1
|
Li J, Isaakidou A, van Zanten LJ, Tas RP, Mirzaali MJ, Fratila-Apachitei LE, Zadpoor AA. Multi-scale additive manufacturing of 3D porous networks integrated with hydrogel for sustained in vitro tissue growth. Acta Biomater 2025; 196:198-212. [PMID: 40049309 DOI: 10.1016/j.actbio.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The development of high-fidelity three-dimensional (3D) tissue models can minimize the need for animal models in clinical medicine and drug development. However, physical limitations regarding the distances within which diffusion processes are effective impose limitations on the size of such constructs. That is because larger-size constructs experience necrosis, especially in their centers, due to the cells residing deep inside such constructs not receiving enough oxygen and nutrients. This hampers the sustained in vitro growth of the tissues which is required for achieving functional microtissues. To address this challenge, we used three types of 3D printing technologies to create perfusable networks at different length scales and integrate them into such constructs. Toward this aim, networks incorporating porous conduits with increasingly complex configurations were designed and fabricated using fused deposition modeling, stereolithography, and two-photon polymerization while optimizing the printing conditions for each of these technologies. Furthermore, following network embedding in hydrogels, contrast agent-enhanced micro-computed tomography and confocal fluorescence microscopy were employed to characterize one of the essential network functionalities, namely the diffusion function. The investigations revealed the effects of various design parameters on the diffusion behavior of the porous conduits over 24 h. We found that the number of pores exerts the most significant influence on the diffusion behavior of the contrast agent, followed by variations in the pore size and hydrogel concentration. The analytical approach and the findings of this study establish a solid base for a new technological platform to fabricate perfusable multiscale 3D porous networks with complex designs while enabling the customization of diffusion characteristics to meet specific requirements for sustained in vitro tissue growth. STATEMENT OF SIGNIFICANCE: This study addresses an essential limitation of current 3D tissue engineering, namely, sustaining tissue viability in larger constructs through optimized nutrient and oxygen delivery. By utilizing advanced 3D printing techniques this research proposes the fabrication of perfusable, multiscale and customizable networks that enhance diffusion and enable cell access to essential nutrients throughout the construct. The findings highlighted the role of network characteristics on the diffusion of a model compound within a hydrogel matrix. This work represents a promising technological platform for creating advanced in vitro 3D tissue models that can reduce the use of animal models in research involving tissue regeneration, disease models and drug development.
Collapse
Affiliation(s)
- J Li
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands.
| | - A Isaakidou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - L J van Zanten
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - R P Tas
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands.
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| |
Collapse
|
2
|
Milivojević N, Carvalho MR, Caballero D, Radisavljević S, Radoićić M, Živanović M, Kundu SC, Reis RL, Filipović N, Oliveira JM. Evaluation of Novel Dendrimer-Gold Complex Nanoparticles for Theranostic Application in Oncology. Nanomedicine (Lond) 2024; 19:483-497. [PMID: 38275157 DOI: 10.2217/nnm-2023-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
AIM Despite some successful examples of therapeutic nanoparticles reaching clinical stages, there is still a significant need for novel formulations in order to improve the selectivity and efficacy of cancer treatment. METHODS The authors developed two novel dendrimer-gold (Au) complex-based nanoparticles using two different synthesis routes: complexation method (formulation A) and precipitation method (formulation B). Using a biomimetic cancer-on-a-chip model, the authors evaluated the possible cytotoxicity and internalization by colorectal cancer cells of dendrimer-Au complex-based nanoparticles. RESULTS The results showed promising capabilities of these nanoparticles for selectively targeting cancer cells and delivering drugs, particularly for the formulation A nanoparticles. CONCLUSION This work highlights the potential of dendrimer-Au complex-based nanoparticles as a new strategy to improve the targeting of anticancer drugs.
Collapse
Affiliation(s)
- Nevena Milivojević
- University of Kragujevac, Liceja Kneževine Srbije 1A, 34000, Kragujevac, Serbia
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
- BioIRC - Bioengineering Research & Development Center, University of Kragujevac, Prvoslava Stojanovića 6, 34000, Kragujevac, Serbia
| | - Mariana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Snežana Radisavljević
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marija Radoićić
- "Vinča" Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11000, Belgrade, Serbia
| | - Marko Živanović
- University of Kragujevac, Liceja Kneževine Srbije 1A, 34000, Kragujevac, Serbia
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
- BioIRC - Bioengineering Research & Development Center, University of Kragujevac, Prvoslava Stojanovića 6, 34000, Kragujevac, Serbia
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Nenad Filipović
- University of Kragujevac, Liceja Kneževine Srbije 1A, 34000, Kragujevac, Serbia
- BioIRC - Bioengineering Research & Development Center, University of Kragujevac, Prvoslava Stojanovića 6, 34000, Kragujevac, Serbia
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000, Kragujevac, Serbia
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Nuernberg E, Bruch R, Hafner M, Rudolf R, Vitacolonna M. Quantitative Analysis of Whole-Mount Fluorescence-Stained Tumor Spheroids in Phenotypic Drug Screens. Methods Mol Biol 2024; 2764:311-334. [PMID: 38393603 DOI: 10.1007/978-1-0716-3674-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Three-dimensional cell cultures, such as spheroids or organoids, serve as important models for drug screening purposes. Optical tissue clearing (OTC) enhances the visualization of fluorescence stainings and enables in toto microscopy of 3D cell culture models. Furthermore, subsequent automated image analysis tools convert qualitative confocal image sets into quantitative data. In this chapter, we describe a detailed protocol for preparation of HT29 cancer spheroids, 3D in toto immunostaining, glycerol-based OTC, whole-mount imaging, and semi-automated downstream image processing and segmentation for nuclear image analysis using open-source software.
Collapse
Affiliation(s)
- Elina Nuernberg
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Ruediger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mario Vitacolonna
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.
| |
Collapse
|
4
|
Yin Y, Guan X, Li G, Chen C, Duan Y, Yu Z. The HDAC inhibitor HFY-4A improves TUSC2 transcription to induce immunogenic cell death in breast cancer. Toxicol Appl Pharmacol 2023; 478:116698. [PMID: 37742871 DOI: 10.1016/j.taap.2023.116698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
We managed to explore the function of HFY-4A, a novel histone deacetylases (HDACs) inhibitor, on breast cancer as well as its potential mechanisms. MCF7 and T47D cells were treated with 0.8, 1.6 or 3.2 μM HFY-4A for 0-72 h, following of which CCK-8, colony formation, EdU staining, flow cytometry, Transwell, and wound healing assays were carried out. Western blot, immunohistochemistry, and ELISA were conducted for assaying the expression of immunogenic cell death (ICD)-related proteins. The interaction between HFY-4A, HDAC1, and tumor suppressor candidate 2 (TUSC2) was evaluated by chromatin immunoprecipitation assay. Further, the function of HFY-4A in breast cancer progression in vivo was evaluated using xenograft mouse models. HFY-4A inhibited the proliferation, migration, and invasion, and induced apoptosis of breast cancer cells in a dose-dependent manner. HFY-4A dose-dependently caused the ICD of breast cancer cells, as evidenced by the significant high levels of high-mobility group box 1 (HMGB1), calreticulin (CRT), heat shock protein 70 (HSP70), and HSP90. Interestingly, HFY-4A could facilitate TUSC2 transcription by promoting acetylation of histones on the TUSC2 promoter. The results of rescue assays revealed that HFY-4A repressed proliferation and mobility, but enhanced apoptosis and ICD through facilitating TUSC2 transcription in breast cancer. In breast cancer xenograft mouse models, HFY-4A was verified to inhibit tumor growth via upregulating TUSC2. HFY-4A could inhibit breast cancer cell proliferation and mobility, and enhanced apoptosis and ICD through facilitating TUSC2 transcription.
