1
|
Ameratunga R, Woon ST, Leung E, Lea E, Chan L, Mehrtens J, Longhurst HJ, Steele R, Lehnert K, Lindsay K. The autoimmune rheumatological presentation of Common Variable Immunodeficiency Disorders with an overview of genetic testing. Semin Arthritis Rheum 2024; 65:152387. [PMID: 38330740 DOI: 10.1016/j.semarthrit.2024.152387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Primary immunodeficiency Disorders (PIDS) are rare, mostly monogenetic conditions which can present to a number of specialties. Although infections predominate in most PIDs, some individuals can manifest autoimmune or inflammatory sequelae as their initial clinical presentation. Identifying patients with PIDs can be challenging, as some can present later in life. This is often seen in patients with Common Variable Immunodeficiency Disorders (CVID), where symptoms can begin in the sixth or even seventh decades of life. Some patients with PIDs including CVID can initially present to rheumatologists with autoimmune musculoskeletal manifestations. It is imperative for these patients to be identified promptly as immunosuppression could lead to life-threatening opportunistic infections in these immunocompromised individuals. These risks could be mitigated by prior treatment with subcutaneous or intravenous (SCIG/IVIG) immunoglobulin replacement or prophylactic antibiotics. Importantly, many of these disorders have an underlying genetic defect. Individualized treatments may be available for the specific mutation, which may obviate or mitigate the need for hazardous broad-spectrum immunosuppression. Identification of the genetic defect has profound implications not only for the patient but also for affected family members, who may be at risk of symptomatic disease following an environmental trigger such as a viral infection. Finally, there may be clinical clues to the underlying PID, such as recurrent infections, the early presentation of severe or multiple autoimmune disorders, as well as a relevant family history. Early referral to a clinical immunologist will facilitate appropriate diagnostic evaluation and institution of treatment such as SCIG/IVIG immunoglobulin replacement. This review comprises three sections; an overview of PIDs, focusing on CVID, secondly genetic testing of PIDs and finally the clinical presentation of these disorders to rheumatologists.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - James Mehrtens
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary J Longhurst
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karen Lindsay
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| |
Collapse
|
2
|
Garcia-Prat M, Batlle-Masó L, Parra-Martínez A, Franco-Jarava C, Martinez-Gallo M, Aguiló-Cucurull A, Perurena-Prieto J, Castells N, Urban B, Dieli-Crimi R, Soler-Palacín P, Colobran R. Role of Skewed X-Chromosome Inactivation in Common Variable Immunodeficiency. J Clin Immunol 2024; 44:54. [PMID: 38265673 DOI: 10.1007/s10875-024-01659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
The term common variable immunodeficiency (CVID) encompasses a clinically diverse group of disorders, mainly characterized by hypogammaglobulinemia, insufficient specific antibody production, and recurrent infections. The genetics of CVID is complex, and monogenic defects account for only a portion of cases, typically <30%. Other proposed mechanisms include digenic, oligogenic, or polygenic inheritance and epigenetic dysregulation. In this study, we aimed to assess the role of skewed X-chromosome inactivation (XCI) in CVID. Within our cohort of 131 genetically analyzed CVID patients, we selected female patients with rare variants in CVID-associated genes located on the X-chromosome. Four patients harboring heterozygous variants in BTK (n = 2), CD40LG (n = 1), and IKBKG (n = 1) were included in the study. We assessed XCI status using the HUMARA assay and an NGS-based method to quantify the expression of the 2 alleles in mRNA. Three of the 4 patients (75%) exhibited skewed XCI, and the mutated allele was predominantly expressed in all cases. Patient 1 harbored a hypomorphic variant in BTK (p.Tyr418His), patient 3 had a pathogenic variant in CD40LG (c.288+1G>A), and patient 4 had a hypomorphic variant in IKBKG (p.Glu57Lys) and a heterozygous splice variant in TNFRSF13B (TACI) (c.61+2T>A). Overall, the analysis of our cohort suggests that CVID in a small proportion of females (1.6% in our cohort) is caused by skewed XCI and highly penetrant gene variants on the X-chromosome. Additionally, skewed XCI may contribute to polygenic effects (3.3% in our cohort). These results indicate that skewed XCI may represent another piece in the complex puzzle of CVID genetics.
Collapse
Affiliation(s)
- Marina Garcia-Prat
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Laura Batlle-Masó
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
| | - Alba Parra-Martínez
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Clara Franco-Jarava
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Mónica Martinez-Gallo
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Aina Aguiló-Cucurull
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Janire Perurena-Prieto
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Neus Castells
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Medicine Genetics Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Blanca Urban
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Romina Dieli-Crimi
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Pere Soler-Palacín
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain.
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain.
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Catalonia, Spain.
| |
Collapse
|
3
|
Ameratunga R, Leung E, Woon ST, Lea E, Allan C, Chan L, Longhurst H, Steele R, Snell R, Lehnert K. Challenges for gene editing in common variable immunodeficiency disorders: Current and future prospects. Clin Immunol 2024; 258:109854. [PMID: 38013164 DOI: 10.1016/j.clim.2023.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 11/29/2023]
Abstract
The original CRISPR Cas9 gene editing system and subsequent innovations offers unprecedented opportunities to correct severe genetic defects including those causing Primary Immunodeficiencies (PIDs). Common Variable Immunodeficiency Disorders (CVID) are the most frequent symptomatic PID in adults and children. Unlike many other PIDs, patients meeting CVID criteria do not have a definable genetic defect and cannot be considered to have an inborn error of immunity (IEI). Patients with a CVID phenotype carrying a causative mutation are deemed to have a CVID-like disorder consequent to an IEI. Patients from consanguineous families often have highly penetrant early-onset autosomal recessive forms of CVID-like disorders. Individuals from non-consanguineous families may have autosomal dominant CVID-like disorders with variable penetrance and expressivity. This essay explores the potential clinical utility as well as the current limitations and risks of gene editing including collateral genotoxicity. In the immediate future the main application of this technology is likely to be the in vitro investigation of epigenetic and polygenic mechanisms, which are likely to underlie many cases of CVID and CVID-like disorders. In the longer-term, the CRISPR Cas9 system and other gene-based therapies could be utilized to treat CVID-like disorders, where the underlying IEI is known.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Euphemia Leung
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Edward Lea
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Caroline Allan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Russell Snell
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Liu Z, Lu C, Qing P, Cheng R, Li Y, Guo X, Chen Y, Ying Z, Yu H, Liu Y. Genetic characteristics of common variable immunodeficiency patients with autoimmunity. Front Genet 2023; 14:1209988. [PMID: 38028622 PMCID: PMC10679925 DOI: 10.3389/fgene.2023.1209988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background: The pathogenesis of common variable immunodeficiency disorder (CVID) is complex, especially when combined with autoimmunity. Genetic factors may be potential explanations for this complex situation, and whole genome sequencing (WGS) provide the basis for this potential. Methods: Genetic information of patients with CVID with autoimmunity, together with their first-degree relatives, was collected through WGS. The association between genetic factors and clinical phenotypes was studied using genetic analysis strategies such as sporadic and pedigree. Results: We collected 42 blood samples for WGS (16 CVID patients and 26 first-degree relatives of healthy controls). Through pedigree, sporadic screening strategies and low-frequency deleterious screening of rare diseases, we obtained 9,148 mutation sites, including 8,171 single-nucleotide variants (SNVs) and 977 Insertion-deletions (InDels). Finally, we obtained a total of 28 candidate genes (32 loci), of which the most common mutant was LRBA. The most common autoimmunity in the 16 patients was systematic lupus erythematosis. Through KEGG pathway enrichment, we identified the top ten signaling pathways, including "primary immunodeficiency", "JAK-STAT signaling pathway", and "T-cell receptor signaling pathway". We used PyMOL to predict and analyse the three-dimensional protein structures of the NFKB1, RAG1, TIRAP, NCF2, and MYB genes. In addition, we constructed a PPI network by combining candidate mutants with genes associated with CVID in the OMIM database via the STRING database. Conclusion: The genetic background of CVID includes not only monogenic origins but also oligogenic effects. Our study showed that immunodeficiency and autoimmunity may overlap in genetic backgrounds. Clinical Trial Registration: identifier ChiCTR2100044035.
