1
|
Du J, Qin W, Wen F, Liu Y, Zhang Q, Liu W, Huang C, Feng Z, Pan Z, Gu E. Curculigoside is a Promising Osteoprotective Agent for Osteoporosis: Review. Drug Des Devel Ther 2025; 19:3323-3336. [PMID: 40322028 PMCID: PMC12048297 DOI: 10.2147/dddt.s519174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
The prevention and treatment of osteoporosis (OP) is one of the major issues in coping with the aging population; however, there are limited treatments available for OP. In-depth study of OP pathogenesis and development of new therapeutic strategies has become an urgent medical need facing the aging society. Curculigoside is a natural product widely found in plants, which can modulate cellular differentiation and function in osteogenic cells and exert significant osteoprotective effects. In addition, curculigoside showed significant positive effects on the treatment of OP animal models. Specific mechanisms include inhibition of inflammatory responses, antagonism of oxidative stress, and modulation of various signaling. Therefore, we hypothesized that curculigoside could represent a novel therapeutic strategy for OP. This article reviews recent research advances in the treatment of OP with curculigoside, including the origin and basic characteristics of curculigoside, the mechanisms and therapeutic effects that may be involved in in vitro as well as in vivo studies. We also examine the pharmacokinetics of curculigoside and investigate modified uses that may augment its therapeutic efficacy. This article seeks to encourage additional investigation into curculigoside-based treatments for osteoporosis.
Collapse
Affiliation(s)
- Jianqiang Du
- Departments of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Wenxiu Qin
- Departments of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Fayan Wen
- Departments of Graduate, Gansu University of Traditional Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yandong Liu
- Departments of Graduate, Gansu University of Traditional Chinese Medicine, Lanzhou, People’s Republic of China
| | - Qi Zhang
- Department of Orthopedics, Binhai New Area Hospital of Traditional Chinese Medicine and The Fourth Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Wangxin Liu
- Departments of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Chenyang Huang
- Departments of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Zhixiao Feng
- Departments of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Zhicheng Pan
- Department of Orthopedics, Binhai New Area Hospital of Traditional Chinese Medicine and The Fourth Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Enpeng Gu
- Department of Orthopedics, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
2
|
Pan Y, Li L, Cao N, Liao J, Chen H, Zhang M. Advanced nano delivery system for stem cell therapy for Alzheimer's disease. Biomaterials 2025; 314:122852. [PMID: 39357149 DOI: 10.1016/j.biomaterials.2024.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's Disease (AD) represents one of the most significant neurodegenerative challenges of our time, with its increasing prevalence and the lack of curative treatments underscoring an urgent need for innovative therapeutic strategies. Stem cells (SCs) therapy emerges as a promising frontier, offering potential mechanisms for neuroregeneration, neuroprotection, and disease modification in AD. This article provides a comprehensive overview of the current landscape and future directions of stem cell therapy in AD treatment, addressing key aspects such as stem cell migration, differentiation, paracrine effects, and mitochondrial translocation. Despite the promising therapeutic mechanisms of SCs, translating these findings into clinical applications faces substantial hurdles, including production scalability, quality control, ethical concerns, immunogenicity, and regulatory challenges. Furthermore, we delve into emerging trends in stem cell modification and application, highlighting the roles of genetic engineering, biomaterials, and advanced delivery systems. Potential solutions to overcome translational barriers are discussed, emphasizing the importance of interdisciplinary collaboration, regulatory harmonization, and adaptive clinical trial designs. The article concludes with reflections on the future of stem cell therapy in AD, balancing optimism with a pragmatic recognition of the challenges ahead. As we navigate these complexities, the ultimate goal remains to translate stem cell research into safe, effective, and accessible treatments for AD, heralding a new era in the fight against this devastating disease.
Collapse
Affiliation(s)
- Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| | - Long Li
- Department of Neurosurgery, First Hospital of China Medical University, Liaoning, 110001, China.
| | - Ning Cao
- Army Medical University, Chongqing, 400000, China
| | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Huiyue Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110001, China.
| | - Meng Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| |
Collapse
|
3
|
Andleeb A, Butt H, Ramzan A, Ghufran H, Masaud A, Rahman F, Tasneem S, Baig MT, Abbasi BH, Mehmood A. Prunella vulgaris and Tussilago farfara demonstrate anti-inflammatory activity in rabbits and protect human adipose stem cells against thermal stress in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118985. [PMID: 39442825 DOI: 10.1016/j.jep.2024.118985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prunella vulgaris L.(PV) and Tussilago farfara (TF) are perennial herbs rich in flavonoids and phenolic compounds with immense medicinal value. PV extract (PV-E) possesses potent antipyretic, anti-inflammtory, antioxidant, antiseptic, anti-cancer and immune stimulatory properties and have been traditionally known for the treatment of wounds, ulcers and sores. TF extract (TF-E) has been known for antibacterial, antioxidant, anti-inflammatory, anti-viral, anti-diabetic, anti-cancer, anti-obesity and wound healing effects. Additionally, TF-E infusions have been used for asthma, cough, and bronchopneumonia treatments. AIM OF THE STUDY The therapeutic efficacy of transplanted human adipose stem cells (hASCs) is abrogated under the deteriorating effects of heat stress offered by burn wounds. Earlier researches has documented antioxidant priming as an effective strategy to enhance stem cell performance. As both PV-E and TF-E are known for their potent antioxidant effects. The present study aims to examine the cryoprotective effects of PV-E and TF-E priming on hASCs against in-vitro heat-induced thermal stress. Moreover, we determined the anti-inflammatory potential of both PV-E and TF-E on rabbits. METHODS Antioxidant capacity of both PV-E and TF-E is examined via DPPH assay and anti-inflammatory activity is assessed in rabbits using carrageen-induced paw edema model of inflammation. Next, we investigate the efficacy of different doses (1.25-100 μg/ml) of PV-E and TF-E on hASCs; MTT, LDH, calcein AM staining, and wound scratch assay were used to assess cell viability, cytotoxicity, proliferation ability and cell migration potential in the cells. Then, hASCs were pretreated for 24 h with optimum doses of PV-E and TF-E determined from MTT assay results and were subsequently exposed to in-vitro thermal injury (51 °C,10 min). The cytoprotective effects of both PV-E and TF-E priming under thermal stress were investigated via MTT, LDH, annexin-V staining and gene expression analysis. RESULTS Both PV-E and TF-E extracts demonstrated potent antioxidant and effective anti-inflammatory activities, with a clear reduction in inflammation. Study on hASCs exhibited improved cell viabilities, enhanced cell proliferation and migration abilities of both extracts. While heat stress data revealed that PV-E (2.5 μg/ml) and TF-E (5 μg/ml) pretreatment significantly ameliorated effects of thermal-injuries in hASCs as depicted by significantly enhanced cell viabilities, low LDH release profile, and lower annexin-V expression and regulated gene expression of the pretreated cells. CONCLUSION PV-E and TF-E priming effectively enabled hASCs to combat thermal injury by significantly promoting cell survival than untreated cells. Hence, these findings suggest that PV-E and TF-E priming could be used to attain improved cellular responses and enhanced therapeutic efficacy in burnt tissue.