Collapse
Affiliation(s)
- Yongshuo Yin
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China; Department of Breast Surgery, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Xiao Guan
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China
| | - Genju Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | - Chen Chen
- School of Pharmaceutical Sciences, Qilu University of Technology, Jinan, Shandong 250353, PR China
| | - Yangmiao Duan
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | - Zhiyong Yu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China; Department of Breast Surgery, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
5
|
Carvalho MR, Yan LP, Li B, Zhang CH, He YL, Reis RL, Oliveira JM. Gastrointestinal organs and organoids-on-a-chip: advances and translation into the clinics. Biofabrication 2023; 15:042004. [PMID: 37699408 DOI: 10.1088/1758-5090/acf8fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Microfluidic organs and organoids-on-a-chip models of human gastrointestinal systems have been established to recreate adequate microenvironments to study physiology and pathophysiology. In the effort to find more emulating systems and less costly models for drugs screening or fundamental studies, gastrointestinal system organoids-on-a-chip have arisen as promising pre-clinicalin vitromodel. This progress has been built on the latest developments of several technologies such as bioprinting, microfluidics, and organoid research. In this review, we will focus on healthy and disease models of: human microbiome-on-a-chip and its rising correlation with gastro pathophysiology; stomach-on-a-chip; liver-on-a-chip; pancreas-on-a-chip; inflammation models, small intestine, colon and colorectal cancer organoids-on-a-chip and multi-organoids-on-a-chip. The current developments related to the design, ability to hold one or more 'organs' and its challenges, microfluidic features, cell sources and whether they are used to test drugs are overviewed herein. Importantly, their contribution in terms of drug development and eminent clinical translation in precision medicine field, Food and Drug Administration approved models, and the impact of organoid-on-chip technology in terms of pharmaceutical research and development costs are also discussed by the authors.
Collapse
Affiliation(s)
- Mariana R Carvalho
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Le-Ping Yan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Bo Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Chang-Hua Zhang
- Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Yu-Long He
- Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
van Niekerk A, Wrzesinski K, Steyn D, Gouws C. A Novel NCI-H69AR Drug-Resistant Small-Cell Lung Cancer Mini-Tumor Model for Anti-Cancer Treatment Screening. Cells 2023; 12:1980. [PMID: 37566059 PMCID: PMC10416941 DOI: 10.3390/cells12151980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Small-cell lung cancer is a fast-growing carcinoma with a poor prognosis and a high level of relapse due to multi-drug resistance (MDR). Genetic mutations that lead to the overexpression of efflux transporter proteins can contribute to MDR. In vitro cancer models play a tremendous role in chemotherapy development and the screening of possible anti-cancer molecules. Low-cost and simple in vitro models are normally used. Traditional two-dimensional (2D) models have numerous shortcomings when considering the physiological resemblance of an in vivo setting. Three-dimensional (3D) models aim to bridge the gap between conventional 2D models and the in vivo setting. Some of the advantages of functional 3D spheroids include better representation of the in vivo physiology and tumor characteristics when compared to traditional 2D cultures. During this study, an NCI-H69AR drug-resistant mini-tumor model (MRP1 hyperexpressive) was developed by making use of a rotating clinostat bioreactor system (ClinoStar®; CelVivo ApS, Odense, Denmark). Spheroid growth and viability were assessed over a 25-day period to determine the ideal experimental period with mature and metabolically stable constructs. The applicability of this model for anti-cancer research was evaluated through treatment with irinotecan, paclitaxel and cisplatin for 96 h, followed by a 96 h recovery period. Parameters measured included planar surface area measurements, estimated glucose consumption, soluble protein content, intracellular adenosine triphosphate levels, extracellular adenylate kinase levels, histology and efflux transporter gene expression. The established functional spheroid model proved viable and stable during the treatment period, with retained relative hyperexpression of the MRP1 efflux transporter gene but increased expression of the P-gp transporter gene compared to the cells cultured in 2D. As expected, treatment with the abovementioned anti-cancer drugs at clinical doses (100 mg/m2 irinotecan, 80 mg/m2 paclitaxel and 75 mg/m2 cisplatin) had minimal impact on the drug-resistant mini-tumors, and the functional spheroid models were able to recover following the removal of treatment.
Collapse
Affiliation(s)
- Alandi van Niekerk
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Krzysztof Wrzesinski
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
- CelVivo ApS, 5491 Blommenslyst, Denmark
| | - Dewald Steyn
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| |
Collapse
|
7
|
Sánchez-Salazar MG, Crespo-López Oliver R, Ramos-Meizoso S, Jerezano-Flores VS, Gallegos-Martínez S, Bolívar-Monsalve EJ, Ceballos-González CF, Trujillo-de Santiago G, Álvarez MM. 3D-Printed Tumor-on-Chip for the Culture of Colorectal Cancer Microspheres: Mass Transport Characterization and Anti-Cancer Drug Assays. Bioengineering (Basel) 2023; 10:554. [PMID: 37237624 PMCID: PMC10215397 DOI: 10.3390/bioengineering10050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Tumor-on-chips have become an effective resource in cancer research. However, their widespread use remains limited due to issues related to their practicality in fabrication and use. To address some of these limitations, we introduce a 3D-printed chip, which is large enough to host ~1 cm3 of tissue and fosters well-mixed conditions in the liquid niche, while still enabling the formation of the concentration profiles that occur in real tissues due to diffusive transport. We compared the mass transport performance in its rhomboidal culture chamber when empty, when filled with GelMA/alginate hydrogel microbeads, or when occupied with a monolithic piece of hydrogel with a central channel, allowing communication between the inlet and outlet. We show that our chip filled with hydrogel microspheres in the culture chamber promotes adequate mixing and enhanced distribution of culture media. In proof-of-concept pharmacological assays, we biofabricated hydrogel microspheres containing embedded Caco2 cells, which developed into microtumors. Microtumors cultured in the device developed throughout the 10-day culture showing >75% of viability. Microtumors subjected to 5-fluorouracil treatment displayed <20% cell survival and lower VEGF-A and E-cadherin expression than untreated controls. Overall, our tumor-on-chip device proved suitable for studying cancer biology and performing drug response assays.
Collapse
Affiliation(s)
- Mónica Gabriela Sánchez-Salazar
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Regina Crespo-López Oliver
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Sofía Ramos-Meizoso
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Valeri Sofía Jerezano-Flores
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Salvador Gallegos-Martínez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Edna Johana Bolívar-Monsalve
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Carlos Fernando Ceballos-González
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico; (M.G.S.-S.); (S.G.-M.)