Collapse
Affiliation(s)
- Zhihui Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Pingying Qing
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruijuan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Li
- Novogene Co. Ltd., Beijing, China
| | - Xue Guo
- Novogene Co. Ltd., Beijing, China
| | - Ye Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiye Ying
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Poto R, Laniro G, de Paulis A, Spadaro G, Marone G, Gasbarrini A, Varricchi G. Is there a role for microbiome-based approach in common variable immunodeficiency? Clin Exp Med 2023; 23:1981-1998. [PMID: 36737487 PMCID: PMC9897624 DOI: 10.1007/s10238-023-01006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immunoglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a therapeutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of improved preventive strategies and specific therapeutic targets.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità (ISS), Rome, Italy
| | - Gianluca Laniro
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
6
|
Daza-Cajigal V, Segura-Guerrero M, López-Cueto M, Robles-Marhuenda Á, Camara C, Gerra-Galán T, Gómez-de-la-Torre R, Avendaño-Monje CL, Sánchez-Ramón S, Bosque-Lopez MJ, Quintero-Duarte A, Bonet-Vidal ML, Pons J. Clinical manifestations and approach to the management of patients with common variable immunodeficiency and liver disease. Front Immunol 2023; 14:1197361. [PMID: 37342345 PMCID: PMC10277479 DOI: 10.3389/fimmu.2023.1197361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Purpose The clinical spectrum of common variable immunodeficiency (CVID) includes predisposition to infections, autoimmune/inflammatory complications and malignancy. Liver disease is developed by a proportion of patients with CVID, but limited evidence is available about its prevalence, pathogenesis and prognostic outcome. This lack of evidence leads to the absence of guidelines in clinical practice. In this study, we aimed at defining the characteristics, course and management of this CVID complication in Spain. Methods Spanish reference centers were invited to complete a cross-sectional survey. Thirty-eight patients with CVID-related liver disease from different hospitals were evaluated by a retrospective clinical course review. Results In this cohort, abnormal liver function and thrombocytopenia were found in most of the patients (95% and 79% respectively), in keeping with the higher incidence of abnormal liver imaging and splenomegaly. The most common histological findings included nodular regenerative hyperplasia (NRH) and lymphocytic infiltration, which have been associated with portal hypertension (PHTN) leading to a poorer prognosis. Autoimmune/inflammatory complications occurred in 82% of the CVID patients that developed liver disease and 52% of the patients treated with immunomodulators showed a reduction in the liver function tests' abnormalities during treatment. Among the experts that conducted the survey, there was 80% or more consensus that the workup of CVID-related liver disease requires liver profile, abdominal ultrasound and transient elastography. The majority agreed that liver biopsy should be essential for diagnosis. There was 94% consensus that endoscopic studies should be performed in the presence of PHTN. However, there was 89% consensus that there is insufficient evidence on the management of these patients. Conclusion Liver disease varies in severity and may contribute substantially to morbidity and mortality in patients with CVID. Hence the importance of close follow-up and screening of this CVID complication to prompt early targeted intervention. Further research is needed to evaluate the pathophysiology of liver disease in patients with CVID to identify personalized treatment options. This study emphasizes the urgent need to develop international guidelines for the diagnosis and management of this CVID complication.
Collapse
Affiliation(s)
- Vanessa Daza-Cajigal
- Department of Immunology, Hospital Universitario Son Espases, Palma, Spain
- Research Unit, Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Marina Segura-Guerrero
- Department of Immunology, Hospital Universitario Son Espases, Palma, Spain
- Research Unit, Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - María López-Cueto
- Department of Immunology, Hospital Universitario Son Espases, Palma, Spain
- Research Unit, Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | | | - Carmen Camara
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain
| | - Teresa Gerra-Galán
- Department of Clinical Immunology, Instituto de Medicina del Laboratorio (IML), Hospital Clínico San Carlos, Madrid, Spain
| | | | | | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, Instituto de Medicina del Laboratorio (IML), Hospital Clínico San Carlos, Madrid, Spain
| | | | | | - María L. Bonet-Vidal
- Department of Gastroenterology, Hospital Universitario Son Espases, Palma, Spain
| | - Jaime Pons
- Department of Immunology, Hospital Universitario Son Espases, Palma, Spain
- Research Unit, Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| |
Collapse
|
7
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
8
|
Peng XP, Caballero-Oteyza A, Grimbacher B. Common Variable Immunodeficiency: More Pathways than Roads to Rome. ANNUAL REVIEW OF PATHOLOGY 2023; 18:283-310. [PMID: 36266261 DOI: 10.1146/annurev-pathmechdis-031521-024229] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fifty years have elapsed since the term common variable immunodeficiency (CVID) was introduced to accommodate the many and varied antibody deficiencies being identified in patients with suspected inborn errors of immunity (IEIs). Since then, how the term is understood and applied for diagnosis and management has undergone many revisions, though controversy persists on how exactly to define and classify CVID. Many monogenic disorders have been added under its aegis, while investigations into polygenic, epigenetic, and somatic contributions to CVID susceptibility have gained momentum. Expansion of the overall IEI landscape has increasingly revealed genotypic and phenotypic overlap between CVID and various other immunological conditions, while increasingly routine genotyping of CVID patients continues to identify an incredible diversity of pathophysiological mechanisms affecting even single genes. Though many questions remain to be answered, the lessons we have already learned from CVID biology have greatly informed our understanding of adaptive, but also innate, immunity.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.,Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany.,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Galati A, Muciaccia R, Marucci A, Di Paola R, Menzaghi C, Ortolani F, Rutigliano A, Rotondo A, Fischetto R, Piccinno E, Delvecchio M. Early-Onset Diabetes in an Infant with a Novel Frameshift Mutation in LRBA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11031. [PMID: 36078750 PMCID: PMC9517908 DOI: 10.3390/ijerph191711031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
We describe early-onset diabetes in a 6-month-old patient carrying an LRBA gene mutation. Mutations in this gene cause primary immunodeficiency with autoimmune disorders in infancy. At admission, he was in diabetic ketoacidosis, and treatment with fluid infusion rehydration and then i.v. insulin was required. He was discharged with a hybrid closed-loop system for insulin infusion and prevention of hypoglycemia (Minimed Medtronic 670G). He underwent a next-generation sequencing analysis for monogenic diabetes genes, which showed that he was compound heterozygous for two mutations in the LRBA gene. In the following months, he developed arthritis of hands and feet, chronic diarrhea, and growth failure. He underwent bone marrow transplantation with remission of diarrhea and arthritis, but not of diabetes and growth failure. The blood glucose control has always been at target (last HbA1c 6%) without any severe hypoglycemia. LRBA gene mutations are a very rare cause of autoimmune diabetes. This report describes the clinical course in a very young patient. The hybrid closed-loop system was safe and efficient in the management of blood glucose. This report describes the clinical course of diabetes in a patient with a novel LRBA gene mutation.
