1
|
Jin L, Ren C, Yang L, Zhu Y, Li G, Chang Y, Du J, Yang Z, Yuan Y. Efficacy and Safety of Human Umbilical Cord Mesenchymal Stem Cells in Improving Fertility in Polycystic Ovary Syndrome Mice. Curr Stem Cell Res Ther 2025; 20:279-290. [PMID: 40351081 DOI: 10.2174/011574888x287937240424074937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/02/2024] [Indexed: 05/14/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most prevalent reproductive endocrine illness in women of reproductive age and is one of the most important causes of female infertility. The pathogenesis of PCOS is complex. Although mesenchymal stem cell therapy is anticipated to be a successful treatment for PCOS, its long-term safety, including tumorigenesis in patients, remains unknown. OBJECTIVE This study aimed to confirm the efficacy and safety of human umbilical cord mesenchymal stem cells in improving fertility in PCOS mice. METHODS In this study, dehydroepiandrosterone (DHEA) was used to construct a C56BL/6 mouse PCOS model, human umbilical cord mesenchymal stem cells (hUC-MSCs) were used as a treatment, and the reproductive phenotype was observed in parallel breeding experiments to confirm the efficacy of the treatment. A 4-month follow-up period, final blood tests, and organ histology were carried out to confirm the long-term safety of the treatment. RESULTS After hUC-MSCs treatment, the sex hormone disorder of mice was corrected, the morphology and function of the ovary were improved, the number of offspring was significantly increased compared to the control group, and no adverse reactions related to stem cell transplantation such as tumor formation were found within 4 months. CONCLUSION The treatment of hUC-MSCs is safe and effective in treating PCOS over the long term.
Collapse
Affiliation(s)
- Lukuo Jin
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Chenchen Ren
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Li Yang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yuanhang Zhu
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Genxia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yun Chang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Junxiao Du
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Zhaoyuan Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yuchao Yuan
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
2
|
Ali M, Mohd Noor SNF, Mohamad H, Ullah F, Javed F, Abdul Hamid ZA. Advances in guided bone regeneration membranes: a comprehensive review of materials and techniques. Biomed Phys Eng Express 2024; 10:032003. [PMID: 38224615 DOI: 10.1088/2057-1976/ad1e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
Collapse
Affiliation(s)
- Mohammed Ali
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Hasmaliza Mohamad
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Faheem Ullah
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
- Department of Biological Sciences, Biopolymer Research Centre (BRC), National University of Medical Sciences, 46000, Rawalpindi, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Butto Women University Peshawar, Charsadda Road Laramma, 25000, Peshawar, Pakistan
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Lott K, Collier P, Ringor M, Howard KM, Kingsley K. Administration of Epidermal Growth Factor (EGF) and Basic Fibroblast Growth Factor (bFGF) to Induce Neural Differentiation of Dental Pulp Stem Cells (DPSC) Isolates. Biomedicines 2023; 11:biomedicines11020255. [PMID: 36830791 PMCID: PMC9953474 DOI: 10.3390/biomedicines11020255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The aging populations in many countries have developed many chronic illnesses and diseases, including chronic neurologic conditions such as Parkinson's and Azheimer's diseases. Many new lines of research and treatment are focusing on the potential for neurologic regeneration using mesenchymal stem cells (MSCs) in the rapidly growing field of regenerative medicine. This may include dental pulp stem cells (DPSCs), which have recently been demonstrated to produce neuronal precursors. Based upon this evidence, the primary aim of this study was to determine if the growth factors used in MSC-based studies are sufficient to induce neuronal differentiation among DPSCs. Using an existing biorepository, n = 16 DPSC isolates were thawed and cultured for this study, which revealed several subpopulations of rapid-, intermediate-, and slowly dividing DPSCs. Administration of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were sufficient to induce differential changes in growth and viability mainly among some of the rapidly growing DPSCs (n = 4). These phenotypic changes included expression of neural differentiation markers including Sox1, Pax6 and NF-M, which were observed only among those DPSC isolates not expressing early odontoblast-specific biomarkers such as ALP and DSPP. Future studies will be needed to confirm if these methods are sufficient to induce consistent and reliable induction of DPSCs towards neuronal specific differentiation.