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
8
|
Sevinyan L, Gupta P, Velliou E, Madhuri TK. The Development of a Three-Dimensional Platform for Patient-Derived Ovarian Cancer Tissue Models: A Systematic Literature Review. Cancers (Basel) 2022; 14:5628. [PMID: 36428724 PMCID: PMC9688222 DOI: 10.3390/cancers14225628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
There is an unmet biomedical need for ex vivo tumour models that would predict drug responses and in turn help determine treatment regimens and potentially predict resistance before clinical studies. Research has shown that three dimensional models of ovarian cancer (OvCa) are more realistic than two dimensional in vitro systems as they are able to capture patient in vivo conditions in more accurate manner. The vast majority of studies aiming to recapitulate the ovarian tumour morphology, behaviors, and study chemotherapy responses have been using ovarian cancer cell lines. However, despite the advantages of utilising cancer cell lines to set up a platform, they are not as informative as systems applying patient derived cells, as cell lines are not able to recapitulate differences between each individual patient characteristics. In this review we discussed the most recent advances in the creation of 3D ovarian cancer models that have used patient derived material, the challenges to overcome and future applications.
Collapse
Affiliation(s)
- Lusine Sevinyan
- Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
- Cancer Research, School of Applied Sciences, University of Brighton, Brighton BN2 4HQ, UK
| | - Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Thumuluru Kavitha Madhuri
- Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
- Cancer Research, School of Applied Sciences, University of Brighton, Brighton BN2 4HQ, UK
| |
Collapse
|
9
|
Xiao RR, Jin L, Xie N, Luo P, Gao W, Tu P, Ai X. Establishment and large-scale validation of a three-dimensional tumor model on an array chip for anticancer drug evaluation. Front Pharmacol 2022; 13:1032975. [PMID: 36313330 PMCID: PMC9596801 DOI: 10.3389/fphar.2022.1032975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Two-dimensional (2D) tumor model has always poorly predicted drug response of animal model due to the lack of recapitulation of tumor microenvironment. Establishing a biomimetic, controllable, and cost-effective three-dimensional (3D) model and large-scale validation of its in vivo predictivity has shown promise in bridging the gap between the 2D tumor model and animal model. Here, we established a matrigel-based 3D micro-tumor model on an array chip for large-scale anticancer drug evaluation. Compared with the 2D tumor model, the 3D tumor model on the chip showed spheroid morphology, slower proliferation kinetics, and comparable reproducibility. Next, the results of the chemotherapeutic evaluation from 18 drugs against 27 cancer cell lines showed 17.6% of drug resistance on the 3D tumor model. Moreover, the evaluation results of targeted drugs showed expected sensitivity and higher specificity on the 3D tumor model compared with the 2D model. Finally, the evaluation results on the 3D tumor model were more consistent with the in vivo cell-derived xenograft model, and excluded 95% false-positive results from the 2D model. Overall, the matrigel-based 3D micro-tumor model on the array chip provides a promising tool to accelerate anticancer drug discovery.
Collapse
Affiliation(s)
- Rong-Rong Xiao
- R&D Department, Beijing Daxiang Biotech Co., Ltd., Beijing, China
| | - Lei Jin
- Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Nan Xie
- Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Piaopiao Luo
- R&D Department, Beijing Daxiang Biotech Co., Ltd., Beijing, China
| | - Wenjie Gao
- Oncology and Immunology Unit, WuXi Biology, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoni Ai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- *Correspondence: Xiaoni Ai,
| |
Collapse
|
10
|
Hammel JH, Zatorski JM, Cook SR, Pompano RR, Munson JM. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Adv Drug Deliv Rev 2022; 182:114111. [PMID: 35031388 PMCID: PMC8908413 DOI: 10.1016/j.addr.2022.114111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Advances in 3D cell culture, microscale fluidic control, and cellular analysis have enabled the development of more physiologically-relevant engineered models of human organs with precise control of the cellular microenvironment. Engineered models have been used successfully to answer fundamental biological questions and to screen therapeutics, but these often neglect key elements of the immune system. There are immune elements in every tissue that contribute to healthy and diseased states. Including immune function will be essential for effective preclinical testing of therapeutics for inflammatory and immune-modulated diseases. In this review, we first discuss the key components to consider in designing engineered immune-competent models in terms of physical, chemical, and biological cues. Next, we review recent applications of models of immunity for screening therapeutics for cancer, preclinical evaluation of engineered T cells, modeling autoimmunity, and screening vaccine efficacy. Future work is needed to further recapitulate immune responses in engineered models for the most informative therapeutic screening and evaluation.
Collapse
Affiliation(s)
- Jennifer H. Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| | - Jonathan M. Zatorski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Sophie R. Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA,Department of Biomedical Engineering, University of Virginia; Charlottesville, Virginia 22904, USA,Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| |
Collapse
|
11
|
Micro/nanofluidic devices for drug delivery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:9-39. [PMID: 35094782 DOI: 10.1016/bs.pmbts.2021.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Micro/nanofluidic drug delivery systems have attracted significant attention as they offer unique advantages in targeted and controlled drug delivery. Based on the desired application, these systems can be categorized into three different groups: in vitro, in situ and in vivo microfluidic drug delivery platforms. In vitro microfluidic drug delivery platforms are closely linked with the emerging concept of lab-on-a-chip for cell culture studies. These systems can be used to administer drugs or therapeutic agents, mostly at the cellular or tissue level, to find the therapeutic index and can potentially be used for personalized medicine. In situ and in vivo microfluidic drug delivery platforms are still at the developmental stage and can be used for drug delivery at tissue or organ levels. A famous example of these systems are microneedles that can be used for painless and controllable delivery of drugs or vaccines through human skin. This chapter presents the cutting edge advances in the design and fabrication of in vitro microfluidic drug delivery systems that can be used for both cellular and tissue drug delivery. It also briefly discusses the in situ drug delivery platforms using microneedles.