Collapse
Affiliation(s)
- Alessio Galati
- Department of Pediatrics, Giovanni XXIII Children Hospital, Azienda Ospedaliero Universitaria Consorziale Policlinico, 70124 Bari, Italy
| | - Rosalia Muciaccia
- Department of Pediatrics, Giovanni XXIII Children Hospital, Azienda Ospedaliero Universitaria Consorziale Policlinico, 70124 Bari, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Federica Ortolani
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| | - Alessandra Rutigliano
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| | - Arianna Rotondo
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| | - Rita Fischetto
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| | - Elvira Piccinno
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| | - Maurizio Delvecchio
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| |
Collapse
|
10
|
Ballow M, Sánchez-Ramón S, Walter JE. Secondary Immune Deficiency and Primary Immune Deficiency Crossovers: Hematological Malignancies and Autoimmune Diseases. Front Immunol 2022; 13:928062. [PMID: 35924244 PMCID: PMC9340211 DOI: 10.3389/fimmu.2022.928062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
Primary immunodeficiencies (PIDs), a heterogenous group of inborn errors of immunity, are predetermined at birth but may evolve with age, leading to a variable clinical and laboratory presentation. In contrast, secondary immunodeficiencies (SIDs) are acquired declines of immune cell counts and or/function. The most common type of SID is a decreased antibody level occurring as a consequence of extrinsic influences, such as an underlying condition or a side effect of some medications used to treat hematological malignancies and autoimmune disorders. Paradoxically, immune deficiencies initially attributed to secondary causes may partly be due to an underlying PID. Therefore, in the era of immune-modulating biologicals, distinguishing between primary and secondary antibody deficiencies is of great importance. It can be difficult to unravel the relationship between PID, SID and hematological malignancy or autoimmunity in the clinical setting. This review explores SID and PID crossovers and discusses challenges to diagnosis and treatment strategies. The case of an immunodeficient patient with follicular lymphoma treated with rituximab illustrates how SID in the setting of hematological cancer can mask an underlying PID, and highlights the importance of screening such patients. The risk of hematological cancer is increased in PID: for example, lymphomas in PID may be driven by infections such as Epstein-Barr virus, and germline mutations associated with PID are enriched among patients with diffuse large B-cell lymphoma. Clues suggesting an increased risk of hematological malignancy in patients with common variable immune deficiency (CVID) are provided, as well as pointers for distinguishing PID versus SID in lymphoma patients. Two cases of patients with autoimmune disorders illustrate how an apparent rituximab-induced antibody deficiency can be connected to an underlying PID. We highlight that PID is increasingly recognized among patients with autoimmune cytopenias, and provide guidance on how to identify PID and distinguish it from SID in such patients. Overall, healthcare professionals encountering patients with malignancy and/or autoimmunity who have post-treatment complications of antibody deficiencies or other immune abnormalities need to be aware of the possibility of PID or SID and how to differentiate them.
Collapse
Affiliation(s)
- Mark Ballow
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida at Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
| | - Silvia Sánchez-Ramón
- Department of Immunology, Hospital Clínico San Carlos, Instituto de Medicina del Laboratorio (IML), Complutense University of Madrid, Madrid, Spain
| | - Jolan E. Walter
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida at Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- Division of Pediatric Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Woon ST, Mayes J, Quach A, Longhurst H, Ferrante A, Ameratunga R. Droplet digital PCR for identifying copy number variations in patients with primary immunodeficiency disorders. Clin Exp Immunol 2022; 207:329-335. [PMID: 35553639 PMCID: PMC9113119 DOI: 10.1093/cei/uxab034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Primary immunodeficiency disorders comprise a rare group of mostly monogenic disorders caused by inborn errors of immunity. The majority can be identified by either Sanger sequencing or next generation sequencing. Some disorders result from large insertions or deletions leading to copy number variations (CNVs). Sanger sequencing may not identify these mutations. Here we present droplet digital PCR as an alternative cost-effective diagnostic method to identify CNV in these genes. The data from patients with large deletions of NFKB1, SERPING1, and SH2D1A are presented.
Collapse
Affiliation(s)
- See-Tarn Woon
- Department of Virology and Immunology, LabPLUS, Auckland City Hospital, Grafton, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Julia Mayes
- Department of Virology and Immunology, LabPLUS, Auckland City Hospital, Grafton, Auckland, New Zealand
| | - Alexander Quach
- SA Pathology at the Women’s & Children’s Hospital, Immunopathology Department, North Adelaide, South Australia, Australia
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland City Hospital, Grafton, Auckland, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Antonio Ferrante
- SA Pathology at the Women’s & Children’s Hospital, Immunopathology Department, North Adelaide, South Australia, Australia
| | - Rohan Ameratunga
- Department of Virology and Immunology, LabPLUS, Auckland City Hospital, Grafton, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Clinical Immunology, Auckland City Hospital, Grafton, Auckland, New Zealand
| |
Collapse
|
12
|
Ameratunga R, Woon ST, Steele R, Lehnert K, Leung E, Brooks AES. Severe COVID-19 is a T cell immune dysregulatory disorder triggered by SARS-CoV-2. Expert Rev Clin Immunol 2022; 18:557-565. [PMID: 35510369 DOI: 10.1080/1744666x.2022.2074403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION COVID-19 has had a calamitous impact on the global community. Apart from at least 6M deaths, hundreds of millions have been infected and a much greater number have been plunged into poverty. Vaccines have been effective but financial and logistical challenges have hampered their rapid global deployment. Vaccine disparities have allowed the emergence of new SARS-CoV-2 variants including delta and omicron, perpetuating the pandemic. AREAS COVERED The immunological response to SARS-CoV-2 has been the subject of intense study and is now better understood. Many of the clinical manifestations of severe disease are a consequence of immune dysregulation triggered by the virus. This may explain the lack of efficacy of antiviral treatments such as convalescent plasma infusions, given later in the disease. EXPERT OPINION T cells play a crucial role in both the outcome of COVID-19 as well as the protective response to vaccines. Vaccines do not prevent infection but reduce the risk of a chaotic and destructive cellular immune response to the virus. Severe COVID-19 should be considered a virus-induced secondary immune dysregulatory disorder of cellular immunity, with broad host susceptibility. This perspective of COVID-19 will lead to better diagnostic tests, vaccines and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland New Zealand.,Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand.,Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland.,Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| |
Collapse
|
13
|
Kedar P, Dongerdiye R, Chandrakala S, Bargir UA, Madkaikar M. Targeted next-generation sequencing revealed a novel homozygous mutation in the LRBA gene causes severe haemolysis associated with Inborn Errors of Immunity in an Indian family. Hematology 2022; 27:441-448. [PMID: 35413226 DOI: 10.1080/16078454.2022.2058736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES LPS-responsive beige-like anchor protein (LRBA) deficiency abolishes LRBA protein expression due to biallelic mutations in the LRBA gene that lead to autoimmune manifestations, inflammatory bowel disease, hypogammaglobulinemia in early stages, and variable clinical manifestations. MATERIALS AND METHODS Mutational analysis of the LRBA gene was performed in Indian patients using targeted Next Generation Sequencing (t-NGS) and confirmed by Sanger sequencing using specific primers of exons 53. Then, bioinformatics analysis and protein modeling for the novel founded mutations were also performed. The genotype, phenotype correlation was done according to the molecular findings and clinical features. RESULTS We report an unusual case of a female patient born of a consanguineous marriage, presented with severe anaemia and jaundice with a history of multiple blood transfusions of unknown cause up to the age of 5 yrs. She had hepatosplenomegaly with recurrent viral and bacterial infections. Tests for hemoglobinopathies, enzymopathies, and hereditary spherocytosis were within the normal limits. The t-NGS revealed a novel homozygous missense variation in exon 53 of the LRBA gene (chr4:151231464C > T; c.7799G > A) (p.C2600Y), and the parents were heterozygous. The further immunological analysis is suggestive of hypogammaglobulinaemia and autoimmune haemolytic anaemia. The bioinformatics tools are suggestive of deleterious and disease-causing variants. CONCLUSION This study concludes the importance of a timely decision of targeted exome sequencing for the molecular diagnostic tool of unexplained haemolytic anaemia with heterogeneous clinical phenotypes.