Collapse
Affiliation(s)
- Keegan Lott
- School of Medicine, University of Nevada-Las Vegas, 1700 W. Charleston Boulevard, Las Vegas, NV 89106, USA
| | - Paris Collier
- School of Medicine, University of Nevada-Las Vegas, 1700 W. Charleston Boulevard, Las Vegas, NV 89106, USA
| | - Marc Ringor
- School of Medicine, University of Nevada-Las Vegas, 1700 W. Charleston Boulevard, Las Vegas, NV 89106, USA
| | - Katherine M. Howard
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, 1001 Shadow Lane, Las Vegas, NV 89106, USA
| | - Karl Kingsley
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, 1001 Shadow Lane, Las Vegas, NV 89106, USA
- Correspondence: ; Tel.: +1-702-774-2623
| |
Collapse
|
4
|
EVL Promotes Osteo-/Odontogenic Differentiation of Dental Pulp Stem Cells via Activating JNK Signaling Pathway. Stem Cells Int 2023; 2023:7585111. [PMID: 36684389 PMCID: PMC9851786 DOI: 10.1155/2023/7585111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
Objective Human dental pulp stem cells (hDPSCs) were recognized as a suitable and promising source of stem cells in dental pulp regeneration. However, the mechanism by which hDPSCs differentiation into osteo-/odontogenic lineage remains unclear. Ena/VASP-like protein (EVL) has been found to be involved in diverse biological processes. In this study, we explored the role and underlying mechanism of EVL in osteo-/odontogenic differentiation of hDPSCs. Methods Expression of EVL was detected in hDPSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot (WB) analyses during osteo-/odontogenic differentiation. The function of EVL in osteo-/odontogenic differentiation and involvement of MAPK signaling pathways were evaluated by alkaline phosphatase (ALP) staining and activity, alizarin red staining (ARS), and qRT-PCR and western blot analyses. Results The expression of EVL was upregulated during osteo-/odontogenic differentiation of hDPSCs. Overexpression of EVL significantly increased osteo-/odontogenic capacity of hDPSCs, which was reflected in increased alkaline phosphatase (ALP) staining, ALP activity, mineralized nodule formation, and the expressions of genes related to osteo-/odontogenic differentiation, while downregulation of EVL inhibited it. In addition, EVL activated the JNK pathway and phosphorylation of p38 MAPK during differentiation procedure of hDPSCs. The EVL-enhanced differentiation of DPSCs was suppressed by blocking the JNK pathway, rather than the p38 MAPK pathway. Conclusion EVL promotes the osteo-/odontogenic differentiation of hDPSCs by activating the JNK pathway, providing a future target for osteo-/odontogenic differentiation and dental pulp regeneration.