Collapse
Affiliation(s)
- Anisa Andleeb
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan; Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Amna Ramzan
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Aimen Masaud
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Fazal Rahman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Tasneem
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maria Tayyab Baig
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| |
Collapse
|
4
|
Narasimha RB, Shreya S, Jayabal VA, Yadav V, Rath PK, Mishra BP, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK, Jena MK. Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review. Vet Sci 2025; 12:67. [PMID: 39852942 PMCID: PMC11768649 DOI: 10.3390/vetsci12010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are unique, undifferentiated cells that have the ability to both replicate themselves and develop into specialized cell types. This dual capability makes them valuable in the development of regenerative medicine. Current development in stem cell research has widened their application in cell therapy, drug discovery, reproductive cloning in animals, and cell models for various diseases. Although there are substantial studies revealing the treatment of human degenerative diseases using stem cells, this is yet to be explored in livestock animals. Many diseases in livestock species such as mastitis, laminitis, neuromuscular disorders, autoimmune diseases, and some debilitating diseases are not covered completely by the existing drugs and treatment can be improved by using different types of stem cells like embryonic stem cells, adult stem cells, and induced pluripotent stem cells. This review mainly focuses on the use of stem cells for disease treatment in livestock animals. In addition to the diseases mentioned, the potential of stem cells can be helpful in wound healing, skin disease therapy, and treatment of some genetic disorders. This article explores the potential of stem cells from various sources in the therapy of livestock diseases and also their role in the conservation of endangered species as well as disease model preparation. Moreover, the future perspectives and challenges associated with the application of stem cells in livestock are discussed. Overall, the transformative impact of stem cell research on the livestock sector is comprehensively studied which will help researchers to design future research work on stem cells related to livestock diseases.
Collapse
Affiliation(s)
- Raghavendra B. Narasimha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| | - Singireddy Shreya
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| | - Vijay Anand Jayabal
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, Tamil Nadu, India;
| | - Vikas Yadav
- Department of Clinical Sciences, Clinical Research Centre, Skåne University Hospital, Lund University, SE 20213 Malmö, Sweden
| | - Prasana Kumar Rath
- College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India; (P.K.R.); (B.P.M.)
| | - Bidyut Prava Mishra
- College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India; (P.K.R.); (B.P.M.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, Haryana, India;
| | - Ashok Kumar Mohanty
- ICAR-Central Institute for Research on Cattle (ICAR-CIRC), Meerut 250001, Uttar Pradesh, India;
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| |
Collapse
|
5
|
Heyman E, Devriendt B, De Vlieghere E, Goethals K, Van Poucke M, Peelman L, De Schauwer C. Evaluation of enzymatic protocols to optimize efficiency of bovine adipose tissue-derived mesenchymal stromal cell isolation. NPJ Sci Food 2024; 8:70. [PMID: 39353952 PMCID: PMC11445272 DOI: 10.1038/s41538-024-00313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Sustainable food provision for a continuously growing human population is one of the major challenges for the next decades. Cultured meat represents one of the alternatives which is currently extensively explored. Yet, the most appropriate cell type, capable of long-term proliferation and myogenic differentiation, remains to be identified. Bovine mesenchymal stromal cells (MSCs) are considered as a promising cell source. Within the context of cultured meat production, it is mandatory to maximize cell yield per tissue source. Although many enzymatic methods to isolate MSCs from adipose tissue (AT) have been described, cell yield has never been compared. In this study, we evaluate 32 isolation conditions including four enzyme mixtures (Collagenase type I, Collagenase type I + Trypsin, LiberaseTM and Collagenase type IV) at varying concentrations and incubation times, regarding their efficiency to isolate MSCs from bovine subcutaneous AT. The highest cell yield in combination with a low population doubling time was obtained using LiberaseTM at a concentration of 0.1% for 3 h. MSC identity of the cells was confirmed by tri-lineage differentiation potential and cell surface marker expression. Subsequently, isolated cells were myogenically differentiated using 5-aza-2'-deoxycytidine and galectin-1. mRNA levels of the myogenic regulatory factors (MRF) myogenic factor 5 (MYF5), myogenic differentiation 1 (MYOD1), MYF6, and myogenin (MYOG) were increased, while less paired box 3 (PAX3) mRNA expression was observed when compared to undifferentiated MSCs. The presence of desmin (DES), tropomyosin (TM), and myosin heavy chain (MyHC) in myogenically differentiated bovine AT-MSCs was confirmed using immunofluorescence stainings. When considering MSCs from bovine AT as potential cell source to produce cultured meat, it is recommended to use 0.1% LiberaseTM for 3 h to ensure a high cell yield.
