stem cells (hESEVs) and investigate the effects that they have on cultured retinal glial, progenitor Müller cells, which are known to give rise to retinal neurons under specific conditions. This would allow us to establish if hESEVs have a pro-regenerative potential not yet described that could be used in the future for treatment of human retinal degenerative diseases. Initially, we showed that hESEVs are heterogeneous in size, contain mRNAs and proteins involved in the induction and maintenance of stem cell pluripotency and can be internalized by cultured Müller cells. After a single exposure to hESEVs these cells display changes in their gene expression profile, and with multiple exposures they de-differentiate and trans-differentiate into retinal neuronal precursors. hESEVs were then fractionated into microvesicles (MVs) and exosomes (EXOs), which were characterized by size, specific surface proteins and biochemical/molecular components. We demonstrate that despite the similar internalization of non-fractionated hESEVs, MVs and EXOs by Müller progenitor cells, in vitro, only the release of MVs' cargo into the cells' cytoplasm induces specific changes in their levels of pluripotency mRNAs and early retinal proteins. EXOs do not produce any detectable effect. Thus, we conclude that MVs and MVs-containing hESEVs are promising agents that possibly could promote the regeneration of diseased or damaged retinas in vivo through inducing glial Müller cells to become replacement neurons.
Collapse
Affiliation(s)
- Yingqian Peng
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Edouard Baulier
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Yifeng Ke
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Alejandra Young
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Novruz B. Ahmedli
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Steven D. Schwartz
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Debora B. Farber
- Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, CA, United States of America
- Brain Research Institute, UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
13
|
Saghizadeh M, Kramerov AA, Svendsen CN, Ljubimov AV. Concise Review: Stem Cells for Corneal Wound Healing. Stem Cells 2017; 35:2105-2114. [PMID: 28748596 PMCID: PMC5637932 DOI: 10.1002/stem.2667] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/16/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Corneal wound healing is a complex process that occurs in response to various injuries and commonly used refractive surgery. It is a significant clinical problem, which may lead to serious complications due to either incomplete (epithelial) or excessive (stromal) healing. Epithelial stem cells clearly play a role in this process, whereas the contribution of stromal and endothelial progenitors is less well studied. The available evidence on stem cell participation in corneal wound healing is reviewed, together with the data on the use of corneal and non-corneal stem cells to facilitate this process in diseased or postsurgical conditions. Important aspects of corneal stem cell generation from alternative cell sources, including pluripotent stem cells, for possible transplantation upon corneal injuries or in disease conditions are also presented. Stem Cells 2017;35:2105-2114.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Andrei A. Kramerov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
| | - Clive N. Svendsen
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Alexander V. Ljubimov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
14
|
Botchkarev VA. Second International Symposium-Epigenetic Regulation of Skin Regeneration and Aging: From Chromatin Biology towards the Understanding of Epigenetic Basis of Skin Diseases. J Invest Dermatol 2017; 137:1604-1608. [PMID: 28583676 DOI: 10.1016/j.jid.2017.01.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
15
|
Klingeborn M, Dismuke WM, Bowes Rickman C, Stamer WD. Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res 2017; 59:158-177. [PMID: 28465248 PMCID: PMC5537591 DOI: 10.1016/j.preteyeres.2017.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are nanometer-sized vesicles that are released by cells in a controlled fashion and mediate a plethora of extra- and intercellular activities. Some key functions of exosomes include cell-cell communication, immune modulation, extracellular matrix turnover, stem cell division/differentiation, neovascularization and cellular waste removal. While much is known about their role in cancer, exosome function in the many specialized tissues of the eye is just beginning to undergo rigorous study. Here we review current knowledge of exosome function in the visual system in the context of larger bodies of data from other fields, in both health and disease. Additionally, we discuss recent advances in the exosome field including use of exosomes as a therapeutic vehicle, exosomes as a source of biomarkers for disease, plus current standards for isolation and validation of exosome populations. Finally, we use this foundational information about exosomes in the eye as a platform to identify areas of opportunity for future research studies.
Collapse
Affiliation(s)
- Mikael Klingeborn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA
| | - W Michael Dismuke
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Aberdam E, Petit I, Sangari L, Aberdam D. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing. PLoS One 2017. [PMID: 28640863 PMCID: PMC5481014 DOI: 10.1371/journal.pone.0179913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.
Collapse
Affiliation(s)
- Edith Aberdam
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
| | - Isabelle Petit
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
| | - Linda Sangari
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
| | - Daniel Aberdam
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives. Int J Mol Sci 2017; 18:ijms18010198. [PMID: 28106829 PMCID: PMC5297829 DOI: 10.3390/ijms18010198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/07/2023] Open
Abstract
Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions.
Collapse
|