Collapse
|
5
|
Tayanloo-Beik A, Nikkhah A, Roudsari PP, Aghayan H, Rezaei-Tavirani M, Nasli-Esfahani E, Mafi AR, Nikandish M, Shouroki FF, Arjmand B, Larijani B. Application of Biocompatible Scaffolds in Stem-Cell-Based Dental Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:83-110. [PMID: 35999347 DOI: 10.1007/5584_2022_734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Tissue engineering as an important field in regenerative medicine is a promising therapeutic approach to replace or regenerate injured tissues. It consists of three vital steps including the selection of suitable cells, formation of 3d scaffolds, and adding growth factors. Mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs) are mentioned as two main sources for this approach that have been used for the treatment of various types of disorders. However, the main focus of literature in the field of dental tissue engineering is on utilizing MSCs. On the other hand, biocompatible scaffolds play a notable role in this regenerative process which is mentioned to be harmless with acceptable osteoinductivity. Their ability in inhibiting inflammatory responses also makes them powerful tools. Indeed, stem cell functions should be supported by biomaterials acting as scaffolds incorporated with biological signals. Naturally derived polymeric scaffolds and synthetically engineered polymeric/ceramic scaffolds are two main types of scaffolds regarding their materials that are defined further in this review. Various strategies of tissue bioengineering can affect the regeneration of dentin-pulp complex, periodontium regeneration, and whole teeth bioengineering. In this regard, in vivo/ex vivo experimental models have been developed recently in order to perform preclinical studies of dental tissue engineering which make it more transferable to be used for clinic uses. This review summarizes dental tissue engineering through its different components. Also, strategies of tissue bioengineering and experimental models are introduced in order to provide a perspective of the potential roles of dental tissue engineering to be used for clinical aims.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA- CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Neural Regeneration in Regenerative Endodontic Treatment: An Overview and Current Trends. Int J Mol Sci 2022; 23:ijms232415492. [PMID: 36555133 PMCID: PMC9779866 DOI: 10.3390/ijms232415492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases are the most common dental diseases. The traditional treatment is root canal therapy, which achieves satisfactory therapeutic outcomes-especially for mature permanent teeth. Apexification, pulpotomy, and pulp revascularization are common techniques used for immature permanent teeth to accelerate the development of the root. However, there are obstacles to achieving functional pulp regeneration. Recently, two methods have been proposed based on tissue engineering: stem cell transplantation, and cell homing. One of the goals of functional pulp regeneration is to achieve innervation. Nerves play a vital role in dentin formation, nutrition, sensation, and defense in the pulp. Successful neural regeneration faces tough challenges in both animal studies and clinical trials. Investigation of the regeneration and repair of the nerves in the pulp has become a serious undertaking. In this review, we summarize the current understanding of the key stem cells, signaling molecules, and biomaterials that could promote neural regeneration as part of pulp regeneration. We also discuss the challenges in preclinical or clinical neural regeneration applications to guide deep research in the future.
Collapse
|
7
|
Mosaddad SA, Rasoolzade B, Namanloo RA, Azarpira N, Dortaj H. Stem cells and common biomaterials in dentistry: a review study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:55. [PMID: 35716227 PMCID: PMC9206624 DOI: 10.1007/s10856-022-06676-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Stem cells exist as normal cells in embryonic and adult tissues. In recent years, scientists have spared efforts to determine the role of stem cells in treating many diseases. Stem cells can self-regenerate and transform into some somatic cells. They would also have a special position in the future in various clinical fields, drug discovery, and other scientific research. Accordingly, the detection of safe and low-cost methods to obtain such cells is one of the main objectives of research. Jaw, face, and mouth tissues are the rich sources of stem cells, which more accessible than other stem cells, so stem cell and tissue engineering treatments in dentistry have received much clinical attention in recent years. This review study examines three essential elements of tissue engineering in dentistry and clinical practice, including stem cells derived from the intra- and extra-oral sources, growth factors, and scaffolds.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Boshra Rasoolzade
- Student Research Committee, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Hendi SS, Gholami L, Saidijam M, Mahmoudi R, Arkian AA, Bakhtiyar H, Hasani NH, Afshar S. Photobiomodulation of inflamed dental pulp stem cells under different nutritional conditions. Regen Med 2021; 17:69-80. [PMID: 34931540 DOI: 10.2217/rme-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The present study aimed to investigate photobiomodulation's (PBM) effect on inflamed dental pulp stem cells (IDPSCs) under different nutritional conditions. Methods: Cell proliferation and odontogenic differentiation were evaluated using the MTT assay and real-time quantitative reverse transcription PCR, respectively after laser PBM of cells in 5 or 10% fetal bovine serum (FBS) culture conditions. Results: A significant positive effect of laser irradiation on cell proliferation under both nutritional conditions after 24 and 48 h was observed. DMP-1 gene expression increased in the groups with laser irradiation and 5% FBS. Comparison of gene expression levels in the four groups revealed no statistically significant stimulatory effect. The highest gene expression was observed in the non-laser group with 5% FBS. Conclusion: Further studies are required to obtain an irradiation setup to ideally improve inflamed dental pulp stem cells' proliferation and differentiation.