Collapse
Affiliation(s)
- Emma Heyman
- Veterinary Stem Cell Research Unit, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Elly De Vlieghere
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Klara Goethals
- Biometrics Research Group, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | |
Collapse
|
6
|
El Masri J, Fadlallah H, Al Sabsabi R, Afyouni A, Al-Sayegh M, Abou-Kheir W. Adipose-Derived Stem Cell Therapy in Spinal Cord Injury. Cells 2024; 13:1505. [PMID: 39273075 PMCID: PMC11394073 DOI: 10.3390/cells13171505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Spinal cord injury (SCI) is a serious condition accompanied by severe adverse events that affect several aspects of the patient's life, such as motor, sensory, and functional impairment. Despite its severe consequences, definitive treatment for these injuries is still missing. Therefore, researchers have focused on developing treatment strategies aimed at ensuring full recovery post-SCI. Accordingly, attention has been drawn toward cellular therapy using mesenchymal stem cells. Considering their wide availability, decreased immunogenicity, wide expansion capacity, and impressive effectiveness in many therapeutic approaches, adipose-derived stem cell (ADSC) injections in SCI cases have been investigated and showed promising results. In this review, SCI pathophysiology and ADSC transplantation benefits are discussed independently, together with SCI animal models and adipose stem cell preparation and application techniques. The mechanisms of healing in an SCI post-ADSC injection, the outcomes of this therapeutic approach, and current clinical trials are also deliberated, in addition to the challenges and future perspectives, aiming to encourage further research in this field.
Collapse
Affiliation(s)
- Jad El Masri
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Hiba Fadlallah
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
| | - Rahaf Al Sabsabi
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Ahmad Afyouni
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
| |
Collapse
|
7
|
Finding EJT, Faulkner A, Nash L, Wheeler-Jones CPD. Equine Endothelial Cells Show Pro-Angiogenic Behaviours in Response to Fibroblast Growth Factor 2 but Not Vascular Endothelial Growth Factor A. Int J Mol Sci 2024; 25:6017. [PMID: 38892205 PMCID: PMC11172845 DOI: 10.3390/ijms25116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Understanding the factors which control endothelial cell (EC) function and angiogenesis is crucial for developing the horse as a disease model, but equine ECs remain poorly studied. In this study, we have optimised methods for the isolation and culture of equine aortic endothelial cells (EAoECs) and characterised their angiogenic functions in vitro. Mechanical dissociation, followed by magnetic purification using an anti-VE-cadherin antibody, resulted in EC-enriched cultures suitable for further study. Fibroblast growth factor 2 (FGF2) increased the EAoEC proliferation rate and stimulated scratch wound closure and tube formation by EAoECs on the extracellular matrix. Pharmacological inhibitors of FGF receptor 1 (FGFR1) (SU5402) or mitogen-activated protein kinase (MEK) (PD184352) blocked FGF2-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and functional responses, suggesting that these are dependent on FGFR1/MEK-ERK signalling. In marked contrast, vascular endothelial growth factor-A (VEGF-A) had no effect on EAoEC proliferation, migration, or tubulogenesis and did not promote ERK1/2 phosphorylation, indicating a lack of sensitivity to this classical pro-angiogenic growth factor. Gene expression analysis showed that unlike human ECs, FGFR1 is expressed by EAoECs at a much higher level than both VEGF receptor (VEGFR)1 and VEGFR2. These results suggest a predominant role for FGF2 versus VEGF-A in controlling the angiogenic functions of equine ECs. Collectively, our novel data provide a sound basis for studying angiogenic processes in horses and lay the foundations for comparative studies of EC biology in horses versus humans.
Collapse
Affiliation(s)
- Elizabeth J. T. Finding
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK; (A.F.); (L.N.); (C.P.D.W.-J.)
| | | | | | | |
Collapse
|
8
|
Zhu R, Feng Y, Li R, Wei K, Ma Y, Liu Q, Shi D, Huang J. Isolation methods, proliferation, and adipogenic differentiation of adipose-derived stem cells from different fat depots in bovines. Mol Cell Biochem 2024; 479:643-652. [PMID: 37148505 DOI: 10.1007/s11010-023-04753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The adipose-derived stem cells (ASCs) are a valuable resource for regenerative medicine and essential materials for research in fat deposition. However, the isolation procedure of ASCs has not been standardized and needs to be harmonized; differences in proliferation and adipogenic differentiation of ASCs obtained from different fat depots have not been well characterized. In the present study, we compared the efficiency of ASCs isolation by enzymatic treatment and explant culture methods and the proliferation ability and adipogenic differentiation potential of ASCs isolated from subcutaneous and visceral fat depots. The explant culture method was simple and with no need for expensive enzymes while the enzymatic treatment method was complex, time consuming and costly. By the explant culture method, a larger number of ASCs were isolated from subcutaneous and visceral fat depots. By contrast, fewer ASCs were obtained by the enzymatic treatment method, especially from visceral adipose. ASCs isolated by the explant culture method performed well in cell proliferation and adipogenic differentiation, though they were slightly lower than those by the enzymatic treatment method. ASCs isolated from visceral depot demonstrated higher proliferation ability and adipogenic differentiation potential. In total, the explant culture method is simpler, more efficient, and lower cost than the enzymatic treatment method for ASCs isolation; compared with visceral adipose, subcutaneous adipose is easier to isolate ASCs; however, the visceral ASCs are superior to subcutaneous ASCs in proliferation and adipogenic differentiation.
