1
|
Santorelli M, Bhamidipati PS, Courte J, Swedlund B, Jain N, Poon K, Schildknecht D, Kavanagh A, MacKrell VA, Sondkar T, Malaguti M, Quadrato G, Lowell S, Thomson M, Morsut L. Control of spatio-temporal patterning via cell growth in a multicellular synthetic gene circuit. Nat Commun 2024; 15:9867. [PMID: 39562554 PMCID: PMC11577002 DOI: 10.1038/s41467-024-53078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
A major goal in synthetic development is to build gene regulatory circuits that control patterning. In natural development, an interplay between mechanical and chemical communication shapes the dynamics of multicellular gene regulatory circuits. For synthetic circuits, how non-genetic properties of the growth environment impact circuit behavior remains poorly explored. Here, we first describe an occurrence of mechano-chemical coupling in synthetic Notch (synNotch) patterning circuits: high cell density decreases synNotch-gated gene expression in different cellular systems in vitro. We then construct, both in vitro and in silico, a synNotch-based signal propagation circuit whose outcome can be regulated by cell density. Spatial and temporal patterning outcomes of this circuit can be predicted and controlled via modulation of cell proliferation, initial cell density, and/or spatial distribution of cell density. Our work demonstrates that synthetic patterning circuit outcome can be controlled via cellular growth, providing a means for programming multicellular circuit patterning outcomes.
Collapse
Affiliation(s)
- Marco Santorelli
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pranav S Bhamidipati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Josquin Courte
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Swedlund
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naisargee Jain
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyle Poon
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominik Schildknecht
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andriu Kavanagh
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Victoria A MacKrell
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Trusha Sondkar
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mattias Malaguti
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Giorgia Quadrato
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sally Lowell
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Beckman Center for Single-Cell Profiling and Engineering, Pasadena, CA, USA.
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Alissa N, Fang WB, Medrano M, Bergeron N, Kozai Y, Hu Q, Redding C, Thyfault J, Hamilton-Reeves J, Berkland C, Cheng N. CCL2 signaling promotes skeletal muscle wasting in non-tumor and breast tumor models. Dis Model Mech 2024; 17:dmm050398. [PMID: 38973385 DOI: 10.1242/dmm.050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Despite advancements in treatment, approximately 25% of patients with breast cancer experience long-term skeletal muscle wasting (SMW), which limits mobility, reduces drug tolerance and adversely impacts survival. By understanding the underlying molecular mechanisms of SMW, we may be able to develop new strategies to alleviate this condition and improve the lives of patients with breast cancer. Chemokines are small soluble factors that regulate homing of immune cells to tissues during inflammation. In breast cancers, overexpression of C-C chemokine ligand 2 (CCL2) correlates with unfavorable prognosis. Elevated levels of CCL2 in peripheral blood indicate possible systemic effects of this chemokine in patients with breast cancer. Here, we investigated the role of CCL2 signaling on SMW in tumor and non-tumor contexts. In vitro, increasing concentrations of CCL2 inhibited myoblast and myotube function through C-C chemokine receptor 2 (CCR2)-dependent mechanisms involving JNK, SMAD3 and AMPK signaling. In healthy mice, delivery of recombinant CCL2 protein promoted SMW in a dose-dependent manner. In vivo knockdown of breast tumor-derived CCL2 partially protected against SMW. Overall, chronic, upregulated CCL2-CCR2 signaling positively regulates SMW, with implications for therapeutic targeting.
Collapse
Affiliation(s)
- Nadia Alissa
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Marcela Medrano
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nick Bergeron
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuuka Kozai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Qingting Hu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Chloe Redding
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John Thyfault
- Department of Cell Biology and Physiology and Internal Medicine-Division of Endocrinology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jill Hamilton-Reeves
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Nikki Cheng
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Wen S, Huang X, Ma J, Zhao G, Ma T, Chen K, Huang G, Chen J, Shi J, Wang S. Exosomes derived from MSC as drug system in osteoarthritis therapy. Front Bioeng Biotechnol 2024; 12:1331218. [PMID: 38576449 PMCID: PMC10993706 DOI: 10.3389/fbioe.2024.1331218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the joint with irreversible cartilage damage as the main pathological feature. With the development of regenerative medicine, mesenchymal stem cells (MSCs) have been found to have strong therapeutic potential. However, intraarticular MSCs injection therapy is limited by economic costs and ethics. Exosomes derived from MSC (MSC-Exos), as the important intercellular communication mode of MSCs, contain nucleic acid, proteins, lipids, microRNAs, and other biologically active substances. With excellent editability and specificity, MSC-Exos function as a targeted delivery system for OA treatment, modulating immunity, inhibiting apoptosis, and promoting regeneration. This article reviews the mechanism of action of MSC-Exos in the treatment of osteoarthritis, the current research status of the preparation of MSC-Exos and its application of drug delivery in OA therapy.
Collapse
Affiliation(s)
- Shuzhan Wen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingchun Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanglei Zhao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tiancong Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Kangming Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Gangyong Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingsheng Shi
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqun Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Gao X, Hou T, Wang L, Liu Y, Guo J, Zhang L, Yang T, Tang W, An M, Wen M. Aligned electrospun fibers of different diameters for improving cell migration capacity. Colloids Surf B Biointerfaces 2024; 234:113674. [PMID: 38039823 DOI: 10.1016/j.colsurfb.2023.113674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Electrospun fibers have gained significant attention as scaffolds in skin tissue engineering due to their biomimetic properties, which resemble the fibrous extracellular matrix. The morphological characteristics of electrospun fibers play a crucial role in determining cell behavior. However, the effects of electrospun fibers' arrangement and diameters on human skin fibroblasts (HSFs) remain elusive. Here, we revealed the impact of electrospun fiber diameters (700 nm, 2000 nm, and 3000 nm) on HSFs' proliferation, migration, and functional expression. The results demonstrated that all fibers exhibited good cytocompatibility. HSFs cultured on nanofibers (700 nm diameter) displayed a more dispersed and elongated morphology. Conversely, fibers with a diameter of 3000 nm exhibited a reduced specific surface area and lower adsorption of adhesion proteins, resulting in enhanced cell migration speed and effective migration rate. Meanwhile, the expression levels of migration-related genes and proteins were upregulated at 48 h for the 3000 nm fibers. This study demonstrated the unique role of fiber diameters in controlling the physiological functions of cells, especially decision-making and navigating migration in complex microenvironments of aligned electrospun fibers, and highlights the utility of these bioactive substitutes in skin tissue engineering applications.