Collapse
|
12
|
Chen J, Zhang X, Millican R, Lynd T, Gangasani M, Malhotra S, Sherwood J, Hwang PT, Cho Y, Brott BC, Qin G, Jo H, Yoon YS, Jun HW. Recent Progress in in vitro Models for Atherosclerosis Studies. Front Cardiovasc Med 2022; 8:790529. [PMID: 35155603 PMCID: PMC8829969 DOI: 10.3389/fcvm.2021.790529] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is the primary cause of hardening and narrowing arteries, leading to cardiovascular disease accounting for the high mortality in the United States. For developing effective treatments for atherosclerosis, considerable efforts have been devoted to developing in vitro models. Compared to animal models, in vitro models can provide great opportunities to obtain data more efficiently, economically. Therefore, this review discusses the recent progress in in vitro models for atherosclerosis studies, including traditional two-dimensional (2D) systems cultured on the tissue culture plate, 2D cell sheets, and recently emerged microfluidic chip models with 2D culture. In addition, advanced in vitro three-dimensional models such as spheroids, cell-laden hydrogel constructs, tissue-engineered blood vessels, and vessel-on-a-chip will also be covered. Moreover, the functions of these models are also summarized along with model discussion. Lastly, the future perspectives of this field are discussed.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Tyler Lynd
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Manas Gangasani
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shubh Malhotra
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Younghye Cho
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Family Medicine Clinic, Obesity, Metabolism, and Nutrition Center and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Brigitta C. Brott
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Endomimetics, LLC., Birmingham, AL, United States
- Division of Cardiovascular Disease, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Young-sup Yoon
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Endomimetics, LLC., Birmingham, AL, United States
| |
Collapse
|
13
|
Pant T, Gaikwad G, Jain D, Dandekar P, Jain R. Establishment and characterization of lung co-culture spheroids for paclitaxel loaded Eudragit® RL 100 nanoparticle evaluation. Biotechnol Prog 2021; 37:e3203. [PMID: 34427389 DOI: 10.1002/btpr.3203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 11/09/2022]
Abstract
3D cell cultures are regarded as a better and more relevant approach for screening drugs and therapeutics, particularly due to their likeness with the in vivo conditions. Spheroids offer an intermediate platform between in vitro and in vivo models, for conducting tumor-based investigations. In this study, a simple setup was developed for consistent generation of lung co-culture spheroids, which were developed using the cancer cell lines A549, NCI H460, and fibroblast cells WI-38. The potential of these spheroids for evaluating the toxicity of Eudragit® RL 100 nanoparticles (ENP) was explored. Monodisperse ENP, having the size range of 140-200 nm was prepared using the nanoprecipitation method. These were loaded with the poorly water-soluble anticancer drug paclitaxel. The evaluation of toxicity and uptake of drug-loaded ENP revealed that 2D monolayers were more sensitive to treatment than 3D spheroids. Within spheroids, co-cultures were more resistant to the treatment than monocultures. Overall, our findings demonstrated that the lung co-culture spheroids were a suitable model for accelerating the efficacy and toxicity-related investigations of novel drug delivery systems.
Collapse
Affiliation(s)
- Tejal Pant
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Ganesh Gaikwad
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Dhiraj Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
14
|
Sakolish C, House JS, Chramiec A, Liu Y, Chen Z, Halligan SP, Vunjak-Novakovic G, Rusyn I. Tissue-Engineered Bone Tumor as a Reproducible Human in Vitro Model for Studies of Anticancer Drugs. Toxicol Sci 2021; 173:65-76. [PMID: 31626302 DOI: 10.1093/toxsci/kfz220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Studies of anticancer therapies in traditional cell culture models can demonstrate efficacy of direct-acting compounds but lack the 3-dimensional arrangement of the tumor cells and their tissue-specific microenvironments, both of which are important modulators of treatment effects in vivo. Bone cells reside in complex environments that regulate their fate and function. A bioengineered human bone-tumor model has been shown to provide a microphysiological niche for studies of cancer cell behavior. Here, we demonstrate successful transfer between 2 laboratories and utility of this model in efficacy studies using well-established chemotherapeutic agents. The bioengineered human bone-tumor model consisted of Ewing sarcoma (RD-ES) cancer cell aggregates infused into tissue-engineered bone that was grown from human mesenchymal stem cell-derived differentiated into osteoblasts within mineralized bone scaffolds. The tumor model was maintained in culture for over 5 weeks and subjected to clinically relevant doses of linsitinib, doxorubicin, cisplatin, methotrexate, vincristine, dexamethasone, or MAP (methotrexate, doxorubicin, and cisplatin combination). Drug administration cycles were designed to mimic clinical treatment regimens. The bioengineered tumors were evaluated days to weeks after the cessation of treatment to monitor the potential for relapse, using bioengineered bone and ES cell monolayers as controls. Drug binding to the scaffolds and media proteins and gene expression were also evaluated. We show that a bioengineered human bone tumor can be used as a microphysiological model for preclinical studies of anticancer drugs. We found that anticancer efficacy was achieved at concentrations approximating the human Cmax, in contrast to traditional ES cell monolayers. These studies show that the bone-tumor model can be successfully transferred between laboratories and has predictive power in preclinical studies. The effects of drugs on the bone tumors and healthy bone were studied in parallel, in support of the utility of this model for identification of new therapeutic targets.
Collapse
Affiliation(s)
- Courtney Sakolish
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Alan Chramiec
- Department of Biomedical Engineering, Columbia University, New York, New York 10032
| | - Yizhong Liu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Susan P Halligan
- Department of Biomedical Engineering, Columbia University, New York, New York 10032
| | | | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
15
|
Ort C, Chen Y, Ghagre A, Ehrlicher A, Moraes C. Bioprintable, Stiffness-Tunable Collagen-Alginate Microgels for Increased Throughput 3D Cell Culture Studies. ACS Biomater Sci Eng 2021; 7:2814-2822. [PMID: 34019377 DOI: 10.1021/acsbiomaterials.1c00129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3D culture platforms with tunable stiffness have the potential to improve many applications, such as drug discovery, organoid studies, and stem cell differentiation. Both dimensionality and stiffness regulate crucial and relevant cellular processes. However, 3D culture models are often limited in throughput and difficult to adopt for widespread use. Here, we demonstrate an accessible 3D, stiffness-tunable tissue culture platform, based on an interpenetrating network of collagen-1 and alginate. When blended with polymers that induce phase separation, these networks can be bioprinted at microliter volumes, using standard liquid handling infrastructure. We demonstrate robust reproducibility in printing these microgels, consistent tunability of mechanical properties, and maintained viability of multiple printed cell types. To highlight the utility and importance of this system, we demonstrate distinct morphological changes to cells in culture, use the system to probe the role of matrix mechanics and soluble factors in a collagen contraction assay, and perform a prototype viability screen against a candidate chemotherapeutic, demonstrating stiffness-dependent responses.