Collapse
Affiliation(s)
- Prabhakar Kedar
- Department of Haematogenetics, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| | - Rashmi Dongerdiye
- Department of Haematogenetics, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| | | | - Umair Ahmed Bargir
- Department of Pediatric Immunology and Leukocyte Biology, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| |
Collapse
|
14
|
Labrador-Horrillo M, Franco-Jarava C, Garcia-Prat M, Parra-Martínez A, Antolín M, Salgado-Perandrés S, Aguiló-Cucurull A, Martinez-Gallo M, Colobran R. Case Report: X-Linked SASH3 Deficiency Presenting as a Common Variable Immunodeficiency. Front Immunol 2022; 13:881206. [PMID: 35464398 PMCID: PMC9027814 DOI: 10.3389/fimmu.2022.881206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
SASH3 is a lymphoid-specific adaptor protein. In a recent study, SASH3 deficiency was described as a novel X-linked combined immunodeficiency with immune dysregulation, associated with impaired TCR signaling and thymocyte survival in humans. The small number of patients reported to date showed recurrent sinopulmonary, cutaneous and mucosal infections, and autoimmune cytopenia. Here we describe an adult patient previously diagnosed with common variable immunodeficiency (CVID) due to low IgG and IgM levels and recurrent upper tract infections. Two separate, severe viral infections drew our attention and pointed to an underlying T cell defect: severe varicella zoster virus (VZV) infection at the age of 4 years and bilateral pneumonia due type A influenza infection at the age of 38. Genetic testing using an NGS-based custom-targeted gene panel revealed a novel hemizygous loss-of-function variant in the SASH3 gene (c.505C>T/p.Gln169*). The patient’s immunological phenotype included marked B cell lymphopenia with reduced pre-switch and switch memory B cells, decreased CD4+ and CD8+ naïve T cells, elevated CD4+ and CD8+ TEMRA cells, and abnormal T cell activation and proliferation. The patient showed a suboptimal response to Streptococcus pneumoniae (polysaccharide) vaccine, and a normal response to Haemophilus influenzae type B (conjugate) vaccine and SARS-CoV-2 (RNA) vaccine. In summary, our patient has a combined immunodeficiency, although he presented with a phenotype resembling CVID. Two severe episodes of viral infection alerted us to a possible T-cell defect, and genetic testing led to SASH3 deficiency. Our patient displays a milder phenotype than has been reported previously in these patients, thus expanding the clinical spectrum of this recently identified inborn error of immunity.
Collapse
Affiliation(s)
- Moisés Labrador-Horrillo
- Allergy Section, Internal Medicine Department, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Research Institute (VHIR) RETIC ARADyal, Vall d’Hebron Barcelona Hospital, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Clara Franco-Jarava
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Marina Garcia-Prat
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | - Alba Parra-Martínez
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | - Sandra Salgado-Perandrés
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Aina Aguiló-Cucurull
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Mónica Martinez-Gallo
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- *Correspondence: Roger Colobran, ; Mónica Martinez-Gallo,
| | - Roger Colobran
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- *Correspondence: Roger Colobran, ; Mónica Martinez-Gallo,
| |
Collapse
|
15
|
Danieli MG, Mezzanotte C, Verga JU, Menghini D, Pedini V, Bilò MB, Moroncini G. Common Variable Immunodeficiency in Elderly Patients: A Long-Term Clinical Experience. Biomedicines 2022; 10:biomedicines10030635. [PMID: 35327437 PMCID: PMC8944947 DOI: 10.3390/biomedicines10030635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Common variable immunodeficiency (CVID) is a complex, predominantly antibody deficiency usually diagnosed between 20−40 years. Few data about elderly patients are reported in the literature. Our aim was to evaluate the clinical phenotypes of elderly patients with CVID. Method: A retrospective analysis of adult patients with CVID was performed in our Referral Centre, focusing on the main differences between “older” patients (≥65 years at the diagnosis) and “younger” patients (<65 years). Results: The data from 65 younger and 13 older patients followed up for a median period of 8.5 years were available. At diagnosis, recurrent infections represented the only clinical manifestation in 61% and 69% of younger and older patients, respectively. The incidence of autoimmune diseases was higher in elderly patients compared with younger ones (30 vs. 18%, respectively). During the follow-up, the incidence of autoimmune disorders and enteropathy increased in the younger patients whereas neoplasia became the most prevalent complication in the elderly (38%). All patients received a replacement therapy with immunoglobulin, with good compliance. Conclusion: CVID occurrence in elderly patients is rarely described; therefore, the clinical characteristics are not completely known. In our series, neoplasia became the most prevalent complication in the elderly during the follow-up. In elderly patients, 20% SCIg was as safe as in the younger ones, with good compliance. A genetic analysis is important to confirm the diagnosis, identify specific presentations in the different ages, clarify the prognosis and guide the treatment. Future clinical research in this field may potentially help to guide their care.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (M.B.B.); (G.M.)
- Department of Internal Medicine, Clinica Medica, Ospedali Riuniti, 60126 Ancona, Italy
- Correspondence: ; Fax: +39-(0)-71-220-6103
| | - Cristina Mezzanotte
- Internal Medicine Residency Program, Marche Polytechnic University, 60126 Ancona, Italy;
| | - Jacopo Umberto Verga
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy;
- The SFI Centre for Research Training in Genomics Data Science, National University of Ireland, H91 FYH2 Galway, Ireland
| | - Denise Menghini
- Section of Internal Medicine, Ospedale di Civitanova Marche, 62012 Civitanova Marche, Italy;
| | - Veronica Pedini
- Section of Internal Medicine, Department of Medicine, Carlo Poma Hospital, 46100 Mantova, Italy;
| | - Maria Beatrice Bilò
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (M.B.B.); (G.M.)
- Allergy Unit, Department of Internal Medicine, Ospedali Riuniti, 60126 Ancona, Italy
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (M.B.B.); (G.M.)
- Department of Internal Medicine, Clinica Medica, Ospedali Riuniti, 60126 Ancona, Italy
| |
Collapse
|
16
|
Vorsteveld EE, Hoischen A, van der Made CI. Next-Generation Sequencing in the Field of Primary Immunodeficiencies: Current Yield, Challenges, and Future Perspectives. Clin Rev Allergy Immunol 2021; 61:212-225. [PMID: 33666867 PMCID: PMC7934351 DOI: 10.1007/s12016-021-08838-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Primary immunodeficiencies comprise a group of inborn errors of immunity that display significant clinical and genetic heterogeneity. Next-generation sequencing techniques and predominantly whole exome sequencing have revolutionized the understanding of the genetic and molecular basis of genetic diseases, thereby also leading to a sharp increase in the discovery of new genes associated with primary immunodeficiencies. In this review, we discuss the current diagnostic yield of this generic diagnostic approach by evaluating the studies that have employed next-generation sequencing techniques in cohorts of patients with primary immunodeficiencies. The average diagnostic yield for primary immunodeficiencies is determined to be 29% (range 10-79%) and 38% specifically for whole-exome sequencing (range 15-70%). The significant variation between studies is mainly the result of differences in clinical characteristics of the studied cohorts but is also influenced by varying sequencing approaches and (in silico) gene panel selection. We further discuss other factors contributing to the relatively low yield, including the inherent limitations of whole-exome sequencing, challenges in the interpretation of novel candidate genetic variants, and promises of exploring the non-coding part of the genome. We propose strategies to improve the diagnostic yield leading the way towards expanded personalized treatment in PIDs.