Collapse
Affiliation(s)
- Seyedeh Sareh Hendi
- Department of Endodontics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Gholami
- Department of Periodontics, Dental Research Center, School of dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Iran
| | - Roghayeh Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Ali Asghar Arkian
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hengameh Bakhtiyar
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasrin Haji Hasani
- East-Azarbaijan Agricultural & Natural Resources Research & Education Center, AREEO, Tabriz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Babaki D, Amoako K, Bahrami AR, Yaghoubi S, Mirahmadi M, Matin MM. MTA Enhances the Potential of Adipose-Derived Mesenchymal Stem Cells for Dentin-Pulp Complex Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5712. [PMID: 33333801 PMCID: PMC7765251 DOI: 10.3390/ma13245712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
The aim of the current study was to investigate the effects of mineral trioxide aggregate (MTA) on the proliferation and differentiation of human adipose-derived mesenchymal stem cells (Ad-MSCs) as a surrogate cell source in futuristic stem-cell-based endodontic therapies. Human Ad-MSCs and mesenchymal stem cells derived from bone marrow (BM-MSCs) were isolated from liposuction waste adipose tissue and femur, respectively, and the effects of MTA-conditioned media on their viability, mineralization potential, and osteo/odontogenic differentiation capacity were subsequently evaluated. Alkaline phosphatase (ALP) activity, quantitative alizarin red S staining, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses were performed to investigate and compare the osteo/odontogenic induction potential of MTA on the Ad/BM-MSCs. The results of cytotoxicity assay revealed that at different concentrations, MTA-conditioned medium was not only biocompatible toward both cell types, but also capable of promoting cell proliferation. ALP activity assay showed that 0.2 mg/mL was the optimal concentration of MTA-conditioned medium for osteo/odontogenic induction in Ad/BM-MSCs. The expression of osteo/odontogenic gene markers was increased in Ad/BM-MSCs treated with 0.2 mg/mL MTA-conditioned media. Our results indicated that MTA can efficiently enhance the osteo/odontogenic potential of Ad-MSCs, and thus they can be considered as a better cell source for dentin-pulp complex regeneration. However, further investigations are required to test these potentials in animal models.
Collapse
Affiliation(s)
- Danial Babaki
- Department of Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA; (D.B.); (K.A.)
| | - Kagya Amoako
- Department of Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA; (D.B.); (K.A.)
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Sanam Yaghoubi
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad 9177948974, Iran;
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| |
Collapse
|
10
|
Hattori-Sanuki T, Karakida T, Chiba-Ohkuma R, Miake Y, Yamamoto R, Yamakoshi Y, Hosoya N. Characterization of Living Dental Pulp Cells in Direct Contact with Mineral Trioxide Aggregate. Cells 2020; 9:cells9102336. [PMID: 33096862 PMCID: PMC7589724 DOI: 10.3390/cells9102336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Mineral trioxide aggregate (MTA) was introduced as a material for dental endodontic regenerative therapy. Here, we show the dynamics of living dental pulp cells in direct contact with an MTA disk. A red fluorescence protein (DsRed) was introduced into immortalized porcine dental pulp cells (PPU7) and cloned. DsRed-PPU7 cells were cultured on the MTA disk and cell proliferation, chemotaxis, the effects of growth factors and the gene expression of cells were investigated at the biological, histomorphological and genetic cell levels. Mineralized precipitates formed in the DsRed-PPU7 cells were characterized with crystal structural analysis. DsRed-PPU7 cells proliferated in the central part of the MTA disk until Day 6 and displayed a tendency to move to the outer circumference. Both transforming growth factor beta and bone morphogenetic protein promoted the proliferation and movement of DsRed-PPU7 cells and also enhanced the expression levels of odontoblastic gene differentiation markers. Mineralized precipitates formed in DsRed-PPU7 were composed of calcium and phosphate but its crystals were different in each position. Our investigation showed that DsRed-PPU7 cells in direct contact with the MTA disk could differentiate into odontoblasts by controlling cell–cell and cell–substrate interactions depending on cell adhesion and the surrounding environment of the MTA.