Collapse
Affiliation(s)
- Carley Ort
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal H3A 0G4, Quebec, Canada
| | - Yimai Chen
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal H3A 0G4, Quebec, Canada
| | - Ajinkya Ghagre
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal H3A 2K6, Quebec, Canada
| | - Allen Ehrlicher
- Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal H3A 2B4, Quebec, Canada.,Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal H3A 2K6, Quebec, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal H3A 1A3, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Quebec, Canada.,Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Quebec, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal H3A 0G4, Quebec, Canada.,Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal H3A 2B4, Quebec, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal H3A 1A3, Quebec, Canada
| |
Collapse
|
16
|
ADAM17 Inhibition Increases the Impact of Cisplatin Treatment in Ovarian Cancer Spheroids. Cancers (Basel) 2021; 13:cancers13092039. [PMID: 33922533 PMCID: PMC8122950 DOI: 10.3390/cancers13092039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Ovarian cancer (OvCa) treatment is still a challenge, mainly due to acquired resistance mechanisms during the course of chemotherapy. Here, we show the enhanced cytotoxicity of the combined treatment with the ADAM17 inhibitor GW280264X and cisplatin in comparison with cisplatin monotherapy. This effect was visible in five of five ovarian cancer cell lines grown as a monolayer and two of three tested cell lines in three-dimensional tumor spheroids. Tumor spheroids derived from primary tumor and ascites cells were sensitized to cisplatin treatment by GW280264X. In summary, the combination of ADAM17 inhibition with conventional chemotherapy seems to be a promising strategy to overcome chemotherapy resistance in OvCa. Abstract Chemotherapy resistance is a major challenge in ovarian cancer (OvCa). Thus, novel treatment combinations are highly warranted. However, many promising drug candidates tested in two-dimensional (2D) cell culture have not proved successful in the clinic. For this reason, we analyzed our drug combination not only in monolayers but also in three-dimensional (3D) tumor spheroids. One potential therapeutic target for OvCa is A disintegrin and metalloprotease 17 (ADAM17). ADAM17 can be activated by chemotherapeutics, which leads to enhanced tumor growth due to concomitant substrate cleavage. Therefore, blocking ADAM17 during chemotherapy may overcome resistance. Here, we tested the effect of the ADAM17 inhibitor GW280264X in combination with cisplatin on ovarian cancer cells in 2D and 3D. In 2D, the effect on five cell lines was analyzed with two readouts. Three of these cell lines formed dense aggregates or spheroids (HEY, SKOV-3, and OVCAR-8) in 3D and the treatment effect was analyzed with a multicontent readout (cytotoxicity, viability, and caspase3/7 activation). We tested the combined therapy on tumor spheroids derived from primary patient cells. In 2D, we found a significant reduction in the half minimal (50%) inhibitory concentration (IC50) value of the combined treatment (GW280264X plus cisplatin) in comparison with cisplatin monotherapy in all five cell lines with both 2D readout assays (viability and caspase activation). In contrast, the combined treatment only showed an IC50 reduction in HEY and OVCAR-8 3D tumor spheroid models using caspase3/7 activity or CelltoxTM Green as the readout. Finally, we found an improved effect of GW280264X with cisplatin in tumor spheroids derived from patient samples. In summary, we demonstrate that ADAM17 inhibition is a promising treatment strategy in ovarian cancer.
Collapse
|
17
|
Valle-Reyes S, Dobrovinskaya O, Pelayo R, Schnoor M. Acute Lymphoblastic Leukemia Cell Lines in Immunology Research. Trends Immunol 2021; 42:182-185. [PMID: 33485795 DOI: 10.1016/j.it.2020.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022]
Abstract
A considerable portion of our knowledge on T and B cell biology is acquired from research using acute lymphoblastic leukemia (ALL) cell lines, which are invaluable tools used in many immunology and leukemia studies. Here, we discuss the advantages and limitations of ALL cell lines and provide guidelines on their proper usage.
Collapse
Affiliation(s)
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, 28030, Colima, Mexico
| | - Rosana Pelayo
- Eastern Biomedical Research Center, CIBIOR, Instituto Mexicano del Seguro Social, Delegación Puebla, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, CINVESTAV-IPN, 07360 Mexico City, Mexico.
| |
Collapse
|
18
|
Ort C, Lee W, Kalashnikov N, Moraes C. Disentangling the fibrous microenvironment: designer culture models for improved drug discovery. Expert Opin Drug Discov 2020; 16:159-171. [PMID: 32988224 DOI: 10.1080/17460441.2020.1822815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Standard high-throughput screening (HTS) assays rarely identify clinically viable 'hits', likely because cells do not experience physiologically realistic culture conditions. The biophysical nature of the extracellular matrix has emerged as a critical driver of cell function and response and recreating these factors could be critically important in streamlining the drug discovery pipeline. AREAS COVERED The authors review recent design strategies to understand and manipulate biophysical features of three-dimensional fibrous tissues. The effects of architectural parameters of the extracellular matrix and their resulting mechanical behaviors are deconstructed; and their individual and combined impact on cell behavior is examined. The authors then illustrate the potential impact of these physical features on designing next-generation platforms to identify drugs effective against breast cancer. EXPERT OPINION Progression toward increased culture complexity must be balanced against the demanding technical requirements for high-throughput screening; and strategies to identify the minimal set of microenvironmental parameters needed to recreate disease-relevant responses must be specifically tailored to the disease stage and organ system being studied. Although challenging, this can be achieved through integrative and multidisciplinary technologies that span microfabrication, cell biology, and tissue engineering.
Collapse
Affiliation(s)
- Carley Ort
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Wontae Lee
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Nikita Kalashnikov
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University , Montreal, Canada.,Department of Biomedical Engineering, McGill University , Montreal, Canada.,Rosalind & Morris Goodman Cancer Research Center, McGill University , Montreal, Canada
| |
Collapse
|
19
|
Targeting of Lung Cancer Stem Cell Self-Renewal Pathway by a Small Molecule Verrucarin J. Stem Cell Rev Rep 2020; 15:601-611. [PMID: 30835047 DOI: 10.1007/s12015-019-09874-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite considerable advances made in understanding of lung cancer biology, there has been meek improvement in lung cancer treatment outcome with 4% to 5% increase in 5-year survival rates in the last four decades. Underlying problem of lung cancer recurrence and poor prognosis is attributed to the presence of cancer stem cells (CSCs) which possess the potential to differentiate, proliferate and trigger chemo-resistance, tumor progression and metastasis, despite initial elimination of the tumor. To address specific targeting of CSCs, we investigated the effects of a small molecule Verrucarin J (VJ) on lung cancer cell lines A549 and H1793. VJ significantly inhibited cell proliferation of both cell lines, with IC50 values of approximately 10 nM for A549 and 20 nM for H1793 respectively after 48 h of treatment. A549 cell line when treated with VJ, induced cell apoptosis with concomitant down regulation of key CSC specific genes- ALDH1, LGR5, OCT4 and CD133 in a dose-dependent manner. To delineate the molecular mechanism by which VJ targets lung cancer cells and CSCs, we determined the effects of VJ on CSC self-renewal pathways Wnt1/β-catenin and Notch1. Treatment of A549 cell line with VJ inhibited significantly both the signalling pathways, suggesting inhibition of expression of CSC genes by VJ through the inhibition of CSC self-renewal signalling pathways. Taken together, our results suggest that VJ may serve as a potent anticancer drug to target cancer cells and CSCs.
Collapse
|
20
|
Gao Q, Chen Z, He Y, Hou Z, Ye R, Xue W, Lin J, Tu X. CD142 plays an important role in the mobility of colorectal cancer cells. Biosci Biotechnol Biochem 2020; 84:1856-1860. [PMID: 32471327 DOI: 10.1080/09168451.2020.1772039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CD142 promotes cell mobility, which contributes to carcinogenesis. However, the role of CD142 on colorectal cancer (CRC) mobility is unclear. This study showed that CD142 expression increased in CRC tissues, especially in those with invasion or metastasis. The positive sorting or overexpression of CD142 promoted the invasion and migration of CRC cells. Overall, CD142 may be responsible for CRC mobility.