Collapse
Affiliation(s)
- Xiang Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Tian Hou
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Jiqiang Guo
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Li Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Wenjie Tang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China.
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
5
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
6
|
Hori H, Sakai K, Ohashi A, Nakai S. Chitin powder enhances growth factor production and therapeutic effects of mesenchymal stem cells in a chronic kidney disease rat model. J Artif Organs 2023; 26:203-211. [PMID: 35976577 DOI: 10.1007/s10047-022-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 10/15/2022]
Abstract
Previously, we fabricated a device with polylactic acid nonwoven filters and mesenchymal stem cells (MSCs), which effectively reduced urinary protein levels in a rat model of chronic kidney disease (CKD) but could not suppress CKD progression. Therefore, to improve the therapeutic effects of MSCs, in this study, we analyzed the ability of rat adipose tissue-derived MSCs (ADSCs) in contact with chitin nonwoven filters or chitin powder to produce growth factors and examined their therapeutic effect in an adriamycin (ADR)-induced CKD rat model. Hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) production was significantly enhanced by ADSCs cultured in a medium containing chitin powder (C-ADSCs) compared with that by ADSCs cultured in a standard medium without chitin (N-ADSCs). However, the production of HGF and VEGF by ADSCs on chitin nonwoven filters was not significantly enhanced compared with that by the control. Intravenous C-ADSC injection significantly increased podocin expression and improved proteinuria compared with those in saline-treated CKD rats; however, no such improvements were observed in the N-ADSC-treated group. These results showed that ADSCs cultured in a medium supplemented with chitin powder suppressed proteinuria via enhanced HGF and VEGF production in ADR-induced CKD rats to mitigate podocyte damage, offering a new strategy to reduce the dose of MSC therapy for safe and effective treatment of kidney disease.
Collapse
Affiliation(s)
- Hideo Hori
- Faculty of Medical Technology, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Kazuyoshi Sakai
- Faculty of Clinical Engineering, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Atsushi Ohashi
- Faculty of Clinical Engineering, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Shigeru Nakai
- Faculty of Clinical Engineering, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
7
|
The Proangiogenic Potential of Rat Adipose-Derived Stromal Cells with and without Cell-Sheet Induction: A Comparative Study. Stem Cells Int 2022; 2022:2601764. [PMID: 36248258 PMCID: PMC9556194 DOI: 10.1155/2022/2601764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/31/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
A functional vasculature for survival remains a challenge for tissue regeneration, which is indispensable for oxygen and nutrient supply. Utilizing mesenchymal stromal cells (MSCs) to alleviate tissue ischemia and repair dysfunctional or damaged endothelium is a promising strategy. Compared to other populations of MSCs, adipose-derived stromal cells (ASCs) possess a more significant proangiogenic potential and are abundantly available. Cell sheet technology has recently been widely utilized in bone engineering. Compared to conventional methods of seeding seed cell suspension onto biological scaffolds, cell sheet technology prevents cell loss and preserves the extracellular matrix (ECM). Nevertheless, the proangiogenic potential of ASC sheets remains unknown. In this study, rat ASC sheets were constructed, and their macro- and microstructures were examined. In addition, we investigated the effects of ASCs and ASC sheets on the biological properties and angiogenic capacity of endothelial cells (ECs). The results demonstrated that the ASC sheets gradually thickened as the number of cells and ECM increased over time and that the cells were in an active state of secretion. Similar to ASC-CM, the conditioned medium (CM) of ASC sheets could significantly enhance the proliferative capacity of ECs. ASC sheet-CM has significant advantages over ASC-CM in promoting the migration and angiogenesis of ECs, where the exosomes secreted by ASC sheets play an essential role. Therefore, using ASC sheets for therapeutic tissue and organ regeneration angiogenesis may be a valuable strategy.
Collapse
|
8
|
Yamada D, Takao T, Nakamura M, Kitano T, Nakata E, Takarada T. Identification of Surface Antigens That Define Human Pluripotent Stem Cell-Derived PRRX1+Limb-Bud-like Mesenchymal Cells. Int J Mol Sci 2022; 23:ijms23052661. [PMID: 35269809 PMCID: PMC8910499 DOI: 10.3390/ijms23052661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/02/2022] Open
Abstract
Stem cell-based therapies and experimental methods rely on efficient induction of human pluripotent stem cells (hPSCs). During limb development, the lateral plate mesoderm (LPM) produces limb-bud mesenchymal (LBM) cells that differentiate into osteochondroprogenitor cells and form cartilage tissues in the appendicular skeleton. Previously, we generated PRRX1-tdTomato reporter hPSCs to establish the protocol for inducing the hPSC-derived PRRX1+ LBM-like cells. However, surface antigens that assess the induction efficiency of hPSC-derived PRRX1+ LBM-like cells from LPM have not been identified. Here, we used PRRX1-tdTomato reporter hPSCs and found that high pluripotent cell density suppressed the expression of PRRX1 mRNA and tdTomato after LBM-like induction. RNA sequencing and flow cytometry suggested that PRRX1-tdTomato+ LBM-like cells are defined as CD44high CD140Bhigh CD49f−. Importantly, other hPSC lines, including four human induced pluripotent stem cell lines (414C2, 1383D2, HPS1042, HPS1043) and two human embryonic stem cell lines (SEES4, SEES7), showed the same results. Thus, an appropriate cell density of hPSCs before differentiation is a prerequisite for inducing the CD44high CD140Bhigh CD49f− PRRX1+ LBM-like cells.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (D.Y.); (T.T.); (T.K.)
| | - Tomoka Takao
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (D.Y.); (T.T.); (T.K.)
| | - Masahiro Nakamura
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan;
| | - Toki Kitano
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (D.Y.); (T.T.); (T.K.)
| | - Eiji Nakata
- Department Orthopedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan;
| | - Takeshi Takarada
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (D.Y.); (T.T.); (T.K.)