Collapse
Affiliation(s)
- Emil E Vorsteveld
- Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, The Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Caspar I van der Made
- Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Ameratunga R, Longhurst H, Steele R, Lehnert K, Leung E, Brooks AES, Woon ST. Common Variable Immunodeficiency Disorders, T-Cell Responses to SARS-CoV-2 Vaccines, and the Risk of Chronic COVID-19. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2021; 9:3575-3583. [PMID: 34182162 PMCID: PMC8230758 DOI: 10.1016/j.jaip.2021.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
COVID-19 has had a calamitous effect on the global community. Despite intense study, the immunologic response to the infection is only partially understood. In addition to older age and ethnicity, patients with comorbidities including obesity, diabetes, hypertension, coronary artery disease, malignancy, renal, and pulmonary disease may experience severe outcomes. Some patients with primary immunodeficiency (PID) and secondary immunodeficiency also appear to be at increased risk from COVID-19. In addition to vulnerability to SARS-CoV-2, patients with PIDs often have chronic pulmonary disease and may not respond to vaccines, which exacerbates their long-term risk. Patients with common variable immunodeficiency disorders, the most frequent symptomatic PID in adults and children, have a spectrum of B- and T-cell defects. It may be possible to stratify their risk for severe COVID-19 based on age, ethnicity, the severity of the T-cell defect, and the presence of other comorbidities. Patients with common variable immunodeficiency disorders and other immunodeficiencies are at risk for Chronic COVID-19, a dangerous stalemate between a suboptimal immune response and SARS-CoV-2. Intra-host viral evolution could result in the rapid emergence of vaccine-resistant mutants and variants of high consequence; it is a public health emergency. Vaccination and prevention of Chronic COVID-19 in immunodeficient patients is therefore of the utmost priority. Having a reliable diagnostic assay for T-cell immunity to SARS-CoV-2 is critical for evaluating responses to vaccines in these patients. New treatments for SARS-CoV-2 such as NZACE2-Pātari are likely to be particularly beneficial for immunodeficient patients, especially those who fail to mount a robust T-cell response to COVID-19 vaccines.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Centre for Brain Research, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Ameratunga R, Longhurst H, Steele R, Woon ST. Comparison of Diagnostic Criteria for Common Variable Immunodeficiency Disorders (CVID) in the New Zealand CVID Cohort Study. Clin Rev Allergy Immunol 2021; 61:236-244. [PMID: 34236581 DOI: 10.1007/s12016-021-08860-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
Common variable immunodeficiency disorders (CVID) are the most frequent symptomatic primary immune deficiencies in adults and children. In addition to recurrent and severe infections, patients with CVID are susceptible to autoimmune and inflammatory complications. The aetiologies of these uncommon conditions are, by definition, unknown. When the causes of complex disorders are uncertain, diagnostic criteria may offer valuable guidance to the management of patients. Over the last two decades, there have been four sets of diagnostic criteria for CVID in use. The original 1999 European Society for Immunodeficiencies and Pan-American Society for Immunodeficiency (ESID/PAGID) criteria are less commonly used than the three newer criteria: Ameratunga et al (Clin Exp Immunol 174:203-211, 2013), ESID (J Allergy Clin Immunol Pract, 2019) and ICON (J Allergy Clin Immunol Pract 4:38-59, 2016) criteria. The primary aim of the present study was to compare the utility of diagnostic criteria in a well-characterised cohort of CVID patients. The New Zealand CVID cohort study (NZCS) commenced in 2006 and currently comprises one hundred and thirteen patients, which represents approximately 70% of all known CVID patients in NZ. Many patients have been on subcutaneous or intravenous (SCIG/IVIG) immunoglobulin treatment for decades. Patients were given a clinical diagnosis of CVID as most were diagnosed before the advent of newer diagnostic criteria. Application of the three commonly used CVID diagnostic criteria to the NZCS showed relative sensitivities as follows: Ameratunga et al (Clin Exp Immunol 174:203-211, 2013), possible and probable CVID, 88.7%; ESID (J Allergy Clin Immunol Pract, 2019), 48.3%; and ICON (J Allergy Clin Immunol Pract 4:38-59, 2016), 47.1%. These differences were mostly due to the low rates of diagnostic vaccination challenges in patients prior to commencing SCIG/IVIG treatment and mirror similar findings in CVID cohorts from Denmark and Finland. Application of the Ameratunga et al (Clin Exp Immunol 174:203-211, 2013) CVID diagnostic criteria to patients on SCIG/IVIG may obviate the need to stop treatment for vaccine studies, to confirm the diagnosis.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand. .,Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand. .,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Fliegauf M, Krüger R, Steiner S, Hanitsch LG, Büchel S, Wahn V, von Bernuth H, Grimbacher B. A Pathogenic Missense Variant in NFKB1 Causes Common Variable Immunodeficiency Due to Detrimental Protein Damage. Front Immunol 2021; 12:621503. [PMID: 33995346 PMCID: PMC8115018 DOI: 10.3389/fimmu.2021.621503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
In common variable immunodeficiency (CVID), heterozygous damaging NFKB1 variants represent the most frequent monogenic cause. NFKB1 encodes the precursor p105, which undergoes proteasomal processing to generate the mature NF-κB transcription factor subunit p50. The majority of NFKB1 sequence changes comprises missense variants of uncertain significance (VUS), each requiring functional evaluation to assess causality, particularly in families with multiple affected members presenting with different phenotypes. In four affected members of a German family, all diagnosed with CVID, we identified a previously uncharacterized heterozygous NFKB1 missense variant (c.1049A>G; p.Tyr350Cys). The clinical phenotypes varied markedly regarding onset, frequency and severity of infections. Consistent immunologic findings were hypogammaglobulinemia with normal specific antibody response to protein- and polysaccharide-based vaccinations, reduced switched memory B cells and decreased lymphocyte proliferation upon stimulation with the B cell mitogen SAC. To assess the pathogenicity of the NFKB1 missense variant, we employed immunophenotyping and functional analyses in a routine in vitro cell culture model. Following site-directed mutagenesis to introduce the variant into overexpression vectors encoding EGFP-fused p105 or p50, we analyzed transiently transfected HEK293T cells by confocal imaging and Western blotting. The cytoplasmic p105-Tyr350Cys precursor gained only weak expression levels indicating accelerated decay. The missense change disabled processing of the precursor to prevent the generation of mutant p50. Unlike the wildtype p50, the overexpressed mutant p50-Tyr350Cys was also not sustainable and showed a conspicuous subnuclear mislocalization with accumulation in dense aggregates instead of a homogenous distribution. Electrophoretic mobility shift assays, fluorescence-based reporter gene analyses and co-transfection experiments however demonstrated, that the DNA-binding activity of p50-Tyr350Cys and the interaction with RelA(p65), IκBα and wildtype p50 were preserved. Mutation carriers had reduced p105 and p50 levels, indicating insufficient protein amounts as the most likely primary defect. In conclusion, the missense variant c.1049A>G caused a detrimental defect, preventing the persistent expression of both, the p105-Tyr350Cys precursor and the mature p50-Tyr350Cys. The variable clinical phenotypes among affected family members sharing an identical pathogenic NFKB1 variant support a disease mechanism provoked by a p105/p50 (haplo)insufficient condition.
Collapse
Affiliation(s)
- Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Steiner
- Department of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif Gunnar Hanitsch
- Department of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Büchel
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Immunology, Labor Berlin Charité - Vivantes GmbH, Berlin, Germany.,Berlin Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.,DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
The impact of rare and low-frequency genetic variants in common variable immunodeficiency (CVID). Sci Rep 2021; 11:8308. [PMID: 33859323 PMCID: PMC8050305 DOI: 10.1038/s41598-021-87898-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Next Generation Sequencing (NGS) has uncovered hundreds of common and rare genetic variants involved in complex and rare diseases including immune deficiencies in both an autosomal recessive and autosomal dominant pattern. These rare variants however, cannot be classified clinically, and common variants only marginally contribute to disease susceptibility. In this study, we evaluated the multi-gene panel results of Common Variable Immunodeficiency (CVID) patients and argue that rare variants located in different genes play a more prominent role in disease susceptibility and/or etiology. We performed NGS on DNA extracted from the peripheral blood leukocytes from 103 patients using a panel of 19 CVID-related genes: CARD11, CD19, CD81, ICOS, CTLA4, CXCR4, GATA2, CR2, IRF2BP2, MOGS, MS4A1, NFKB1, NFKB2, PLCG2, TNFRSF13B, TNFRSF13C, TNFSF12, TRNT1 and TTC37. Detected variants were evaluated and classified based on their impact, pathogenicity classification and population frequency as well as the frequency within our study group. NGS revealed 112 different (a total of 227) variants with under 10% population frequency in 103 patients of which 22(19.6%) were classified as benign, 29(25.9%) were classified as likely benign, 4(3.6%) were classified as likely pathogenic and 2(1.8%) were classified as pathogenic. Moreover, 55(49.1%) of the variants were classified as variants of uncertain significance. We also observed different variant frequencies when compared to population frequency databases. Case-control data is not sufficient to unravel the genetic etiology of immune deficiencies. Thus, it is important to understand the incidence of co-occurrence of two or more rare variants to aid in illuminating their potential roles in the pathogenesis of immune deficiencies.