Collapse
Affiliation(s)
- Qin Gao
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital of the Joint Logistics Team , Fuzhou, China.,Department of General Surgery, Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Zhongbiao Chen
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital of the Joint Logistics Team , Fuzhou, China.,Department of General Surgery, Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Yang He
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital of the Joint Logistics Team , Fuzhou, China.,Department of General Surgery, Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Zhibin Hou
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital of the Joint Logistics Team , Fuzhou, China.,Department of General Surgery, Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Ruifeng Ye
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital of the Joint Logistics Team , Fuzhou, China.,Department of General Surgery, Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Wanlin Xue
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital of the Joint Logistics Team , Fuzhou, China.,Department of General Surgery, Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Jiahui Lin
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital of the Joint Logistics Team , Fuzhou, China.,Department of General Surgery, Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Xiaohuang Tu
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital of the Joint Logistics Team , Fuzhou, China.,Department of General Surgery, Dongfang Hospital, Xiamen University , Fuzhou, China
| |
Collapse
|
21
|
Nürnberg E, Vitacolonna M, Klicks J, von Molitor E, Cesetti T, Keller F, Bruch R, Ertongur-Fauth T, Riedel K, Scholz P, Lau T, Schneider R, Meier J, Hafner M, Rudolf R. Routine Optical Clearing of 3D-Cell Cultures: Simplicity Forward. Front Mol Biosci 2020; 7:20. [PMID: 32154265 PMCID: PMC7046628 DOI: 10.3389/fmolb.2020.00020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional cell cultures, such as spheroids and organoids, serve as increasingly important models in fundamental and applied research and start to be used for drug screening purposes. Optical tissue clearing procedures are employed to enhance visualization of fluorescence-stained organs, tissues, and three-dimensional cell cultures. To get a more systematic overview about the effects and applicability of optical tissue clearing on three-dimensional cell cultures, we compared six different clearing/embedding protocols on seven types of spheroid- and chip-based three-dimensional cell cultures of approximately 300 μm in size that were stained with nuclear dyes, immunofluorescence, cell trackers, and cyan fluorescent protein. Subsequent whole mount confocal microscopy and semi-automated image analysis were performed to quantify the effects. Quantitative analysis included fluorescence signal intensity and signal-to-noise ratio as a function of z-depth as well as segmentation and counting of nuclei and immunopositive cells. In general, these analyses revealed five key points, which largely confirmed current knowledge and were quantified in this study. First, there was a massive variability of effects of different clearing protocols on sample transparency and shrinkage as well as on dye quenching. Second, all tested clearing protocols worked more efficiently on samples prepared with one cell type than on co-cultures. Third, z-compensation was imperative to minimize variations in signal-to-noise ratio. Fourth, a combination of sample-inherent cell density, sample shrinkage, uniformity of signal-to-noise ratio, and image resolution had a strong impact on data segmentation, cell counts, and relative numbers of immunofluorescence-positive cells. Finally, considering all mentioned aspects and including a wish for simplicity and speed of protocols - in particular, for screening purposes - clearing with 88% Glycerol appeared to be the most promising option amongst the ones tested.
Collapse
Affiliation(s)
- Elina Nürnberg
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
- Zentralinstitut für Seelische Gesundheit, Department of Translational Brain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mario Vitacolonna
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Julia Klicks
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Elena von Molitor
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Florian Keller
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | | | | | | | - Thorsten Lau
- Zentralinstitut für Seelische Gesundheit, Department of Translational Brain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Julia Meier
- TIP Oncology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
22
|
Caballero D, Reis RL, Kundu SC. Engineering Patient-on-a-Chip Models for Personalized Cancer Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:43-64. [PMID: 32285364 DOI: 10.1007/978-3-030-36588-2_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traditional in vitro and in vivo models typically used in cancer research have demonstrated a low predictive power for human response. This leads to high attrition rates of new drugs in clinical trials, which threaten cancer patient prognosis. Tremendous efforts have been directed towards the development of a new generation of highly predictable pre-clinical models capable to reproduce in vitro the biological complexity of the human body. Recent advances in nanotechnology and tissue engineering have enabled the development of predictive organs-on-a-chip models of cancer with advanced capabilities. These models can reproduce in vitro the complex three-dimensional physiology and interactions that occur between organs and tissues in vivo, offering multiple advantages when compared to traditional models. Importantly, these models can be tailored to the biological complexity of individual cancer patients resulting into biomimetic and personalized cancer patient-on-a-chip platforms. The individualized models provide a more accurate and physiological environment to predict tumor progression on patients and their response to drugs. In this chapter, we describe the latest advances in the field of cancer patient-on-a-chip, and discuss about their main applications and current challenges. Overall, we anticipate that this new paradigm in cancer in vitro models may open up new avenues in the field of personalized - cancer - medicine, which may allow pharmaceutical companies to develop more efficient drugs, and clinicians to apply patient-specific therapies.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal. .,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal
| |
Collapse
|
23
|
Carvalho MR, Truckenmuller R, Reis RL, Oliveira JM. Biomaterials and Microfluidics for Drug Discovery and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:121-135. [DOI: 10.1007/978-3-030-36588-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Brancato V, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Could 3D models of cancer enhance drug screening? Biomaterials 2019; 232:119744. [PMID: 31918229 DOI: 10.1016/j.biomaterials.2019.119744] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/29/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023]
Abstract
Cancer is a multifaceted pathology, where cellular and acellular players interact to drive cancer progression and, in the worst-case, metastasis. The current methods to investigate the heterogeneous nature of cancer are inadequate, since they rely on 2D cell cultures and animal models. The cell line-based drug efficacy and toxicity assays are not able to predict the tumor response to anti-cancer agents and it is already widely discussed how molecular pathway are not recapitulated in vitro so called flat biology. On the other side, animal models often fail to detect the side-effects of drugs, mimic the metastatic progression or the interaction between cancer and immune system, due to biologic difference in human and animals. Moreover, ethical and regulatory issues limit animal experimentation. Every year pharma/biotech companies lose resources in drug discovery and testing processes that are successful only in 5% of the cases. There is an urgent need to validate accurate and predictive platforms in order to enhance drug-testing process taking into account the physiopathology of the tumor microenvironment. Three dimensional in vitro tumor models could enhance drug manufactures in developing effective drugs for cancer diseases. The 3D in vitro cancer models can improve the predictability of toxicity and drug sensitivity in cancer. Despite the demonstrated advantages of 3D in vitro disease systems when compared to 2D culture and animal models, they still do not reach the standardization required for preclinical trials. This review highlights in vitro models that may be used as preclinical models, accelerating the drug development process towards more precise and personalized standard of care for cancer patients. We describe the state-of-the art of 3D in vitro culture systems, with a focus on how these different approaches could be coupled in order to achieve a compromise between standardization and reliability in recapitulating tumor microenvironment and drug response.