Collapse
Affiliation(s)
- Tamaki Hattori-Sanuki
- Department of Endodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.H.-S.); (N.H.)
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.K.); (R.C.-O.); (R.Y.)
| | - Risako Chiba-Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.K.); (R.C.-O.); (R.Y.)
| | - Yasuo Miake
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan;
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.K.); (R.C.-O.); (R.Y.)
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.K.); (R.C.-O.); (R.Y.)
- Correspondence: ; Tel.: +81-45-580-8479; Fax: +81-45-573-9599
| | - Noriyasu Hosoya
- Department of Endodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.H.-S.); (N.H.)
| |
Collapse
|
11
|
Sone PP, Kaneko T, Zaw SYM, Sueyama Y, Gu B, Murano H, Zaw ZCT, Okada Y, Han P, Katsube KI, Okiji T. Neural Regeneration/Remodeling in Engineered Coronal Pulp Tissue in the Rat Molar. J Endod 2020; 46:943-949. [DOI: 10.1016/j.joen.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 12/25/2022]
|
12
|
Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sci 2020; 256:118002. [PMID: 32585248 DOI: 10.1016/j.lfs.2020.118002] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/11/2020] [Accepted: 06/20/2020] [Indexed: 02/08/2023]
Abstract
Human mesenchymal stem cells (MSCs) have become a hot topic in the development of cell therapies and bioengineering. All kinds of MSCs are genomic stable and have the self-renewal ability. Main sources of MSCs are bone marrow, adipose tissues, umbilical cord and placental tissues. MSCs can be cultured in many undifferentiated passages to grow into more specialized cells, produce secretory factors and also support trophic functions in the body. Exosomes, derived from MSCs also have great potential in regenerative medicine and tissue engineering. Exosomes are secreted by MSCs and have the same therapeutic potential as their parent cells. MSCs and their exosomes combined with biomaterials can also be more effective in promoting the regeneration of tissues and organs. However, for use of MSCs-exosomes as a clinical agent different MSCs-exosomes have been manufactured and their therapeutics effects demonstrated in clinical studies. But there are still many characteristics which are unknown and many barriers still need to be conquered. In this review, we not only highlighted the characteristics of human MSCs and their exosomes, but also provided their latest therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Maria Maqsood
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Mingzhu Kang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Xiaotao Wu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Liping Teng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Lipeng Qiu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Liu Y, Qiu Y, Ni S, Zhang X, Sun H, Song W, Li X. Mussel-Inspired Biocoating for Improving the Adhesion of Dental Pulp Stem Cells in Dental Pulp Regeneration. Macromol Rapid Commun 2020; 41:e2000102. [PMID: 32483838 DOI: 10.1002/marc.202000102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Indexed: 12/21/2022]
Abstract
Dental pulp engineering possesses a promising perspective to replacing lost pulp in the root canal and restoring its functions. Stable adhesion of dental pulp stem cells (DPSCs) on the root canal dentin wall is a key element required for reconstruction of a functional odontoblast layer in dental pulp regeneration. To address this challenge, dopamine-modified hyaluronic acid (DA-HA) is coated on dentin to obtain a stable adhesion of DPSCs. The dopamine segment provides adhesion ability to the coating, and the hyaluronic acid increases the biocompatibility. The results show that DPSCs can adhere on the DA-HA coated dentin slice better than those without coating. Simultaneously, DPSCs proliferation can be further promoted on the prepared coating. Therefore, the DA-HA coating may provide a possible way to immobilize odontoblast cell onto dentin surface for pulp regeneration.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130023, P. R. China.,Department of Endodontics, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.,Department of Pathology, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.,ENT Department, Baoding No. 1 Central Hospital, Baoding, 071000, P. R. China