- Correspondence:
| |
Collapse
|
9
|
β-catenin links cell seeding density to global gene expression during mouse embryonic stem cell differentiation. iScience 2022; 25:103541. [PMID: 34977504 PMCID: PMC8689156 DOI: 10.1016/j.isci.2021.103541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Although cell density is known to affect numerous biological processes including gene expression and cell fate specification, mechanistic understanding of what factors link cell density to global gene regulation is lacking. Here, we reveal that the expression of thousands of genes in mouse embryonic stem cells (mESCs) is affected by cell seeding density and that low cell density enhances the efficiency of differentiation. Mechanistically, β-catenin is localized primarily to adherens junctions during both self-renewal and differentiation at high density. However, when mESCs differentiate at low density, β-catenin translocates to the nucleus and associates with Tcf7l1, inducing co-occupied lineage markers. Meanwhile, Esrrb sustains the expression of pluripotency-associated genes while repressing lineage markers at high density, and its association with DNA decreases at low density. Our results provide new insights into the previously neglected but pervasive phenomenon of density-dependent gene regulation.
Collapse
|
10
|
Reid JA, McDonald A, Callanan A. Electrospun fibre diameter and its effects on vascular smooth muscle cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:131. [PMID: 34625853 PMCID: PMC8500900 DOI: 10.1007/s10856-021-06605-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/10/2021] [Indexed: 05/05/2023]
Abstract
Bypass grafting is a technique used in the treatment of vascular disease, which is currently the leading cause of mortality worldwide. While technology has moved forward over the years, synthetic grafts still show significantly lower rates of patency in small diameter bypass operations compared to the gold standard (autologous vessel grafts). Scaffold morphology plays an important role in vascular smooth muscle cell (VSMC) performance, with studies showing how fibre alignment and surface roughness can modulate phenotypic and genotypic changes. Herein, this study has looked at how the fibre diameter of electrospun polymer scaffolds can affect the performance of seeded VSMCs. Four different scaffolds were electrospun with increasing fibre sizes ranging from 0.75 to 6 µm. Culturing VSMCs on the smallest fibre diameter (0.75 µm) lead to a significant increase in cell viability after 12 days of culture. Furthermore, interesting trends were noted in the expression of two key phenotypic genes associated with mature smooth muscle cell contractility (myocardin and smooth muscle alpha-actin 1), whereby reducing the fibre diameter lead to relative upregulations compared to the larger fibre diameters. These results showed that the smallest (0.75 µm) fibre diameter may be best suited for the culture of VSMCs with the aim of increasing cell proliferation and aiding cell maturity.
Collapse
Affiliation(s)
| | - Alison McDonald
- School of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Anthony Callanan
- School of Engineering, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Mahmood A, Seetharaman R, Kshatriya P, Patel D, Srivastava AS. Stem Cell Transplant for Advanced Stage Liver Disorders: Current Scenario and Future Prospects. Curr Med Chem 2021; 27:6276-6293. [PMID: 31584360 DOI: 10.2174/0929867326666191004161802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chronic Liver Disorders (CLD), caused by the lifestyle patterns like alcoholism or by non-alcoholic fatty liver disease or because of virus-mediated hepatitis, affect a large population fraction across the world. CLD progresses into end-stage diseases with a high mortality rate. Liver transplant is the only approved treatment available for such end-stage disease patients. However, the number of liver transplants is limited due to the limited availability of suitable donors and the extremely high cost of performing the procedure. Under such circumstances, Stem Cell (SC) mediated liver regeneration has emerged as a potential therapeutic alternative approach. OBJECTIVE This review aims to critically analyze the current status and future prospects of stem cellbased interventions for end-stage liver diseases. The clinical studies undertaken, the mechanism underlying therapeutic effects and future directions have been examined. METHOD The clinical trial databases were searched at https://clinicaltrials.gov.in and http://www.isrctn.com to identify randomized, non-randomized and controlled studies undertaken with keywords such as "liver disorder and Mesenchymal Stem Cells (MSCs)", "liver cirrhosis and MSCs" and "liver disorder and SCs". Furthermore, https://www.ncbi.nlm.nih.gov/pubmed/ database was also explored with similar keywords for finding the available reports and their critical analyses. RESULTS The search results yielded a significant number of studies that used bone marrow-derived stem cells, MSCs and hepatocytes. The studies clearly indicated that SCs play a key role in the hepatoprotection process by some mechanisms involving anti-inflammation, auto-immune-suppression, angiogenesis and anti-apoptosis. Further, studies indicated that SCs derived paracrine factors promote angiogenesis, reduce inflammation and inhibit hepatocyte apoptosis. CONCLUSION The SC-based interventions provide a significant improvement in patients with CLD; however, there is a need for randomized, controlled studies with the analysis of a long-term follow-up.