Collapse
Affiliation(s)
- Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Ye Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Ruirui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Kelong Wei
- Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Ningxia, 750021, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
9
|
Wang Z, Bi M, Zhe X, Wang X, Dai B, Han X, Ren B, Liang H, Liu D. Molecular mechanism underlying miR-204-5p regulation of adipose-derived stem cells differentiation into cells from three germ layers. Cell Death Discov 2024; 10:95. [PMID: 38388551 PMCID: PMC10884001 DOI: 10.1038/s41420-024-01852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The limited differentiation ability of adipose-derived stem cells (ADSCs) limits their application in stem cell therapy and regenerative medicine. Here, we explore the molecular mechanism by which miR-204-5p regulates ADSCs differentiation into cells derived from the three germ layers (i.e., adipocytes, neurocytes, and hepatocytes). Although miR-204-5p overexpression inhibited ADSCs differentiation into adipocytes, neurocyte and hepatocyte differentiation were promoted. Mechanistically, miR-204-5p inhibited the expression of PPARG by regulating the AMPK signaling pathway, thereby inhibiting ADSCs differentiation into adipocytes. Further, miR-204-5p regulated JAG1/NOTCH3 axis for the inhibition of differentiation into adipocytes and promotion of differentiation into neurocytes. miR-204-5p might also promote ADSCs differentiation into hepatocytes by upregulating E2F8. The findings of this study provide novel insights into the regulatory mechanisms underlying early embryonic development and will help to facilitate the application of ADSCs in stem cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Zhimin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, P.R. China
| | - Meiyu Bi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Bai Dai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, P.R. China
| | - Xiaoyu Han
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Bingxu Ren
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China.
| |
Collapse
|
10
|
Ivanova Z, Petrova V, Grigorova N, Vachkova E. Identification of the Reference Genes for Relative qRT-PCR Assay in Two Experimental Models of Rabbit and Horse Subcutaneous ASCs. Int J Mol Sci 2024; 25:2292. [PMID: 38396967 PMCID: PMC10889259 DOI: 10.3390/ijms25042292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Obtaining accurate and reliable gene expression results in real-time RT-PCR (qRT-PCR) data analysis requires appropriate normalization by carefully selected reference genes, either a single or a combination of multiple housekeeping genes (HKGs). The optimal reference gene/s for normalization should demonstrate stable expression across varying conditions to diminish potential influences on the results. Despite the extensive database available, research data are lacking regarding the most appropriate HKGs for qRT-PCR data analysis in rabbit and horse adipose-derived stem cells (ASCs). Therefore, in our study, we comprehensively assessed and compared the suitability of some widely used HKGs, employing RefFinder and NormFinder, two extensively acknowledged algorithms for robust data interpretation. The rabbit and horse ASCs were obtained from subcutaneous stromal vascular fraction. ASCs were induced into tri-lineage differentiation, followed by the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) treatment of the adipose-differentiated rabbit ASCs, while horse experimental groups were formed based on adipogenic, osteogenic, and chondrogenic differentiation. At the end of the experiment, the total mRNA was obtained and used for the gene expression evaluation of the observed factors. According to our findings, glyceraldehyde 3-phosphate dehydrogenase was identified as the most appropriate endogenous control gene for rabbit ASCs, while hypoxanthine phosphoribosyltransferase was deemed most suitable for horse ASCs. The obtained results underscore that these housekeeping genes exhibit robust stability across diverse experimental conditions, remaining unaltered by the treatments. In conclusion, the current research can serve as a valuable baseline reference for experiments evaluating gene expression in rabbit and horse ASCs. It highlights the critical consideration of housekeeping gene abundance and stability in qPCR experiments, emphasizing the need for an individualized approach tailored to the specific requirements of the study.
Collapse
Affiliation(s)
- Zhenya Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (V.P.); (N.G.); (E.V.)
| | | | | | | |
Collapse
|
11
|
Sarvari A, Niasari-Naslaji A, Shirazi A, Heidari B, Boroujeni SB, Moradi MH, Naderi MM, Behzadi B, Mehrazar MM, Dehghan MM. Effect of Intra-ovarian Injection of Mesenchymal Stem Cells or its Conditioned Media on Repeated OPU-IVEP Outcomes in Jersey Heifers and Its Relationship with Follicular Fluid Inflammatory Markers. Avicenna J Med Biotechnol 2024; 16:16-28. [PMID: 38605741 PMCID: PMC11005394 DOI: 10.18502/ajmb.v16i1.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 04/13/2024] Open
Abstract
Background Repeated Ovum Pick Up (OPU) could have a detrimental effect on ovarian function, reducing In Vitro Embryo Production (IVEP). The present study examined the therapeutic effect of adipose-derived Mesenchymal Stem Cells (MSCs) or its Conditioned Medium (ConM) on ovarian trauma following repeated OPU. Resolvin E1 (RvE1) and Interleukin-12 (IL-12) were investigated as biomarkers. Methods Jersey heifers (n=8) experienced 11 OPU sessions including 5 pre-treatment and 6 treatment sessions. Heifers received intra-ovarian administration of MSCs or ConM (right ovary) and Dulbecco's Modified Phosphate Buffer Saline (DMPBS; left ovary) after OPU in sessions 5 and 8 and 2 weeks after session 11. The concentrations of RvE1 and IL-12 in follicular fluid was evaluated on sessions 1, 5, 6, 9, and 4 weeks after session 11. Following each OPU session, the IVEP parameters were recorded. Results Intra-ovarian administration of MSCs, ConM, and DMPBS did not affect IVEP parameters (p>0.05). The concentration of IL-12 in follicular fluid increased at the last session of pre-treatment (Session 5; p<0.05) and remained elevated throughout the treatment period. There was no correlation between IL-12 and IVEP parameters (p>0.05). However, RvE1 remained relatively high during the pre-treatment and decreased toward the end of treatment period (p<0.05). This in turn was associated with decline in some IVEP parameters (p<0.05). Conclusion Intra-ovarian administration of MSCs or ConM during repeated OPU did not enhance IVEP outcomes in Bos taurus heifers. The positive association between RvE1 and some of IVEP parameters could nominate RvE1 as a promising biomarker to predict IVEP parameters following repeated OPU.