| | - Ying Qiu
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Shilei Ni
- Department of Pathology, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Xuewei Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Hongchen Sun
- Department of Pathology, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Wenlong Song
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Xiangwei Li
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
14
|
Angiogenic protein synthesis after photobiomodulation therapy on SHED: a preliminary study. Lasers Med Sci 2020; 35:1909-1918. [PMID: 32056077 DOI: 10.1007/s10103-020-02975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
This study evaluated the viability, proliferation, and protein expression after photobiomodulation (PBM) of stem cell from human exfoliated deciduous teeth (SHED). The groups were the following: G1 (2.5 J/cm2), G2 (3.7 J/cm2), and control (not irradiated). According to the groups, cells were irradiated with InGaAlP diode laser at 660 nm wavelength, continuous mode, and single time application. After 6 h, 12 h, and 24 h from irradiation, the cell viability and proliferation, and the protein expression were analyzed by MTT, crystal violet, and ELISA multiplex assay, respectively. Twenty-four hours after PBM, SHED showed better proliferation. Over time in the supernatant, all groups had an increase at the levels of VEGF-C, VEGF-A, and PLGF. In the lysate, the control and G2 exhibited a decrease of the VEGF-A, PECAM-1, and PLGF expression, while control and G3 decreased VEGF-C, VEGF-A, and PDGF expression. The dosimetries of 2.5 J/cm2 and 3.7 J/cm2 maintained viability, improved proliferation, and synthesis of the angiogenic proteins in the supernatant in the studied periods on SHED.
Collapse
|
15
|
Kaneko T, Sone PP, Zaw SYM, Sueyama Y, Zaw ZCT, Okada Y, Murano H, Gu B, Okiji T. In vivo fate of bone marrow mesenchymal stem cells implanted into rat pulpotomized molars. Stem Cell Res 2019; 38:101457. [PMID: 31082676 DOI: 10.1016/j.scr.2019.101457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
In our previous work, we established an in vivo coronal pulp regeneration model in which biodegradable hydrogel-made scaffolds carrying rat bone marrow mesenchymal stem cells (BM-MSCs) were implanted in the coronal pulp chamber of pulpotomized rat maxillary first molars. In this study, we investigated the in vivo fate of LacZ-labeled BM-MSCs in our coronal pulp regeneration model. BM-MSCs were nucleofected with pVectOZ-LacZ plasmid encoding β-galactosidase 1 day before implantation, and the LacZ-transfected BM-MSCs were implanted into the pulpotomized pulp chamber with biodegradable preformed scaffold-hydrogel constructs. Empty vector was used as a control. After 3 and 14 days, the molars were retrieved and subjected to β-galactosidase staining. At 3 days, β-galactosidase-expressing cells with a round profile were located mainly around the scaffold. At 14 days, when the pulp-like tissue had been generated, the majority of β-galactosidase-expressing cells were detected under the newly formed dentin bridge-like structure, where nestin-expressing odontoblast-like cells were arranged. Immunoreactivity for dentin sialoprotein, a marker of mature odontoblasts, was strongly detected under the original dentin. No β-galactosidase staining was observed in the control group. Thus, we demonstrated that BM-MSCs survived for 2 weeks after implantation and colonized within the site of potential cytodifferentiation. Our findings indicated that BM-MSCs could differentiate into cells involved in mineralized tissue formation in the functionally relevant region.