Collapse
Affiliation(s)
| | | | | | | | - Anand S Srivastava
- Global Institute of Stem Cell Therapy and Research, 4660 La Jolla Village Drive, San Diego, CA 92122, United States
| |
Collapse
|
12
|
Winkel A, Jaimes Y, Melzer C, Dillschneider P, Hartwig H, Stiesch M, von der Ohe J, Strauss S, Vogt PM, Hamm A, Burmeister L, Roger Y, Elger K, Floerkemeier T, Weissinger EM, Pogozhykh O, Müller T, Selich A, Rothe M, Petri S, Köhl U, Hass R, Hoffmann A. Cell culture media notably influence properties of human mesenchymal stroma/stem-like cells from different tissues. Cytotherapy 2020; 22:653-668. [PMID: 32855067 DOI: 10.1016/j.jcyt.2020.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Mesenchymal stroma/stem-like cells (MSCs) are a popular cell source and hold huge therapeutic promise for a broad range of possible clinical applications. However, to harness their full potential, current limitations in harvesting, expansion and characterization have to be overcome. These limitations are related to the heterogeneity of MSCs in general as well as to inconsistent experimental protocols. Here we aim to compare in vitro methods to facilitate comparison of MSCs generated from various tissues. METHODS MSCs from 3 different tissues (bone marrow, dental pulp, adipose tissue), exemplified by cells from 3 randomly chosen donors per tissue, were systematically compared with respect to their in vitro properties after propagation in specific in-house standard media, as established in the individual laboratories, or in the same commercially available medium. RESULTS Large differences were documented with respect to the expression of cell surface antigens, population doubling times, basal expression levels of 5 selected genes and osteogenic differentiation. The commercial medium reduced differences in these parameters with respect to individual human donors within tissue and between tissues. The extent, size and tetraspanin composition of extracellular vesicles were also affected. CONCLUSIONS The results clearly demonstrate the extreme heterogeneity of MSCs, which confirms the problem of reproducibility of results, even when harmonizing experimental conditions, and questions the significance of common parameters for MSCs from different tissues in vitro.
Collapse
Affiliation(s)
- Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Yarúa Jaimes
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Catharina Melzer
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Philipp Dillschneider
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Henning Hartwig
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Juliane von der Ohe
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Sarah Strauss
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Anika Hamm
- Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Laura Burmeister
- Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Yvonne Roger
- Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Kirsten Elger
- Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Thilo Floerkemeier
- Department of Orthopaedic Surgery, Annastift, Hannover Medical School, Hannover, Germany
| | - Eva M Weissinger
- Department of Haematology, Haemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Olena Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany; REBIRTH Cluster of Excellence, Hannover, Germany
| | - Thomas Müller
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany; REBIRTH Cluster of Excellence, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany; REBIRTH Cluster of Excellence, Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany; REBIRTH Cluster of Excellence, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany; Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany; REBIRTH Cluster of Excellence, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Andrea Hoffmann
- Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School, Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.
| |
Collapse
|
13
|
Effect of Breast Cancer and Adjuvant Therapy on Adipose-Derived Stromal Cells: Implications for the Role of ADSCs in Regenerative Strategies for Breast Reconstruction. Stem Cell Rev Rep 2020; 17:523-538. [PMID: 32929604 DOI: 10.1007/s12015-020-10038-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Tissue engineering using Adipose Derived Stromal Cells (ADSCs) has emerged as a novel regenerative medicine approach to replace and reconstruct soft tissue damaged or lost as a result of disease process or therapeutic surgical resection. ADSCs are an attractive cell source for soft tissue regeneration due to the fact that they are easily accessible, multipotent, non-immunogenic and pro-angiogenic. ADSC based regenerative strategies have been successfully translated to the clinical setting for the treatment of Crohn's fistulae, musculoskeletal pathologies, wound healing, and cosmetic breast augmentation (fat grafting). ADSCs are particularly attractive as a source for adipose tissue engineering as they exhibit preferential differentiation to adipocytes and support maintenance of mature adipose graft volume. The potential for reconstruction with an autologous tissue sources and a natural appearance and texture is particularly appealing in the setting of breast cancer; up to 40% of patients require mastectomy for locoregional control and current approaches to post-mastectomy breast reconstruction (PMBR) are limited by the potential for complications at the donor and reconstruction sites. Despite their potential, the use of ADSCs in breast cancer patients is controversial due to concerns regarding oncological safety. These concerns relate to the regeneration of tissue at a site where a malignancy has been treated and the impact this may have on stimulating local disease recurrence or dissemination. Pre-clinical data suggest that ADSCs exhibit pro-oncogenic characteristics and are involved in stimulating progression, and growth of tumour cells. However, there have been conflicting reports on the oncologic outcome, in terms of locoregional recurrence, for breast cancer patients in whom ADSC enhanced fat grafting was utilised as an alternative to reconstruction for small volume defects. A further consideration which may impact the successful translation of ADSC based regenerative strategies for post cancer reconstruction is the potential effects of cancer therapy. This review aims to address the effect of malignant cells, adjuvant therapies and patient-specific factors that may influence the success of regenerative strategies using ADSCs for post cancer tissue regeneration.
Collapse
|
14
|
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther 2020; 14:136-153. [PMID: 32110683 PMCID: PMC7033303 DOI: 10.1016/j.reth.2020.01.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022] Open
Abstract
There is enormous global anticipation for stem cell-based therapies that are safe and effective. Numerous pre-clinical studies present encouraging results on the therapeutic potential of different cell types including tissue derived stem cells. Emerging evidences in different fields of research suggest several cell types are safe, whereas their therapeutic application and effectiveness remain challenged. Multiple factors that influence treatment outcomes are proposed including immunocompatibility and potency, owing to variations in tissue origin, ex-vivo methodologies for preparation and handling of the cells. This communication gives an overview of literature data on the different types of cells that are potentially promising for regenerative therapy. As a case in point, the recent trends in research and development of the mesenchymal stem cells (MSCs) for cell therapy are considered in detail. MSCs can be isolated from a variety of tissues and organs in the human body including bone marrow, adipose, synovium, and perinatal tissues. However, MSC products from the different tissue sources exhibit unique or varied levels of regenerative abilities. The review finally focuses on adipose tissue-derived MSCs (ASCs), with the unique properties such as easier accessibility and abundance, excellent proliferation and differentiation capacities, low immunogenicity, immunomodulatory and many other trophic properties. The suitability and application of the ASCs, and strategies to improve the innate regenerative capacities of stem cells in general are highlighted among others.