Collapse
Affiliation(s)
- Ali Sarvari
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir Niasari-Naslaji
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Banafsheh Heidari
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Sara Borjian Boroujeni
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Moradi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Mohammad-Mahdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Bahareh Behzadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad-Mahdi Mehrazar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Bülow A, Schäfer B, Beier JP. Three-Dimensional Bioprinting in Soft Tissue Engineering for Plastic and Reconstructive Surgery. Bioengineering (Basel) 2023; 10:1232. [PMID: 37892962 PMCID: PMC10604458 DOI: 10.3390/bioengineering10101232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle tissue engineering (TE) and adipose tissue engineering have undergone significant progress in recent years. This review focuses on the key findings in these areas, particularly highlighting the integration of 3D bioprinting techniques to overcome challenges and enhance tissue regeneration. In skeletal muscle TE, 3D bioprinting enables the precise replication of muscle architecture. This addresses the need for the parallel alignment of cells and proper innervation. Satellite cells (SCs) and mesenchymal stem cells (MSCs) have been utilized, along with co-cultivation strategies for vascularization and innervation. Therefore, various printing methods and materials, including decellularized extracellular matrix (dECM), have been explored. Similarly, in adipose tissue engineering, 3D bioprinting has been employed to overcome the challenge of vascularization; addressing this challenge is vital for graft survival. Decellularized adipose tissue and biomimetic scaffolds have been used as biological inks, along with adipose-derived stem cells (ADSCs), to enhance graft survival. The integration of dECM and alginate bioinks has demonstrated improved adipocyte maturation and differentiation. These findings highlight the potential of 3D bioprinting techniques in skeletal muscle and adipose tissue engineering. By integrating specific cell types, biomaterials, and printing methods, significant progress has been made in tissue regeneration. However, challenges such as fabricating larger constructs, translating findings to human models, and obtaining regulatory approvals for cellular therapies remain to be addressed. Nonetheless, these advancements underscore the transformative impact of 3D bioprinting in tissue engineering research and its potential for future clinical applications.
Collapse
Affiliation(s)
- Astrid Bülow
- Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, 52074 Aachen, Germany; (B.S.); (J.P.B.)
| | | | | |
Collapse
|
13
|
Pennasilico L, Di Bella C, Sassaroli S, Salvaggio A, Roggiolani F, Piccionello AP. Effects of Autologous Microfragmented Adipose Tissue on Healing of Tibial Plateau Levelling Osteotomies in Dogs: A Prospective Clinical Trial. Animals (Basel) 2023; 13:2084. [PMID: 37443881 DOI: 10.3390/ani13132084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to evaluate the effects of autologous microfragmented adipose tissue (MFAT) applied after mechanical fragmentation and assess these effects radiographically in bone healing in dogs subjected to tibial plateau levelling osteotomy (TPLO). Twenty dogs with unilateral cranial cruciate ligament disease were enrolled and randomly assigned to the treatment group (MFAT) or the control group (NT). The MFAT group underwent TPLO and autologous MFAT intra-articular administration, while the NT group underwent TPLO alone. Adipose tissue was collected from the thigh region, and MFAT was obtained by mechanical fragmentation at the end of the surgery. The patients were subjected to X-ray examination preoperatively, immediately postoperatively (T0), and at 4 (T1) and 8 (T2) weeks postoperatively. Two radiographic scores that had previously been described for the evaluation of bone healing after TPLO were used. A 12-point scoring system (from 0 = no healing to 12 = complete remodelling) was used at T0, T1, and T2, while a 5-point scoring system (from 0 = no healing to 4 = 76-100% of healing) was used at T1 and T2. The median healing scores were significantly higher at T1 and T2 for the MFAT group compared with the NT group for the 12-point (p < 0.05) and 5-point (p < 0.05) scoring systems. The intra-articular injection of autologous microfragmented adipose tissue can accelerate bone healing after TPLO without complications.
Collapse
Affiliation(s)
- Luca Pennasilico
- School of Bioscience and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Caterina Di Bella
- School of Bioscience and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Sara Sassaroli
- School of Bioscience and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | | | | | | |
Collapse
|
14
|
Petrova V, Vachkova E. Outlook of Adipose-Derived Stem Cells: Challenges to Their Clinical Application in Horses. Vet Sci 2023; 10:vetsci10050348. [PMID: 37235430 DOI: 10.3390/vetsci10050348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Adipose tissue is recognized as the major endocrine organ, potentially acting as a source of mesenchymal stem cells for various applications in regenerative medicine. Athletic horses are often exposed to traumatic injuries, resulting in severe financial losses. The development of adipose-derived stem cells' regenerative potential depends on many factors. The extraction of stem cells from subcutaneous adipose tissue is non-invasive, non-traumatic, cheaper, and safer than other sources. Since there is a lack of unique standards for identification, the isolated cells and applied differentiation protocols are often not species-specific; therefore, the cells cannot reveal their multipotent properties, so their stemness features remain questionable. The current review discusses some aspects of the specificity of equine adipose stem cells concerning their features, immunophenotyping, secretome profile, differentiation abilities, culturing conditions, and consequent possibilities for clinical application in concrete disorders. The presented new approaches elucidate the possibility of the transition from cell-based to cell-free therapy with regenerative purposes in horses as an alternative treatment to cellular therapy. In conclusion, their clinical benefits should not be underestimated due to the higher yield and the physiological properties of adipose-derived stem cells that facilitate the healing and tissue regeneration process and the ability to amplify the effects of traditional treatments. More profound studies are necessary to apply these innovative approaches when treating traumatic disorders in racing horses.