Collapse
Affiliation(s)
- Tomoatsu Kaneko
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Phyo Pyai Sone
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Su Yee Myo Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yukikio Sueyama
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Zar Chi Thein Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yamato Okada
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroki Murano
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Bin Gu
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
16
|
Chocholata P, Kulda V, Babuska V. Fabrication of Scaffolds for Bone-Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E568. [PMID: 30769821 PMCID: PMC6416573 DOI: 10.3390/ma12040568] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration.
Collapse
Affiliation(s)
- Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| |
Collapse
|
17
|
Gu B, Kaneko T, Zaw SYM, Sone PP, Murano H, Sueyama Y, Zaw ZCT, Okiji T. Macrophage populations show an M1-to-M2 transition in an experimental model of coronal pulp tissue engineering with mesenchymal stem cells. Int Endod J 2018; 52:504-514. [PMID: 30387178 DOI: 10.1111/iej.13033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
AIM To assess M1/M2 macrophage phenotypes in a coronal pulp regeneration model in rats, under the hypothesis that there are dynamic M1/M2 phenotype changes during the different stages of the pulp regeneration. METHODOLOGY The maxillary first molars of Wistar rats were pulpotomized, and biodegradable hydrogel-made scaffolds carrying rat bone marrow mesenchymal stem cells were implanted in the pulp chamber. After 3, 7 and 14 days, samples were processed for (i) histological analysis and double immunoperoxidase staining for CD68 (a general macrophage marker) and one of either CCR7 (an M1 marker), CD163 (an M2 marker) or CD206 (an M2 marker); (ii) real-time PCR for AIF1 (an M1 marker), CD163, CD206, IL-10 and TNF-α mRNA expression; and (iii) Western blotting for the detection of CD68, CCR7 and CD206 proteins. RESULTS Histological analysis of the implanted region revealed sparse cellular distribution at 3 days, pulp-like tissue with a thin dentine bridge-like structure at 7 days, and dentine bridge-like mineralized tissue formation and resorption of most scaffolds at 14 days. CCR7+ macrophages had the highest density at 3 days, and then significantly decreased until 14 days (P < 0.05). In contrast, M2 marker (CD163 or CD206) expressing macrophages had the lowest density at 3 days and significantly increased until 14 days (P < 0.05). AIF1 and TNF-α mRNA levels, and CD68 and CCR7 protein levels were highest at 3 days. CD163 and CD206 mRNA levels, and CD206 protein levels increased with time and showed the highest at 14 days. IL-10 mRNA was highest at 3 days, decreased at 7 days and increased at 14 days. CONCLUSIONS Macrophages in the regenerating pulp tissue underwent a distinct transition from M1-dominant to M2-dominant, suggesting that the M1-to-M2 transition of macrophages plays an important role in creating a favourable microenvironment necessary for pulp tissue regeneration.
Collapse
Affiliation(s)
- B Gu
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - T Kaneko
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - S Y M Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - P P Sone
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - H Murano
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Y Sueyama
- Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Z C T Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - T Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
18
|
Argentati C, Morena F, Bazzucchi M, Armentano I, Emiliani C, Martino S. Adipose Stem Cell Translational Applications: From Bench-to-Bedside. Int J Mol Sci 2018; 19:E3475. [PMID: 30400641 PMCID: PMC6275042 DOI: 10.3390/ijms19113475] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023] Open
Abstract
During the last five years, there has been a significantly increasing interest in adult adipose stem cells (ASCs) as a suitable tool for translational medicine applications. The abundant and renewable source of ASCs and the relatively simple procedure for cell isolation are only some of the reasons for this success. Here, we document the advances in the biology and in the innovative biotechnological applications of ASCs. We discuss how the multipotential property boosts ASCs toward mesenchymal and non-mesenchymal differentiation cell lineages and how their character is maintained even if they are combined with gene delivery systems and/or biomaterials, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University Largo dell'Università, snc, 01100 Viterbo, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| |
Collapse
|