Collapse
Affiliation(s)
- Edward H. Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Hiroshi Sunami
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
15
|
Seiler KM, Bajinting A, Alvarado DM, Traore MA, Binkley MM, Goo WH, Lanik WE, Ou J, Ismail U, Iticovici M, King CR, VanDussen KL, Swietlicki EA, Gazit V, Guo J, Luke CJ, Stappenbeck T, Ciorba MA, George SC, Meacham JM, Rubin DC, Good M, Warner BW. Patient-derived small intestinal myofibroblasts direct perfused, physiologically responsive capillary development in a microfluidic Gut-on-a-Chip Model. Sci Rep 2020; 10:3842. [PMID: 32123209 PMCID: PMC7051952 DOI: 10.1038/s41598-020-60672-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The development and physiologic role of small intestine (SI) vasculature is poorly studied. This is partly due to a lack of targetable, organ-specific markers for in vivo studies of two critical tissue components: endothelium and stroma. This challenge is exacerbated by limitations of traditional cell culture techniques, which fail to recapitulate mechanobiologic stimuli known to affect vessel development. Here, we construct and characterize a 3D in vitro microfluidic model that supports the growth of patient-derived intestinal subepithelial myofibroblasts (ISEMFs) and endothelial cells (ECs) into perfused capillary networks. We report how ISEMF and EC-derived vasculature responds to physiologic parameters such as oxygen tension, cell density, growth factors, and pharmacotherapy with an antineoplastic agent (Erlotinib). Finally, we demonstrate effects of ISEMF and EC co-culture on patient-derived human intestinal epithelial cells (HIECs), and incorporate perfused vasculature into a gut-on-a-chip (GOC) model that includes HIECs. Overall, we demonstrate that ISEMFs possess angiogenic properties as evidenced by their ability to reliably, reproducibly, and quantifiably facilitate development of perfused vasculature in a microfluidic system. We furthermore demonstrate the feasibility of including perfused vasculature, including ISEMFs, as critical components of a novel, patient-derived, GOC system with translational relevance as a platform for precision and personalized medicine research.
Collapse
Grants
- R01 HD105301 NICHD NIH HHS
- R01 DK106382 NIDDK NIH HHS
- T32 DK007130 NIDDK NIH HHS
- R01 DK104698 NIDDK NIH HHS
- R01 DK114047 NIDDK NIH HHS
- R03 DK111473 NIDDK NIH HHS
- R01 DK109384 NIDDK NIH HHS
- R01 DK118568 NIDDK NIH HHS
- R01 DK112378 NIDDK NIH HHS
- K08 DK101608 NIDDK NIH HHS
- P30 DK052574 NIDDK NIH HHS
- T32 HD043010 NICHD NIH HHS
- K01 DK109081 NIDDK NIH HHS
- Association for Academic Surgery Foundation (AASF)
- Children’s Discovery Institute of Washington University in St. Louis and St. Louis Children’s Hospital MI-F-2017-629; National Institutes of Health 4T32HD043010-14
- National Institutes of Health 3T32DK007130-45S1
- Givin’ it all for Guts Foundation (https://givinitallforguts.org/), Lawrence C. Pakula MD IBD Research, Innovation, and Education Fund, National Institutes of Health R01DK109384
- National Institutes of Health R03DK111473, R01DK118568, and K08DK101608, Children’s Discovery Institute of Washington University in St. Louis and St. Louis Children’s Hospital MI-FR-2017-596, March of Dimes Foundation Grant No. 5-FY17-79, Department of Pediatrics at Washington University School of Medicine, St. Louis
Collapse
Affiliation(s)
- Kristen M Seiler
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Adam Bajinting
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Saint Louis University School of Medicine, St. Louis, Missouri, United States
| | - David M Alvarado
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mahama A Traore
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Michael M Binkley
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - William H Goo
- Washington University, St. Louis, Missouri, United States
| | - Wyatt E Lanik
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jocelyn Ou
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Usama Ismail
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - Micah Iticovici
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Cristi R King
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kelli L VanDussen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elzbieta A Swietlicki
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Vered Gazit
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Cliff J Luke
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Thaddeus Stappenbeck
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Matthew A Ciorba
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, California, United States
| | - J Mark Meacham
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - Deborah C Rubin
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Misty Good
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States.
| |
Collapse
|
16
|
The Influence of Cell Culture Density on the Cytotoxicity of Adipose-Derived Stem Cells Induced by L-Ascorbic Acid-2-Phosphate. Sci Rep 2020; 10:104. [PMID: 31919399 PMCID: PMC6952413 DOI: 10.1038/s41598-019-56875-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Ascorbic acid-2-phosphate (A2-P) is an oxidation-resistant derivative of ascorbic acid that has been widely employed in culturing adipose-derived stem cells (ASCs) for faster expansion and cell sheet formation. While high dose ascorbic acid is known to induce cellular apoptosis via metabolic stress and genotoxic effects, potential cytotoxic effects of A2-P at high concentrations has not been explored. In this study, the relationship between ASC seeding density and A2-P-induced cytotoxicity was investigated. Spheroid-derived ASCs with smaller cellular dimensions were generated to investigate the effect of cell-cell contact on the resistance to A2-P-induced cytotoxicity. Decreased viability of ASC, fibroblast, and spheroid-derived ASC was noted at higher A2-P concentration, and it could be reverted with high seeding density. Compared to control ASCs, spheroid-derived ASCs seeded at the same density exhibited decreased viability in the A2-P-supplemented medium. The expression of antioxidant enzymes (catalase, SOD1, and SOD2) was enhanced in ASCs at higher seeding densities. However, their enhanced expression in spheroid-derived ASCs was less evident. Furthermore, we found that co-administration of catalase or N-acetylcysteine nullified the observed cytotoxicity. Collectively, A2-P can induce ASC cytotoxicity at higher concentrations, which can be prevented by seeding ASCs at high density or co-administration of another antioxidant.