Collapse
Affiliation(s)
- Valeria Petrova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
15
|
Liu H, Huang L, Chen F, Zhong Z, Ma X, Zhou Z, Cao S, Shen L, Peng G. Adipose-derived mesenchymal stem cells secrete extracellular vesicles: A potential cell-free therapy for canine renal ischaemia-reperfusion injury. Vet Med Sci 2023; 9:1134-1142. [PMID: 36913179 DOI: 10.1002/vms3.1105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ADMSCs) and their extracellular vesicles (EVs) are a promising source of therapies for ischaemia-reperfusion (IR) because of their potent anti-inflammatory and immunomodulatory properties. OBJECTIVES The aims of this study were to explore the therapeutic efficacy and potential mechanism of ADMSC-EVs in canine renal IR injury. METHODS Mesenchymal stem cells (MSCs) and EVs were isolated and characterised for surface markers. A canine IR model administered with ADMSC-EVs was used to evaluate therapeutic effects on inflammation, oxidative stress, mitochondrial damage and apoptosis. RESULTS CD105, CD90 and beta integrin ITGB were positively expressed in MSCs, while CD63, CD9 and intramembrane marker TSG101 were positively expressed in EVs. Compared with the IR model group, there was less mitochondrial damage and reduction in quantity of mitochondria in the EV treatment group. Renal IR injury led to severe histopathological lesions and significant increases in biomarkers of renal function, inflammation and apoptosis, which were attenuated by the administration of ADMSC-EVs. CONCLUSIONS Secretion of EVs by ADMSCs exhibited therapeutic potential in renal IR injury and may lead to a cell-free therapy for canine renal IR injury. These findings revealed that canine ADMSC-EVs potently attenuate renal IR injury-induced renal dysfunction, inflammation and apoptosis, possibly by reducing mitochondrial damage.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liyuan Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fuhao Chen
- Chongqing Fengdu Agricultural Science and Technology Development Group Co. Ltd, Chongqing, China
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suizhong Cao
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Surowiecka A, Chrapusta A, Klimeczek-Chrapusta M, Korzeniowski T, Drukała J, Strużyna J. Mesenchymal Stem Cells in Burn Wound Management. Int J Mol Sci 2022; 23:ijms232315339. [PMID: 36499664 PMCID: PMC9737138 DOI: 10.3390/ijms232315339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Mesenchymal stem cells have a known regenerative potential and are used in many indications. They secrete many growth factors, including for fibroblasts (FGF), endothelium (VEGF), as well as 14 anti-inflammatory cytokines, and they stimulate tissue regeneration, promoting the secretion of proteins and glycosaminoglycans of extracellular matrices, such as collagen I, II, III, and V, elastin, and also metalloproteinases. They secrete exosomes that contain proteins, nucleic acids, lipids, and enzymes. In addition, they show the activity of inactivating free radicals. The aim of this study was an attempt to collect the existing literature on the use of stem cells in the treatment of a burn wound. There were 81 studies included in the analysis. The studies differed in terms of the design, burn wound model, source of stem cells, and methods of cellular therapy application. No major side effects were reported, and cellular therapy reduced the healing time of the burn wound. Few case reports on human models did not report any serious adverse events. However, due to the heterogeneity of the evidence, cellular therapy in burn wound treatment remains an experimental method.
Collapse
Affiliation(s)
- Agnieszka Surowiecka
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Correspondence:
| | - Anna Chrapusta
- Malopolska Burn and Plastic Surgery Center, Ludwik Rydygier Memorial Hospital in Krakow, 31-826 Cracow, Poland
| | - Maria Klimeczek-Chrapusta
- Malopolska Burn and Plastic Surgery Center, Ludwik Rydygier Memorial Hospital in Krakow, 31-826 Cracow, Poland
| | - Tomasz Korzeniowski
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 31-826 Cracow, Poland
| | - Jerzy Strużyna
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Department of Plastic Surgery, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
17
|
Zhang H, Liu G, Mao X, Yang L, Wang B, Yuan X. LncRNA MEG3 induces endothelial differentiation of mouse derived adipose-derived stem cells by targeting MiR-145-5p/KLF4. Mol Biol Rep 2022; 49:8495-8505. [PMID: 35802277 DOI: 10.1007/s11033-022-07671-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The present study aimed to investigate the mechanisms through which long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) affected the endothelial differentiation of mouse derived adipose-derived stem cells (ADSCs). MATERIALS AND METHODS ADSCs were isolated and identified by specific surface marker detection. The effects of lncRNA MEG3 on endothelial differentiation of ADSCs were also detected via quantitative PCR, western blotting, immunofluorescence and Matrigel angiogenesis assays. In addition, using target gene prediction tools and luciferase reporter assays, the downstream target gene was demonstrated. RESULTS LncRNA MEG3 targeted and reduced the expression levels of microRNA-145-5p (miR-145-5p), which upregulated the expression levels of Krüppel like factor 4 (KLF4), promoting endothelial differentiation of ADSCs. CONCLUSION LncRNA MEG3 induced endothelial differentiation of ADSCs by targeting miR-145-5p/KLF4, which may provide novel insights to illustrate the mechanism of endothelial differentiation of ADSCs.