Collapse
|
21
|
Totten AH, Xiao L, Crabb DM, Ratliff AE, Waites KB, Hwangpo T, Atkinson TP. Septic polyarthritis with Mycoplasma salivarium in a patient with common variable immunodeficiency: case report and review of the literature. Access Microbiol 2021; 3:000221. [PMID: 34151172 PMCID: PMC8208761 DOI: 10.1099/acmi.0.000221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
Mycoplasma salivarium is a common mycoplasma usually isolated from human oropharynx, particularly from individuals with periodontal disease. It is also among the more common mycoplasmal contaminants of eukaryotic cell cultures. Although M. salivarium has been isolated occasionally from abscesses and other sterile sites, to our knowledge, only three cases of septic arthritis have been documented in the past due to this organism, all in patients with humoral immunodeficiency. We now report a fourth case of septic polyarthritis in a patient with profound hypoimmunoglobulinemia who had experienced dental abscesses within the preceding 2 years. Our case highlights the importance of considering invasive mycoplasmal infection in hypogammaglobulinemic patients. It is likely of significance that the patient had suffered recurrent dental abscesses as a source of infection with M. salivarium .
Collapse
Affiliation(s)
- Arthur H Totten
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.,Present address: Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donna M Crabb
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy E Ratliff
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tracy Hwangpo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
22
|
Ameratunga R, Allan C, Lehnert K, Woon ST. Perspective: Application of the American College of Medical Genetics Variant Interpretation Criteria to Common Variable Immunodeficiency Disorders. Clin Rev Allergy Immunol 2021; 61:226-235. [PMID: 33818703 DOI: 10.1007/s12016-020-08828-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency disorders (CVIDs) are rare primary immunodeficiency diseases (PIDs) mostly associated with late onset antibody failure leading to immune system failure. Patients with CVID are predisposed to disabling complications such as bronchiectasis and systemic autoimmunity. In recent years a large number of genetic defects have become associated with these disorders. Patients with a causative mutation are deemed to have CVID-like disorders, while those with mutations predisposing to or modifying disease severity remain within the spectrum of CVID as defined by current diagnostic criteria. Next-generation sequencing (NGS) allows simultaneous analysis of multiple genes. Potential mutations identified from NGS are commonly evaluated with the American College of Medical Genetics (ACMG) variant interpretation criteria to determine their pathogenicity (causality). Patients with CVID and CVID-like disorders have marked genetic, allelic, and phenotypic heterogeneity. Although all patients with a CVID phenotype should undergo genetic testing, the complexity of the genetics associated with these disorders is challenging. Variants of unknown significance (VUS) remain a significant barrier to realising the full potential of NGS in CVID and CVID-like disorders. Here we explore the nuances of applying the ACMG criteria to patients with CVID and CVID-like disorders. Close collaboration between the clinician, bioinformatics, and genetics professionals will improve the diagnostic yield from genetic testing and reduce the frequency of VUS.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand. .,Department of Clinical Immunology, Auckland City Hospital, Auckland, 1010, New Zealand. .,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand.
| | - Caroline Allan
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
23
|
Janssen LMA, van der Flier M, de Vries E. Lessons Learned From the Clinical Presentation of Common Variable Immunodeficiency Disorders: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:620709. [PMID: 33833753 PMCID: PMC8021796 DOI: 10.3389/fimmu.2021.620709] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Background Diagnostic delay in common variable immunodeficiency disorders (CVID) is considerable. There is no generally accepted symptom-recognition framework for its early detection. Objective To systematically review all existing data on the clinical presentation of CVID. Methods PubMed, EMBASE and Cochrane were searched for cohort studies, published January/1999-December/2019, detailing the clinical manifestations before, at and after the CVID-diagnosis. Results In 51 studies (n=8521 patients) 134 presenting and 270 total clinical manifestations were identified. Recurrent upper and/or lower respiratory infections were present at diagnosis in 75%. Many patients had suffered severe bacterial infections (osteomyelitis 4%, meningitis 6%, septicemia 8%, mastoiditis 8%). Bronchiectasis (28%), lymphadenopathy (27%), splenomegaly (13%), inflammatory bowel disease (11%), autoimmune cytopenia (10%) and idiopathic thrombocytopenia (6%) were also frequently reported. A bimodal sex distribution was found, with male predominance in children (62%) and female predominance in adults (58%). 25% of CVID-patients developed other manifestations besides infections in childhood, this percentage was much higher in adults (62%). Immune-dysregulation features, such as granulomatous-lymphocytic interstitial lung disease and inflammatory bowel disease, were more prominent in adults. Conclusions The shift from male predominance in childhood to female predominance in adults suggests differences in genetic and environmental etiology in CVID and has consequences for pathophysiologic studies. We confirm the high frequency of respiratory infections at presentation, but also show a high incidence of severe bacterial infections such as sepsis and meningitis, and immune dysregulation features including lymphoproliferative, gastrointestinal and autoimmune manifestations. Early detection of CVID may be improved by screening for antibody deficiency in patients with these manifestations.
Collapse
Affiliation(s)
- Lisanne M A Janssen
- Department of Tranzo, Tilburg University, Tilburg, Netherlands.,Department of Pediatrics, Amalia Children's Hospital, Nijmegen, Netherlands
| | - Michiel van der Flier
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Esther de Vries
- Department of Tranzo, Tilburg University, Tilburg, Netherlands.,Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, Netherlands
| |
Collapse
|
24
|
Perspective: Evolving Concepts in the Diagnosis and Understanding of Common Variable Immunodeficiency Disorders (CVID). Clin Rev Allergy Immunol 2021; 59:109-121. [PMID: 31720921 DOI: 10.1007/s12016-019-08765-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Common variable immunodeficiency disorders (CVID) are the most frequent symptomatic primary immune deficiency in adults. At this time, the causes of these conditions are unknown. Patients with CVID experience immune system failure consequent to late onset antibody failure. They have increased susceptibility to infections and are also at risk of severe autoimmune and inflammatory disorders as a result of immune dysregulation. An increasing number of monogenic causes as well as a digenic disorder have been described in patients with a CVID phenotype. If a causative mutation is identified, patients are removed from the umbrella diagnosis of CVID and are reclassified as having a CVID-like disorder, resulting from a specific mutation. In non-consanguineous populations, next-generation sequencing (NGS) identifies a genetic cause in approximately 25% of patients with a CVID phenotype. It is six years since we published our diagnostic criteria for CVID. There is ongoing debate about diagnostic criteria, the role of vaccine responses and genetic analysis in the diagnosis of CVID. There have been several recent studies, which have addressed some of these uncertainties. Here we review this new evidence from the perspective of our CVID diagnostic criteria and speculate on future approaches, which may assist in identifying and assessing this group of enigmatic disorders.