Collapse
|
17
|
Shklover J, McMasters J, Alfonso-Garcia A, Higuita ML, Panitch A, Marcu L, Griffiths L. Bovine pericardial extracellular matrix niche modulates human aortic endothelial cell phenotype and function. Sci Rep 2019; 9:16688. [PMID: 31723198 PMCID: PMC6853938 DOI: 10.1038/s41598-019-53230-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
Xenogeneic biomaterials contain biologically relevant extracellular matrix (ECM) composition and organization, making them potentially ideal surgical grafts and tissue engineering scaffolds. Defining the effect of ECM niche (e.g., basement membrane vs. non-basement membrane) on repopulating cell phenotype and function has important implications for use of xenogeneic biomaterials, particularly in vascular applications. We aim to understand how serous (i.e., basement membrane) versus fibrous (i.e., non-basement membrane) ECM niche of antigen-removed bovine pericardium (AR-BP) scaffolds influence human aortic endothelial cell (hAEC) adhesion, growth, phenotype, inflammatory response and laminin production. At low and moderate seeding densities hAEC proliferation was significantly increased on the serous side. Similarly, ECM niche modulated cellular morphology, with serous side seeding resulting in a more rounded aspect ratio and intact endothelial layer formation. At moderate seeding densities, hAEC production of human laminin was enhanced following serous seeding. Finally, inflammatory marker and pro-inflammatory cytokine expression decreased following long-term cell growth regardless of seeding side. This work demonstrates that at low and moderate seeding densities AR-BP sidedness significantly impacts endothelial cell growth, morphology, human laminin production, and inflammatory state. These findings suggest that ECM niche has a role in modulating response of repopulating recipient cells toward AR-BP scaffolds for vascular applications.
Collapse
Affiliation(s)
- Jeny Shklover
- Department of Chemical Engineering, Israel Institute of Technology, Haifa, 31096, Israel.,Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - James McMasters
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Alba Alfonso-Garcia
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Manuela Lopera Higuita
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Laura Marcu
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Leigh Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, United States.
| |
Collapse
|
18
|
Imafuku A, Oka M, Miyabe Y, Sekiya S, Nitta K, Shimizu T. Rat Mesenchymal Stromal Cell Sheets Suppress Renal Fibrosis via Microvascular Protection. Stem Cells Transl Med 2019; 8:1330-1341. [PMID: 31675167 PMCID: PMC6877761 DOI: 10.1002/sctm.19-0113] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is one of the largest global health care problems, and microvascular (MV) injury is important in the development of progressive fibrosis. Although conventional cell therapy suppresses kidney injury via the role of vasoprotective cytokines, the effects are limited due to low retention of administered cells. We recently described that transplantation of hepatocyte growth factor (HGF)‐transgenic mesothelial cell sheets showed a remarkable cell survival and strong therapeutic effects in a rat renal fibrosis model. Due to the translational hurdles of transgenic cells, we here applied this technique for allogeneic transplantation using rat bone marrow mesenchymal stromal cells (MSCs). MSC sheets were transplanted onto the kidney surface of a rat renal ischemia–reperfusion‐injury model and the effects were compared between those in untreated rats and those receiving intravenous (IV) administration of the cells. We found that donor‐cell survival was superior in the cell sheet group relative to the IV group, and that the cell sheets secreted HGF and vascular endothelial growth factor (VEGF) up to day 14. Transplantation of cell sheets increased the expression of activated HGF/VEGF receptors in the kidney. There was no evidence of migration of transplanted cells into the kidney parenchyma. Additionally, the cell sheets significantly suppressed renal dysfunction, MV injury, and fibrosis as compared with that observed in the untreated and IV groups. Furthermore, we demonstrated that the MSC sheet protected MV density in the whole kidney according to three‐dimensional microcomputed tomography. In conclusion, MSC sheets strongly prevented renal fibrosis via MV protection, suggesting that this strategy represents a potential novel therapy for various kidney diseases. stem cells translational medicine2019;8:1330&1341 Rat bone marrow mesenchymal stromal cell sheets were transplanted onto the kidney surface. In ischemia–reperfusion‐injury, microvascular density loss caused by endothelial injury resulted in progressive renal fibrosis. Mesenchymal stromal cell sheets remained long‐term on the kidney surface and protected the microvasculature, which resulted in suppression of progressive fibrosis. The therapeutic effects were partially explained by the role of hepatocyte growth factor/vascular endothelial growth factor secreted from mesenchymal stromal cell sheets.![]()
Collapse
Affiliation(s)
- Aya Imafuku
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Masatoshi Oka
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan.,Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Yoei Miyabe
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Sachiko Sekiya
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
19
|
Kiiskinen J, Merivaara A, Hakkarainen T, Kääriäinen M, Miettinen S, Yliperttula M, Koivuniemi R. Nanofibrillar cellulose wound dressing supports the growth and characteristics of human mesenchymal stem/stromal cells without cell adhesion coatings. Stem Cell Res Ther 2019; 10:292. [PMID: 31547864 PMCID: PMC6757411 DOI: 10.1186/s13287-019-1394-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND In the field of regenerative medicine, delivery of human adipose-derived mesenchymal stem/stromal cells (hASCs) has shown great promise to promote wound healing. However, a hostile environment of the injured tissue has shown considerably to limit the survival rate of the transplanted cells, and thus, to improve the cell survival and retention towards successful cell transplantation, an optimal cell scaffold is required. The objective of this study was to evaluate the potential use of wood-derived nanofibrillar cellulose (NFC) wound dressing as a cell scaffold material for hASCs in order to develop a cell transplantation method free from animal-derived components for wound treatment. METHODS Patient-derived hASCs were cultured on NFC wound dressing without cell adhesion coatings. Cell characteristics, including cell viability, morphology, cytoskeletal structure, proliferation potency, and mesenchymal cell and differentiation marker expression, were analyzed using cell viability assays, electron microscopy, immunocytochemistry, and quantitative or reverse transcriptase PCR. Student's t test and one-way ANOVA followed by a Tukey honestly significant difference post hoc test were used to determine statistical significance. RESULTS hASCs were able to adhere to NFC dressing and maintained high cell survival without cell adhesion coatings with a cell density-dependent manner for the studied period of 2 weeks. In addition, NFC dressing did not induce any remarkable cytotoxicity towards hASCs or alter the morphology, proliferation potency, filamentous actin structure, the expression of mesenchymal vimentin and extracellular matrix (ECM) proteins collagen I and fibronectin, or the undifferentiated state of hASCs. CONCLUSIONS As a result, NFC wound dressing offers a functional cell culture platform for hASCs to be used further for in vivo wound healing studies in the future.