Collapse
Affiliation(s)
- Hailong Zhang
- Department of Dermatology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Gang Liu
- Department of Medicine, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Xu Mao
- Department of Health Center, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Lei Yang
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Bingyu Wang
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China.
| | - Xingxing Yuan
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 of West Dazhi Street, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
18
|
Yan W, Hao F, Zhe X, Wang Y, Liu D. Neural, adipocyte and hepatic differentiation potential of primary and secondary hair follicle stem cells isolated from Arbas Cashmere goats. BMC Vet Res 2022; 18:313. [PMID: 35971123 PMCID: PMC9377108 DOI: 10.1186/s12917-022-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Arbas Cashmere goats are excellent domestic breeds with high yields of wool and cashmere. Their wool and cashmere can bring huge benefits to the livestock industry. Our studies intend to more fully understand the biological characteristics of hair follicle stem cells (HFSCs) in order to further explore the mechanisms of wool and cashmere regular regeneration. And they have been increasingly considered as promising multipotent cells in regenerative medicine because of their capacity to self-renew and differentiate. However, many aspects of the specific growth characteristics and differentiation ability of HFSCs remain unknown. This study aimed to further explore the growth characteristics and pluripotency of primary hair follicle stem cells (PHFSCs) and secondary hair follicle stem cells (SHFCs). Results We obtained PHFSCs and SHFSCs from Arbas Cashmere goats using combined isolation and purification methods. The proliferation and vitality of the two types of HFSCs, as well as the growth patterns, were examined. HFSC-specific markers and genes related to pluripotency, were subsequently identified. The PHFSCs and SHFSCs of Arbas Cashmere goat have a typical cobblestone morphology. Moreover, the PHFSCs and SHFSCs express HFSC surface markers, including CD34, K14, K15, K19 and LGR5. We also identified pluripotency-associated gene expression, including SOX2, OCT4 and SOX9, in PHFSCs and SHFSCs. Finally, PHFSCs and SHFSCs displayed multipotent abilities. PHFSCs and SHFSCs can be directed to differentiate into adipocyte-like, neural-like, and hepatocyte-like cells. Conclusions In conclusion, this study confirmed that the biological characteristics and differentiation potential of PHFSCs and SHFSCs from Arbas Cashmere goats. These findings broaden and refine our knowledge of types and characteristics of adult stem cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03420-3.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Yingmin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
19
|
Sharun K, Jambagi K, Kumar R, Gugjoo MB, Pawde AM, Tuli HS, Dhama K, Amarpal. Clinical applications of adipose-derived stromal vascular fraction in veterinary practice. Vet Q 2022; 42:151-166. [PMID: 35841195 PMCID: PMC9364732 DOI: 10.1080/01652176.2022.2102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Adipose tissue-derived stromal vascular fraction (AdSVF) comprises a heterogeneous cell population, including the multipotent mesenchymal stem cells, hematopoietic stem cells, immune cells, endothelial cells, fibroblasts, and pericytes. As such, multipotent adipose tissue-derived mesenchymal stem cells (AdMSCs), are one of the important components of AdSVF. Commonly used techniques to harvest AdSVF involve enzymatic or non-enzymatic methods. The enzymatic method is considered to be the gold standard technique due to its higher yield. The cellular components of AdSVF can be resuspended in normal saline, platelet-rich plasma, or phosphate-buffered saline to produce a ready-to-use solution. Freshly isolated AdSVF has exhibited promising osteogenic and vasculogenic capacity. AdSVF has already been proven to possess therapeutic potential for osteoarthritis management. It is also an attractive therapeutic option for enhancing wound healing. In addition, the combined use of AdSVF and platelet-rich plasma has an additive stimulatory effect in accelerating wound healing and can be considered an alternative to AdMSC treatment. It is also widely used for managing various orthopaedic conditions in clinical settings and has the potential for regenerating bone, cartilage, and tendons. Autologous AdSVF cells are used along with bone substitutes and other biological factors as an alternative to conventional bone grafting techniques owing to their promising osteogenic and vasculogenic capacity. It can also be used for treating osteonecrosis, meniscus tear, chondromalacia, and tendon injuries in veterinary practice. It has several advantages over in vitro expanded AdMSC, including precluding the need for culturing, reduced risk of cell contamination, and cost-effectiveness, making it ideal for clinical use.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Kaveri Jambagi
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar, Jammu and Kashmir-190006, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| |
Collapse
|
20
|
Uberti B, Plaza A, Henríquez C. Pre-conditioning Strategies for Mesenchymal Stromal/Stem Cells in Inflammatory Conditions of Livestock Species. Front Vet Sci 2022; 9:806069. [PMID: 35372550 PMCID: PMC8974404 DOI: 10.3389/fvets.2022.806069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) therapy has been a cornerstone of regenerative medicine in humans and animals since their identification in 1968. MSCs can interact and modulate the activity of practically all cellular components of the immune response, either through cell-cell contact or paracrine secretion of soluble mediators, which makes them an attractive alternative to conventional therapies for the treatment of chronic inflammatory and immune-mediated diseases. Many of the mechanisms described as necessary for MSCs to modulate the immune/inflammatory response appear to be dependent on the animal species and source. Although there is evidence demonstrating an in vitro immunomodulatory effect of MSCs, there are disparate results between the beneficial effect of MSCs in preclinical models and their actual use in clinical diseases. This discordance might be due to cells' limited survival or impaired function in the inflammatory environment after transplantation. This limited efficacy may be due to several factors, including the small amount of MSCs inoculated, MSC administration late in the course of the disease, low MSC survival rates in vivo, cryopreservation and thawing effects, and impaired MSC potency/biological activity. Multiple physical and chemical pre-conditioning strategies can enhance the survival rate and potency of MSCs; this paper focuses on hypoxic conditions, with inflammatory cytokines, or with different pattern recognition receptor ligands. These different pre-conditioning strategies can modify MSCs metabolism, gene expression, proliferation, and survivability after transplantation.