Collapse
|
25
|
Ishida F, Nakazawa H. T(o) be, or (not) to B, or both? Somatically mutated clonal T cells in common variable immunodeficiency and related immunodeficiencies. Haematologica 2020; 105:2702-2703. [PMID: 33256369 PMCID: PMC7716270 DOI: 10.3324/haematol.2020.261982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Fumihiro Ishida
- Academic Assembly School of Medicine and Health Sciences, Institute of Health Science and School of Medicine and Department of Biomedical Laboratory Sciences, Shinshu University.
| | - Hideyuki Nakazawa
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
26
|
De Felice B, Nigro E, Polito R, Rossi FW, Pecoraro A, Spadaro G, Daniele A. Differently expressed microRNA in response to the first Ig replacement therapy in common variable immunodeficiency patients. Sci Rep 2020; 10:21482. [PMID: 33293557 PMCID: PMC7722869 DOI: 10.1038/s41598-020-77100-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a complex primary immunodeficiency disorder characterized by a high clinical and genetic heterogeneity. The molecular underlying causes of CVID are not still now clear and the delays in diagnosis and treatment worsen the prognosis of the patients. MicroRNAs are non-coding, endogenous small RNAs often deregulated in human diseases, such as autoimmune and other immune-based disorders. In the present study, we aimed to evaluate miRNAs associated with the CVID and, in particular, with the response to the first Ig replacement therapy. To this aim, we compared miRNA profile obtained by serum samples of treatment-naïve CVID patients before and 24 h after the first Ig replacement therapy. For the first time, using a microarray assay followed by an integrated bioinformatics/biostatistics analysis, we identified five microRNAs (hsa-miR-6742, hsa-miR-1825, hsa-miR-4769-3p, hsa-miR-1228-3p, hsa-miR-1972) differently modulated in CVID patients by Ig infusion. All of them were down-regulated, excepted miR-6742 which was up-regulated. The latter may be of particular interest, since its functions are related to pathways involving Class I MHC mediated antigen processing and adaptive as well as innate Immune System. In conclusion, this study shows for the first time the modulation of miRNAs involved in CVID patients after the first Ig replacement therapy. Further studies are needed to assess whether such miRNAs could represent novel potential biomarkers in management and therapy of CVID patients.
Collapse
|
27
|
Leoni C, Tedesco M, Onesimo R, Giorgio V, Rigante D, Zampino G. Immunoglobulin deficiency associated with a MAP2K1-related mutation causing cardio-facio-cutaneous syndrome. Immunol Lett 2020; 227:79-80. [PMID: 32866538 DOI: 10.1016/j.imlet.2020.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 11/20/2022]
Affiliation(s)
- Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marta Tedesco
- Center for Rare Diseases and Birth Defects, Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giorgio
- Center for Rare Diseases and Birth Defects, Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Donato Rigante
- Center for Rare Diseases and Birth Defects, Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
28
|
Więsik-Szewczyk E, Jahnz-Różyk K. From infections to autoimmunity: Diagnostic challenges in common variable immunodeficiency. World J Clin Cases 2020; 8:3942-3955. [PMID: 33024751 PMCID: PMC7520788 DOI: 10.12998/wjcc.v8.i18.3942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/29/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Abstract
Common variable immunodeficiency (CVID) is the most common clinically significant primary antibody deficiency diagnosed in adults. The early symptoms are not specific. They include common infections, mainly of the respiratory tract, caused by typical microorganisms, so cases can be missed in primary care. In the majority of patients increased susceptibility to infections coexists with signs or symptoms of autoimmunity, inflammation or polyclonal lymphoproliferation, which can divert diagnosis from immune deficiency. The overall incidence of malignancy is increased in CVID and certain cancers are significantly more common. Lymphomas and gastric carcinoma are the most frequently reported malignancies in CVID, so a high index of suspicion is recommended. Diagnostic delay in CVID is seen worldwide. The main goal of this paper is to increase the awareness about CVID among health care professionals. We aim to present features which can be helpful in CVID diagnosis in order to shorten the “latency” of proper management of CVID patients. We review clinical symptoms, complications and laboratory abnormalities of CVID. Immunoglobulin replacement therapy is regarded as the cornerstone of pharmacological intervention. New modes of Ig application, mainly subcutaneously and via the hyaluronidase-facilitated subcutaneous route, help to adjust therapy to patients’ needs and preferences. Still there remain unmet needs. It remains to be seen whether CVID complications can be avoided by earlier diagnosis, treatment and thorough monitoring in the context of increased risk of malignancy. Development of patient tailored protocols depending on the clinical phenotype and risk factors might be more appropriate. The most important consideration is to diagnose suspected cases and stratify patients in a precise and timely way. Work is needed to define features predictive of unfavorable prognosis.
Collapse
Affiliation(s)
- Ewa Więsik-Szewczyk
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, Warsaw 04-141, Poland
| |
Collapse
|
29
|
龚 胜, 蒲 银, 谢 玲, 杨 晓, 毛 辉. [Common variable immune deficiency in adult patients: analysis of 13 cases and literature review]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1213-1219. [PMID: 32895181 PMCID: PMC7429157 DOI: 10.12122/j.issn.1673-4254.2020.08.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the clinical and immunological characteristics, treatment and prognosis of common variable immune deficiency (CVID) in adult patients. METHODS We retrospectively analyzed the clinical data of 13 adult patients hospitalized in our hospital for CVID diagnosed according to the criteria in International Consensus Document (2016), and analyzed their clinical manifestations, laboratory test results, imaging findings, pathological examinations and treatments. RESULTS The mean age of onset was 24.46±16.82 years in these patients, who had a mean age of 32.54±14.86 years at diagnosis with a median diagnostic delay of 5 years (IQR: 2-15 years). The main manifestation of the patients was repeated infections, including repeated respiratory tract infection (10 cases; 76.9%) and repeated diarrhea (3 cases; 23.1%). Three (23.1%) of the patients had autoimmune disease and 10 (76.9%) had chronic pulmonary disease. IgG, IgA and IgM were decreased in all the patients. The proportion of CD4+T cells decreased in 10 patients (76.9%), CD8+T cells increased in 11 patients (84.6%), and CD4/ CD8 decreased in 10 patients (76.9%). Complement C3 decreased in 58.3% (7/12) and C4 decreased in 33.3% (4/12) of the patients. Twelve patients (92.3%) were treated with intravenous infusion of gamma globulin with symptomatic treatments. One patient died due to massive gastrointestinal hemorrhage, and the other patients showed improve ments after the treatments and were discharged. CONCLUSIONS The clinical manifestations of CVID are diverse, and recurrent respiratory tract infection is the most common manifestation. Decreased IgG often accompanied by lowered IgA and IgM levels is a common finding in laboratory tests. The treatment of CVID currently relies on gamma globulin with symptomatic treatments for the complications.
Collapse
Affiliation(s)
- 胜兰 龚
- />四川大学华西医院呼吸与危重症学科,四川 成都 610041Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 银 蒲
- />四川大学华西医院呼吸与危重症学科,四川 成都 610041Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 玲俐 谢
- />四川大学华西医院呼吸与危重症学科,四川 成都 610041Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 晓娅 杨
- />四川大学华西医院呼吸与危重症学科,四川 成都 610041Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 辉 毛
- />四川大学华西医院呼吸与危重症学科,四川 成都 610041Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Ameratunga R, Allan C, Woon ST. Defining Common Variable Immunodeficiency Disorders in 2020. Immunol Allergy Clin North Am 2020; 40:403-420. [PMID: 32654689 DOI: 10.1016/j.iac.2020.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Common variable immunodeficiency disorders (CVID) are the most frequent symptomatic primary immune deficiency in adults. Because there is no known cause for these conditions, there is no single clinical feature or laboratory test that can confirm the diagnosis with certainty. If a causative mutation is identified, patients are deemed to have a CVID-like disorder caused by a specific primary immunodeficiency/inborn error of immunity. In the remaining patients, the explanation for these disorders remains unclear. The understanding of CVID continues to evolve and the authors review recent studies, which have addressed some of these uncertainties.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand; Auckland Healthcare Services, Park Road, Grafton, Auckland 1010, New Zealand; Clinical Immunology, Auckland City Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Caroline Allan
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Renzi S, Langenberg-Ververgaert KPS, Waespe N, Ali S, Bartram J, Michaeli O, Upton J, Cada M. Primary immunodeficiencies and their associated risk of malignancies in children: an overview. Eur J Pediatr 2020; 179:689-697. [PMID: 32162064 DOI: 10.1007/s00431-020-03619-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 12/01/2022]
Abstract
Primary immunodeficiency disorders represent a heterogeneous spectrum of diseases, predisposing to recurrent infections, allergy, and autoimmunity. While an association between primary immunodeficiency disorders and increased risk of cancer has been suggested since the 1970s, renewed attention has been given to this topic in the last decade, largely in light of the availability of large registries as well as advances in next generation sequencing. In this narrative review, we will give an insight of the primary immunodeficiencies that are commonly responsible for the greater number of cancers in the primary immunodeficiency disorders population. We will describe clinical presentations, underlying genetic lesions (if known), molecular mechanisms for carcinogenesis, as well as some management considerations. We will also comment on the future directions and challenges related to this topic.Conclusion: The awareness of the association between several primary immunodeficiencies and cancer is crucial to provide the best care for these patients.What is Known: • Patients with primary immunodeficiency have an increased risk of malignancy. The type of malignancy is highly dependent on the specific primary immunodeficiency disorder.What is New: • Survival in patients with primary immunodeficiency disorders has been improving, and conversely also their lifetime risk of malignancy. • International collaboration and multinational registries are needed to improve our knowledge and therapeutic strategies.