Collapse
Affiliation(s)
- Jasmi Kiiskinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Arto Merivaara
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Tiina Hakkarainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Minna Kääriäinen
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Marjo Yliperttula
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Raili Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| |
Collapse
|
20
|
Wong TW, Kan CD, Chiu WT, Fok KL, Ruan YC, Jiang X, Chen J, Kao CC, Chen IY, Lin HC, Chou CH, Lin CW, Yu CK, Tsao S, Lee YP, Chan HC, Wang JN. Progenitor Cells Derived from Drain Waste Product of Open-Heart Surgery in Children. J Clin Med 2019; 8:jcm8071028. [PMID: 31336927 PMCID: PMC6678880 DOI: 10.3390/jcm8071028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 11/23/2022] Open
Abstract
Human cardiac progenitor cells isolated from the same host may have advantages over other sources of stem cells. The aim of this study is to establish a new source of human progenitor cells collected from a waste product, pericardiac effusion fluid, after open-heart surgery in children with congenital heart diseases. The fluid was collected every 24 h for 2 days after surgery in 37 children. Mononuclear cells were isolated and expanded in vitro. These pericardial effusion-derived progenitor cells (PEPCs) exhibiting cardiogenic lineage markers, were highly proliferative and enhanced angiogenesis in vitro. Three weeks after stem cell transplantation into the ischemic heart in mice, cardiac ejection fraction was improved significantly without detectable progenitor cells. Gene expression profiles of the repaired hearts revealed activation of several known repair mechanisms including paracrine effects, cell migration, and angiogenesis. These progenitor cells may have the potential for heart regeneration.
Collapse
Affiliation(s)
- Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chung-Dann Kan
- Department of Surgery, Institute of Cardiovascular Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Kin Lam Fok
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ye Chun Ruan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaohua Jiang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong
- Key Laboratory for Regenerative Medicine, Ministry of Education of the People's Republic of China, Shatin, HongKong
| | - Junjiang Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chiu-Ching Kao
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - I-Yu Chen
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hui-Chun Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chia-Hsuan Chou
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chou-Wen Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Liuo-Jia, Tainan 734, Taiwan
| | - Chun-Keung Yu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Microbiology and Immunology, Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 11529, Taiwan
| | - Stephanie Tsao
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Ping Lee
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong
- Key Laboratory for Regenerative Medicine, Ministry of Education of the People's Republic of China, Shatin, HongKong
| | - Jieh-Neng Wang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|
21
|
Sukho P, Boersema GSA, Kops N, Lange JF, Kirpensteijn J, Hesselink JW, Bastiaansen-Jenniskens YM, Verseijden F. Transplantation of Adipose Tissue-Derived Stem Cell Sheet to Reduce Leakage After Partial Colectomy in A Rat Model. J Vis Exp 2018. [PMID: 30148499 DOI: 10.3791/57213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anastomotic leakage is a disastrous complication after colorectal surgery. Although current methods for leakage prevention have different levels of clinical efficacy, they are until now imperfect solutions. Stem cell therapy using ASC sheets could provide a solution to this problem. ASCs are considered as promising candidates for promoting tissue healing because of their trophic and immunomodulatory properties. Here, we provide methods to produce high-density ASC sheets, that are transplanted onto a colorectal anastomosis in a rat model to reduce the leakage. ASCs formed cell sheets in thermo-responsive culture dishes that could be easily detached. On the day of the transplantation, a partial colectomy with a 5-suture colorectal anastomosis was performed. Animals were immediately transplanted with 1 ASC sheet per rat. ASC sheets adhered spontaneously to the anastomosis without any glue, suture, or any biomaterial. Animal groups were sacrificed 3 and 7 days postoperatively. Compared to transplanted animals, the incidence of anastomotic abscesses and leakage was higher in control animals. In our model, the transplantation of ASC sheets after colorectal anastomosis was successful and associated with a lower leakage rate.
Collapse
Affiliation(s)
- Panithi Sukho
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University; Department of Otorhinolaryngology, Erasmus MC University Medical Center; Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University
| | | | - Nicole Kops
- Department of Orthopaedics, Erasmus MC University Medical Center
| | - Johan F Lange
- Department of Surgery, Erasmus MC University Medical Center
| | - Jolle Kirpensteijn
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University; Hill's Pet Nutrition Inc
| | - Jan Willem Hesselink
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University
| | | | - Femke Verseijden
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University; Department of Orthopaedics, Erasmus MC University Medical Center;
| |
Collapse
|
22
|
Homma J, Sekine H, Matsuura K, Kobayashi E, Shimizu T. Mesenchymal Stem Cell Sheets Exert Antistenotic Effects in a Rat Arterial Injury Model. Tissue Eng Part A 2018; 24:1545-1553. [PMID: 29724149 DOI: 10.1089/ten.tea.2018.0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Restenosis after catheter or surgical intervention substantially affects the prognosis of arterial occlusive disease. Mesenchymal stem cells (MSCs) may have antistenotic effects on injured arteries. MSC transplantation from the adventitial side of an artery is safer than endovascular transplantation but has not been extensively examined. In this study, a rat model of femoral artery injury was used to compare the antistenotic effects of transplanted cell sheets and transplanted cell suspensions. Rat adipose-derived stem cells (ASCs) were used as the source of MSCs. For both cell sheets and suspensions, 6 × 106 MSCs were transplanted on the day of arterial injury. MSC sheets attenuated neointimal hyperplasia more than MSC suspensions (intima-to-media ratio in hematoxylin/eosin-stained sections: 0.55 ± 0.13 vs. 1.14 ± 0.12; p < 0.05). Cell engraftment (assessed by immunohistochemistry or bioluminescence imaging of luciferase-expressing cells), arterial re-endothelialization (evaluated by immunohistochemical staining for rat endothelial cell antigen-1), and restriction of vascular smooth muscle cell proliferation in the neointima (double-staining of alpha-smooth muscle actin and phospho-histone H3) were greater when MSC sheets were applied than when MSC suspensions were used. In conclusion, MSC sheets exhibited better antistenotic and cell engraftment properties than MSC suspensions. MSC sheet transplantation from the adventitial side is a promising therapy for prevention of arterial restenosis.