Collapse
Affiliation(s)
- Virginia Brancato
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Vitor Manuel Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Rui Luis Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
25
|
Wilson-Robles H, Franks K, Pool R, Miller T. Characterization of five newly derived canine osteosarcoma cell lines. BMC Vet Res 2019; 15:357. [PMID: 31640712 PMCID: PMC6805340 DOI: 10.1186/s12917-019-2099-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Canine and human osteosarcomas (OS) are notably similar and have a high rate of metastasis. There is a poor understanding of the tumor development process, predisposing causes, and varying levels of aggression among different cell lines. By characterizing newly developed canine osteosarcoma cell lines, treatments for people and pets can be developed. Of the seven subtypes of OS, three are represented in this group: osteoblastic (the most common), fibroblastic, and giant cell variant. To our knowledge, there are no other giant cell variant canine OS cell lines in the published literature and only one canine fibroblastic osteosarcoma cell line. Understanding the differences between the histologic subtypes in dogs will help to guide comparative research. RESULTS Alkaline phosphatase expression was ubiquitous in all cell lines tested and invasiveness was variable between the cell lines tested. Invasiveness and oxidative damage were not correlated with in vivo growth rates, where TOT grew the fastest and had the higher percentage of mice with metastatic lesions. TOL was determined to be the most chemo-resistant during cisplatin chemotherapy while TOM was the most chemo-sensitive. CONCLUSIONS Further comparisons and studies using these cell lines may identify a variety of characteristics valuable for understanding the disease process and developing treatments for osteosarcoma in both species. Some of this data was presented as a poster by KMF at the August 5th, 2017 National Veterinary Scholars Program in Bethesda, MA. Characterization of 5 newly generated canine osteosarcoma cell lines. Kelli Franks, Tasha Miller, Heather Wilson-Robles.
Collapse
Affiliation(s)
| | - Kelli Franks
- 660 Raymond Stotzer Pkwy, College Station, TX 77845 USA
| | - Roy Pool
- 660 Raymond Stotzer Pkwy, College Station, TX 77845 USA
| | - Tasha Miller
- 660 Raymond Stotzer Pkwy, College Station, TX 77845 USA
| |
Collapse
|
26
|
Pavlou M, Shah M, Gikas P, Briggs T, Roberts S, Cheema U. Osteomimetic matrix components alter cell migration and drug response in a 3D tumour-engineered osteosarcoma model. Acta Biomater 2019; 96:247-257. [PMID: 31302294 DOI: 10.1016/j.actbio.2019.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/10/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Osteosarcoma management continues to lack the appropriate prognostic tools to assign personalised treatment. This leaves non-responders to standard care vulnerable to recurring disease and pulmonary metastases. Developing 3D in vitro disease models to serve as a test bed for personalised treatment is a promising approach to address this issue. This study describes the generation of 3D osteosarcoma models termed "tumouroids", which are geometrically compartmentalised to reproduce the bone cancer mass and its surrounding. Although the tumour microenvironment impacts osteosarcoma in many ways, this model focussed on interrogating the influence of a biomimetic matrix on tumour cell behaviour. The 3D matrix was supplemented with the bone-marrow proteins laminin, fibronectin and NuOss® bone granules. This led to increased invasion of osteosarcoma cell aggregates from within the bone-like matrix into the surrounding acellular bone marrow-like ECM. The presence of bone granules also yielded an atypical molecular profile of osteosarcoma cells, suggesting malignant metabolic reprogramming. Changes include decreased MMP-9 (p < 0.05) and increased PTEN (p < 0.05), MCP-1 (p < 0.01) and MCT-4 (p < 0.05) gene expression. This complex 3D biomimetic composition also changed cellular responses to doxorubicin, a common chemotherapeutic agent used to treat osteosarcoma, and reproduced key issues of in vivo treatment like drug penetrance and doxorubicin-induced bone toxicity. This work highlights the importance of a biomimetic matrix in 3D osteosarcoma models for both basic and translational research. STATEMENT OF SIGNIFICANCE: This study describes the generation of 3D osteosarcoma models termed "tumouroids", which are geometrically compartmentalised to reproduce the bone cancer mass and its environment. Utilising this novel model, specific parameters of osteosarcoma growth and invasion were investigated. Osteosarcoma cell lines proliferate at a slower rate, exhibit malignant metabolic reprogramming, and respond to drug intervention at lower concentrations of doxorubicin hydrochloride in matrix-complex compared to basic tumouroids. As such, this study provides evidence that the tumour microenvironment impacts osteosarcoma in many ways. The osteosarcoma tumouroid described herein may form the basis of a personalised-medicine strategy, which will allow the testing of drug effectiveness similar to that used for antibiotic selection for pathogenic bacteria.
Collapse
|
27
|
Cytotoxic and Antiproliferative Effects of Preussin, a Hydroxypyrrolidine Derivative from the Marine Sponge-Associated Fungus Aspergillus candidus KUFA 0062, in a Panel of Breast Cancer Cell Lines and Using 2D and 3D Cultures. Mar Drugs 2019; 17:md17080448. [PMID: 31366127 PMCID: PMC6722565 DOI: 10.3390/md17080448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/28/2022] Open
Abstract
Preussin, a hydroxyl pyrrolidine derivative isolated from the marine sponge-associated fungus Aspergillus candidus KUFA 0062, displayed anticancer effects in some cancer cell lines, including MCF7. Preussin was investigated for its cytotoxic and antiproliferative effects in breast cancer cell lines (MCF7, SKBR3, and MDA-MB-231), representatives of major breast cancers subtypes, and in a non-tumor cell line (MCF12A). Preussin was first tested in 2D (monolayer), and then in 3D (multicellular aggregates), cultures, using a multi-endpoint approach for cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), resazurin and lactate dehydrogenase (LDH)) and proliferative (5-bromo-2'-deoxyuridine (BrdU)) assays, as well as the analysis of cell morphology by optical/electron microscopy and immunocytochemistry for caspase-3 and ki67. Preussin affected cell viability and proliferation in 2D and 3D cultures in all cell lines tested. The results in the 3D culture showed the same tendency as in the 2D culture, however, cells in the 3D culture were less responsive. The effects were observed at different concentrations of preussin, depending on the cell line and assay method. Morphological study of preussin-exposed cells revealed cell death, which was confirmed by caspase-3 immunostaining. In view of the data, we recommend a multi-endpoint approach, including histological evaluation, in future assays with the tested 3D models. Our data showed cytotoxic and antiproliferative activities of preussin in breast cancer cell lines in 2D and 3D cultures, warranting further studies for its anticancer potential.
Collapse
|
28
|
Carvalho MR, Barata D, Teixeira LM, Giselbrecht S, Reis RL, Oliveira JM, Truckenmüller R, Habibovic P. Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine. SCIENCE ADVANCES 2019; 5:eaaw1317. [PMID: 31131324 PMCID: PMC6531003 DOI: 10.1126/sciadv.aaw1317] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/16/2019] [Indexed: 05/17/2023]
Abstract
Awareness that traditional two-dimensional (2D) in vitro and nonrepresentative animal models may not completely emulate the 3D hierarchical complexity of tissues and organs is on the rise. Therefore, posterior translation into successful clinical application is compromised. To address this dearth, on-chip biomimetic microenvironments powered by microfluidic technologies are being developed to better capture the complexity of in vivo pathophysiology. Here, we describe a "tumor-on-a-chip" model for assessment of precision nanomedicine delivery on which we validate the efficacy of drug-loaded nanoparticles in a gradient fashion. The model validation was performed by viability studies integrated with live imaging to confirm the dose-response effect of cells exposed to the CMCht/PAMAM nanoparticle gradient. This platform also enables the analysis at the gene expression level, where a down-regulation of all the studied genes (MMP-1, Caspase-3, and Ki-67) was observed. This tumor-on-chip model represents an important development in the use of precision nanomedicine toward personalized treatment.