Collapse
Affiliation(s)
- Benjamin Uberti
- Instituto de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Anita Plaza
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Claudio Henríquez
| |
Collapse
|
21
|
Quintero Sierra LA, Busato A, Zingaretti N, Conti A, Biswas R, Governa M, Vigato E, Parodi PC, Bernardi P, Sbarbati A, Conti G. Tissue-Material Integration and Biostimulation Study of Collagen Acellular Matrices. Tissue Eng Regen Med 2022; 19:477-490. [PMID: 35244884 PMCID: PMC9130448 DOI: 10.1007/s13770-021-00420-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/04/2022] Open
Abstract
Background: Breast reconstruction after mastectomy using silicone implants is a surgical procedure that occasionally leads to capsular contracture formation. This phenomenon constitutes an important and persistent cause of morbidity, and no successful therapies are available to date. Recently, the use of acellular membranes as a protective material for silicone prostheses has been gaining attention due to their ability to prevent this adverse outcome. For this reason, the evaluation of the tissue-material integration and the induced biostimulation by acellular membranes results crucial. Evaluation of in vivo tissue integration and biostimulation induced by three different natural acellular collagen membranes. Methods: Scanning electron microscopy was performed to analyse the membrane porosity and cells-biomaterial interaction in vitro, both in dry and wet conditions. Adipose-derived stem cells were cultured in the presence of membranes, and the colonisation capacity and differentiation potential of cells were assessed. In vivo tests and ex vivo analyses have been performed to evaluate dermal integration, absorption degree and biostimulation induced by the evaluated membrane. Results: Analysis performed in vitro on the three different acellular dermal matrices evidenced that porosity and the morphological structure of membranes influence the liquid swelling ratio, affecting the cell mobility and the colonisation capacity. Moreover, the evaluated membranes influenced in different manner the adipose derived stem cells differentiation and their survival. In vivo investigation indicated that the absorption degree and the fluid accumulation surrounding the implant were membrane-dependent. Finally, ex vivo analysis confirmed the membrane-dependent behavior revealing different degree of tissue integration and biostimulation, such as adipogenic stimulation. Conclusion: The physico-chemical characteristics of the membranes play a key role in the biostimulation of the cellular environment inducing the development of well-organized adipose tissue.
Collapse
Affiliation(s)
| | - Alice Busato
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Nicola Zingaretti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.,Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medical Area (DAME), University of Udine, Piazzale Santa Maria della Misericordia 15, 33100, Udine, Italy
| | - Anita Conti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Reetuparna Biswas
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Maurizio Governa
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliera Universitaria Integrata, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Enrico Vigato
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliera Universitaria Integrata, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Pier Camillo Parodi
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medical Area (DAME), University of Udine, Piazzale Santa Maria della Misericordia 15, 33100, Udine, Italy
| | - Paolo Bernardi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Giamaica Conti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| |
Collapse
|
22
|
Chitosan for biomedical applications, promising antidiabetic drug delivery system, and new diabetes mellitus treatment based on stem cell. Int J Biol Macromol 2021; 190:417-432. [PMID: 34450151 DOI: 10.1016/j.ijbiomac.2021.08.154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Since chitosan's excellent pharmacokinetic and chemical properties, it is an attractive and promising carbohydrate biopolymer in biomedical applications. Chitosan's beneficial function in the defense and propagation of pancreatic β cells, reducing hyperglycemia, and avoiding diabetes mellitus associated with impaired lipid metabolism has been demonstrated in several studies. Additionally, chitosan has also been used in various nanocarriers to deliver various antidiabetic drugs to reduce glucose levels. Herein, the first to provide the currently available potential benefits of chitosan in diabetes mellitus treatment focuses on chitosan-based nanocarriers for oral administration of various antidiabetic drugs nasal and subcutaneous passages. Moreover, chitosan is used to activate and deliver stem cells and differentiate them into cells similar to pancreatic beta cells as a new type of treatment for type one diabetes mellitus. The results of this review will be helpful in the development of promising treatments and better control of diabetes mellitus.
Collapse
|
23
|
Wiśniewska J, Sadowska A, Wójtowicz A, Słyszewska M, Szóstek-Mioduchowska A. Perspective on Stem Cell Therapy in Organ Fibrosis: Animal Models and Human Studies. Life (Basel) 2021; 11:life11101068. [PMID: 34685439 PMCID: PMC8538998 DOI: 10.3390/life11101068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
Tissue fibrosis is characterized by excessive deposition of extracellular matrix (ECM) components that result from the disruption of regulatory processes responsible for ECM synthesis, deposition, and remodeling. Fibrosis develops in response to a trigger or injury and can occur in nearly all organs of the body. Thus, fibrosis leads to severe pathological conditions that disrupt organ architecture and cause loss of function. It has been estimated that severe fibrotic disorders are responsible for up to one-third of deaths worldwide. Although intensive research on the development of new strategies for fibrosis treatment has been carried out, therapeutic approaches remain limited. Since stem cells, especially mesenchymal stem cells (MSCs), show remarkable self-renewal, differentiation, and immunomodulatory capacity, they have been intensively tested in preclinical studies and clinical trials as a potential tool to slow down the progression of fibrosis and improve the quality of life of patients with fibrotic disorders. In this review, we summarize in vitro studies, preclinical studies performed on animal models of human fibrotic diseases, and recent clinical trials on the efficacy of allogeneic and autologous stem cell applications in severe types of fibrosis that develop in lungs, liver, heart, kidney, uterus, and skin. Although the results of the studies seem to be encouraging, there are many aspects of cell-based therapy, including the cell source, dose, administration route and frequency, timing of delivery, and long-term safety, that remain open areas for future investigation. We also discuss the contemporary status, challenges, and future perspectives of stem cell transplantation for therapeutic options in fibrotic diseases as well as we present recent patents for stem cell-based therapies in organ fibrosis.
Collapse
|