Collapse
Affiliation(s)
- Jun Homma
- 1 Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Hidekazu Sekine
- 1 Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Katsuhisa Matsuura
- 1 Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | - Eiji Kobayashi
- 2 Department of Organ Fabrication, Keio University School of Medicine , Tokyo, Japan
| | - Tatsuya Shimizu
- 1 Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| |
Collapse
|
23
|
Sukho P, Hesselink JW, Kops N, Kirpensteijn J, Verseijden F, Bastiaansen-Jenniskens YM. Human Mesenchymal Stromal Cell Sheets Induce Macrophages Predominantly to an Anti-Inflammatory Phenotype. Stem Cells Dev 2018; 27:922-934. [DOI: 10.1089/scd.2017.0275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Panithi Sukho
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Jan Willem Hesselink
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Nicole Kops
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jolle Kirpensteijn
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Hill's Pet Nutrition, Inc., Topeka, Kansas
| | - Femke Verseijden
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
24
|
Sukho P, Cohen A, Hesselink JW, Kirpensteijn J, Verseijden F, Bastiaansen-Jenniskens YM. Adipose Tissue-Derived Stem Cell Sheet Application for Tissue Healing In Vivo: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:37-52. [PMID: 28665192 DOI: 10.1089/ten.teb.2017.0142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipose tissue-derived stem cells (ASCs) are known to be tissue-healing promoters due to their cellular plasticity and secretion of paracrine factors. Cultured ASC sheets provide a novel method of ASC application and can retain ASCs at the targeted tissue. The purpose of this systematic review is to evaluate preclinical studies using ASC sheet transplantation therapy for promoting tissue healing. First, we searched databases to identify studies of ASC sheet therapy in different experimental animal models, and then determined the quality score of studies using SYRCLE's risk bias tool. A total of 18 included studies examined the role of ASC sheets on tissue healing and function in models for myocardial infarction, dilated cardiomyopathy, full-thickness skin wounds, hind limb ischemia, esophageal strictures, and oral ulcers. ASC sheet application after myocardial infarction improved survival rate, cardiac function, and capillary density and reduced the extent of fibrosis. Application of ASC sheets to a full-thickness skin wound decreased the wound size and stimulated wound maturation. In the hind limb ischemia model, ASC sheet application improved limb perfusion and capillary density, and decreased the amount of ischemic tissue and inflammation. ASC sheet application to mucosal wounds of the digestive tract accelerated wound healing and decreased the degree of stricture and fibrosis. Taken together, transplanted ASC sheets had a positive effect on tissue healing and reconstruction in these preclinical studies. The reported favorable effects of ASC sheet therapy in various tissue healing applications may be implemented in future translational studies. It is suggested that future preclinical animal model studies of ASC sheet therapy should concern standardization of culture techniques and investigate the mechanisms of action. In addition, clearly indicated experimental setups according to the SYRCLE's guidelines should improve study quality and validity.
Collapse
Affiliation(s)
- Panithi Sukho
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,2 Department of Otorhinolaryngology, Erasmus MC University Medical Center , Rotterdam, The Netherlands .,3 Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University , Nakhon Pathom, Thailand
| | - Abigael Cohen
- 2 Department of Otorhinolaryngology, Erasmus MC University Medical Center , Rotterdam, The Netherlands
| | - Jan Willem Hesselink
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Jolle Kirpensteijn
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,4 Hill's Pet Nutrition, Inc. , Topeka, Kansas
| | - Femke Verseijden
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,5 Department of Orthopaedics, Erasmus MC University Medical Center , Rotterdam, The Netherlands
| | | |
Collapse
|
25
|
Sukho P, Boersema GSA, Cohen A, Kops N, Lange JF, Kirpensteijn J, Hesselink JW, Bastiaansen-Jenniskens YM, Verseijden F. Effects of adipose stem cell sheets on colon anastomotic leakage in an experimental model: Proof of principle. Biomaterials 2017. [PMID: 28628777 DOI: 10.1016/j.biomaterials.2017.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The most dreaded complication of colorectal surgery is anastomotic leakage. Adipose tissue-derived stem cell sheets (ASC sheets) prepared from temperature-responsive culture surfaces can be easily transplanted onto tissues. These sheets are proposed to improve cell transplant efficiency and enhance wound healing. The aim of this study was to investigate whether application of ASC sheets could prevent leakage of sutured colorectal anastomoses. Insufficient suturing of colorectal anastomoses was performed in Wistar rats to create a colorectal anastomotic leakage model. Rats were randomized to ASC sheet application or control group. Leakage, abscess formation, adhesion formation, anastomotic bursting pressure (ABP), and histology were evaluated on postoperative day 3 or 7. ASC sheet application significantly reduced anastomotic leakage compared to controls, without increased adhesion formation. ASC sheet transplantation resulted in more CD3+ T-cells and CD163+ anti-inflammatory macrophages at the anastomotic site than the control group. ABP, vessel density and collagen deposition were not different between groups. Using cell sheet technology, we generated ASC sheets that prevented disruption of sutured colorectal anastomoses as shown by reduced leakage. Increased numbers of anti-inflammatory macrophages and T-cells might have contributed to this positive effect.
Collapse
Affiliation(s)
- Panithi Sukho
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Geesien S A Boersema
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Abigael Cohen
- Department of Orthopaedics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Johan F Lange
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jolle Kirpensteijn
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Hill's Pet Nutrition Inc, Topeka, Kansas, USA
| | - Jan Willem Hesselink
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Femke Verseijden
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Orthopaedics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|