Collapse
Affiliation(s)
- M. R. Carvalho
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - D. Barata
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Netherlands
| | - L. M. Teixeira
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Netherlands
| | - S. Giselbrecht
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Netherlands
| | - R. L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - J. M. Oliveira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
- Corresponding author.
| | - R. Truckenmüller
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Netherlands
- 300MICRONS GmbH, Daimlerstraße 35, 76185 Karlsruhe, Germany
| | - P. Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Netherlands
| |
Collapse
|
29
|
Choudhary S, Ramasundaram P, Dziopa E, Mannion C, Kissin Y, Tricoli L, Albanese C, Lee W, Zilberberg J. Human ex vivo 3D bone model recapitulates osteocyte response to metastatic prostate cancer. Sci Rep 2018; 8:17975. [PMID: 30568232 PMCID: PMC6299475 DOI: 10.1038/s41598-018-36424-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among American men. Unfortunately, there is no cure once the tumor is established within the bone niche. Although osteocytes are master regulators of bone homeostasis and remodeling, their role in supporting PCa metastases remains poorly defined. This is largely due to a lack of suitable ex vivo models capable of recapitulating the physiological behavior of primary osteocytes. To address this need, we integrated an engineered bone tissue model formed by 3D-networked primary human osteocytes, with conditionally reprogrammed (CR) primary human PCa cells. CR PCa cells induced a significant increase in the expression of fibroblast growth factor 23 (FGF23) by osteocytes. The expression of the Wnt inhibitors sclerostin and dickkopf-1 (Dkk-1), exhibited contrasting trends, where sclerostin decreased while Dkk-1 increased. Furthermore, alkaline phosphatase (ALP) was induced with a concomitant increase in mineralization, consistent with the predominantly osteoblastic PCa-bone metastasis niche seen in patients. Lastly, we confirmed that traditional 2D culture failed to reproduce these key responses, making the use of our ex vivo engineered human 3D bone tissue an ideal platform for modeling PCa-bone interactions.
Collapse
Affiliation(s)
- Saba Choudhary
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Poornema Ramasundaram
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Eugenia Dziopa
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Ciaran Mannion
- Department of Pathology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Yair Kissin
- Insall Scott Kelly Institute for Orthopedics and Sports Medicine, New York, NY, USA.,Hackensack University Medical Center, Hackensack, NJ, USA.,Lenox Hill Hospital, New York, NY, USA
| | - Lucas Tricoli
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Christopher Albanese
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Woo Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Jenny Zilberberg
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA.
| |
Collapse
|
30
|
Stavrovskaya AA, Rybalkina EY. Recent Advances in the Studies of Molecular Mechanisms Regulating Multidrug Resistance in Cancer Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:779-786. [PMID: 30200862 DOI: 10.1134/s0006297918070015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we present new approaches to better understanding multidrug resistance (MDR) development in cancer cells, such as identification of components of a complex process of MDR evolution. Recent advances in the studies of MDR are discussed: 1) chemotherapy agents might be involved in the selection of cancer stem cells resulting in the elevated drug resistance and enhanced tumorigenicity; 2) cell-cell interactions have a great effect on the MDR emergence and evolution; 3) mechanotransduction is an important signaling mechanism in cell-cell interactions; 4) proteins of the ABC transporter family which are often involved in MDR might be transferred between cells via microvesicles (epigenetic MDR regulation); 5) proteins providing cell-to-cell transfer of functional P-glycoprotein (MDR1 protein) via microvesicles have been investigated; 6) P-glycoprotein may serve to regulate apoptosis, as well as transcription and translation of target genes/proteins. Although proving once again that MDR is a complex multi-faceted process, these data open new approaches to overcoming it.
Collapse
Affiliation(s)
- A A Stavrovskaya
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| | - E Yu Rybalkina
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
31
|
Sensi F, D'Angelo E, D'Aronco S, Molinaro R, Agostini M. Preclinical three-dimensional colorectal cancer model: The next generation of in vitro drug efficacy evaluation. J Cell Physiol 2018; 234:181-191. [PMID: 30277557 DOI: 10.1002/jcp.26812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC), the third most common cancer diagnosed in both men and women in the United States, shows a highly ineffective therapeutic management. In these years neither substantial improvements nor new therapeutic approaches have been provided to patients. Performing the early lead discovery phases of new cancer drugs in cellular models, resembling as far as possible the real in vivo tumor environment, may be more effective in predicting their future success in the later clinical phases. In this review, we critically describe the most representative bioengineered models for anticancer drug screening in CRC from the conventional two-dimensional models to the new-generation three-dimensional scaffold-based ones. The scaffold aims to replace the extracellular matrix, thus influencing the biomechanical, biochemical, and biological properties of cells and tissues. In this scenario, we believe that reconstitution of tumor condition is mandatory for an alternative in vitro methods to study cancer development and therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Sensi
- Department of Women and Children Health, University of Padua, Padua, Italy.,Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy
| | - Edoardo D'Angelo
- Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy
| | - Sara D'Aronco
- Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Roberto Molinaro
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marco Agostini
- Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
32
|
Elçin YM. Special Issue: Organs-on-Chips & 3D-Bioprinting Technologies for Personalized Medicine. Stem Cell Rev Rep 2018; 13:319-320. [PMID: 28540601 DOI: 10.1007/s12015-017-9744-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yaşar Murat Elçin
- Tissue Engineering, Biomaterials & Nanobiotechnology Laboratory (ElcinLab), Faculty of Science, Ankara University, 06100, Ankara, Turkey. .,Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
33
|
Marconi A, Quadri M, Saltari A, Pincelli C. Progress in melanoma modelling in vitro. Exp Dermatol 2018; 27:578-586. [DOI: 10.1111/exd.13670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Alessandra Marconi
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Marika Quadri
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Annalisa Saltari
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology; Department of Surgical; Medical, Dental and Morphological Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
34
|
Carvalho MR, Reis RL, Oliveira JM. Mimicking the 3D biology of osteochondral tissue with microfluidic-based solutions: breakthroughs towards boosting drug testing and discovery. Drug Discov Today 2018; 23:711-718. [PMID: 29337200 DOI: 10.1016/j.drudis.2018.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/12/2017] [Accepted: 01/04/2018] [Indexed: 11/30/2022]
Abstract
The development of tissue-engineering (TE) solutions for osteochondral (OC) regeneration has been slowed by technical hurdles related to the recapitulation of their complex and hierarchical architecture. OC defects refer to damage of both the articular cartilage and the underlying subchondral bone. To repair an OC tissue defect, the complexity of the bone and cartilage must be considered. To help achieve this, microfluidics is converging with TE approaches to provide new treatment possibilities. Microfluidics uses precise micrometer-to-millimeter-scale fluid flows to achieve high-resolution and spatial and/or temporal control of the cell microenvironment, providing powerful tools for cell culturing. Herein, we overview the progress of microfluidics for developing 3D in vitro models of OC tissue, with a focus on cancer bone metastasis.
Collapse
Affiliation(s)
- Mariana R Carvalho
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga, 4805-017 Barco, Guimarães, Portugal
| | - Rui Luís Reis
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga, 4805-017 Barco, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga, 4805-017 Barco, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|