Collapse
Affiliation(s)
- Samuele Renzi
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada. .,University of Toronto, Toronto, Ontario, Canada.
| | | | - Nicolas Waespe
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada.,Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,CANSEARCH Research Laboratory, Department of Pediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Salah Ali
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Jack Bartram
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada.,Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Orli Michaeli
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Julia Upton
- University of Toronto, Toronto, Ontario, Canada.,Division of Immunology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michaela Cada
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada.,University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Pecoraro A, Crescenzi L, Varricchi G, Marone G, Spadaro G. Heterogeneity of Liver Disease in Common Variable Immunodeficiency Disorders. Front Immunol 2020; 11:338. [PMID: 32184784 PMCID: PMC7059194 DOI: 10.3389/fimmu.2020.00338] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent primary immunodeficiency (PID) in adulthood and is characterized by severe reduction of immunoglobulin serum levels and impaired antibody production in response to vaccines and pathogens. Beyond the susceptibility to infections, CVID encompasses a wide spectrum of clinical manifestations related to a complex immune dysregulation that also affects liver. Although about 50% CVID patients present persistently deranged liver function, burden, and nature of liver involvement have not been systematically investigated in most cohort studies published in the last decades. Therefore, the prevalence of liver disease in CVID widely varies depending on the study design and the sampling criteria. This review seeks to summarize the evidence about the most relevant causes of liver involvement in CVID, including nodular regenerative hyperplasia (NRH), infections and malignancies. We also describe the clinical features of liver disease in some monogenic forms of PID included in the clinical spectrum of CVID as ICOS, NFKB1, NFKB2, CTLA-4, PI3Kδ pathway, ADA2, and IL21-R genetic defects. Finally, we discuss the clinical applications of the various diagnostic tools and the possible therapeutic approaches for the management of liver involvement in the context of CVID.
Collapse
Affiliation(s)
- Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Ludovica Crescenzi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research, WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research, WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
33
|
Christiansen M, Offersen R, Jensen JMB, Petersen MS, Larsen CS, Mogensen TH. Identification of Novel Genetic Variants in CVID Patients With Autoimmunity, Autoinflammation, or Malignancy. Front Immunol 2020; 10:3022. [PMID: 32047491 PMCID: PMC6996488 DOI: 10.3389/fimmu.2019.03022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by recurrent bacterial infections and defined by reduced levels of IgG, IgA, and/or IgM, insufficient response to polysaccharide vaccination, and an abnormal B-cell immunophenotype with a significantly reduced fraction of isotype-switched memory B cells. In addition to this infectious phenotype, at least one third of the patients experience autoimmune, autoinflammatory, granulomatous, and/or malignant complications. The very heterogeneous presentation strongly suggests a collection of different disease entities with somewhat different pathogeneses and most likely diverse genetic etiologies. Major progress has been made during recent years with the advent and introduction of next-generation sequencing, initially for research purposes, but more recently in clinical practice. In the present study, we performed whole exome sequencing on 20 CVID patients with autoimmunity, autoinflammation, and/or malignancy from the Danish CVID cohort with the aim to identify gene variants with a certain, possible, or potential disease-causing role in CVID. Through bioinformatics analyses, we identified variants with possible/probable disease-causing potential in nine of the patients. Of these, three patients had four variants in three different genes classified as likely pathogenic (NFKB1, TNFAIP3, and TTC37), whereas in six patients, we identified seven variants of possible pathogenic potential classified as variants of unknown significance (STAT3, IL17F, IRAK4, DDX41, NLRC3, TNFRSF1A, and PLCG2). In the remaining 11 patients, we did not identify possible genetic causes. Genetic findings were correlated to clinical disease presentation, clinical immunological phenotype, and disease complications. We suggest that the variants identified in the present work should lay the ground for future studies to functionally validate their disease-causing potential and to investigate at the mechanistic and molecular level their precise role in CVID pathogenesis. Overall, we believe that the present work contributes important new insights into the genetic basis of CVID and particular in the subset of CVID patients with a complex phenotype involving not only infection, but also autoimmunity, autoinflammation, and malignancy.
Collapse
Affiliation(s)
- Mette Christiansen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Rasmus Offersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Carsten S Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Ameratunga R, Ahn Y, Tse D, Woon ST, Pereira J, McCarthy S, Blacklock H. The critical role of histology in distinguishing sarcoidosis from common variable immunodeficiency disorder (CVID) in a patient with hypogammaglobulinemia. Allergy Asthma Clin Immunol 2019; 15:78. [PMID: 31827542 PMCID: PMC6886192 DOI: 10.1186/s13223-019-0383-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
Background Common variable immunodeficiency disorders (CVID) are a rare group of primary immune defects, where the underlying cause is unknown. Approximately 10–20% of patients with typical CVID have a granulomatous variant, which has closely overlapping features with sarcoidosis. Case presentation Here we describe a young man who sequentially developed refractory Evans syndrome, cauda equina syndrome and most recently renal impairment. Following immunosuppression, he has made a recovery from all three life-threatening autoimmune disorders. As the patient was hypogammaglobulinemic for most of the time while on immunosuppression, vaccine challenges and other tests were not possible. Histological features were in keeping with sarcoidosis rather than the granulomatous variant of CVID. In the brief period when immunosuppression was lifted between the cauda equina syndrome and renal impairment, he normalised his immunoglobulins, confirming sarcoidosis rather than CVID was the underlying cause. Conclusion We discuss diagnostic difficulties distinguishing the two conditions, and the value of histological features in our diagnostic criteria for CVID in identifying sarcoidosis, while the patient was hypogammaglobulinemic. The key message from this case report is that the characteristic histological features of CVID can be very helpful in making (or excluding) the diagnosis, particularly when other tests are not possible.
Collapse
Affiliation(s)
- Rohan Ameratunga
- 1Department of Virology and Immunology, Auckland City Hospital, Park Rd, Grafton, Auckland, 1010 New Zealand.,4Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yeri Ahn
- 1Department of Virology and Immunology, Auckland City Hospital, Park Rd, Grafton, Auckland, 1010 New Zealand
| | - Dominic Tse
- 2Department of Neurology, Auckland City Hospital, Park Rd, Grafton, Auckland, 1010 New Zealand
| | - See-Tarn Woon
- 1Department of Virology and Immunology, Auckland City Hospital, Park Rd, Grafton, Auckland, 1010 New Zealand.,4Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jennifer Pereira
- 2Department of Neurology, Auckland City Hospital, Park Rd, Grafton, Auckland, 1010 New Zealand
| | - Sinead McCarthy
- 3Department of Histopathology, Auckland City Hospital, Park Rd, Grafton, Auckland, 1010 New Zealand
| | - Hilary Blacklock
- 4Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,5Department of Haematology, Middlemore Hospital, Auckland, New Zealand
| |
Collapse
|
35
|
Ameratunga R, Lehnert K, Woon ST. All Patients With Common Variable Immunodeficiency Disorders (CVID) Should Be Routinely Offered Diagnostic Genetic Testing. Front Immunol 2019; 10:2678. [PMID: 31824486 PMCID: PMC6883368 DOI: 10.3389/fimmu.2019.02678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
36
|
Schröder C, Sogkas G, Fliegauf M, Dörk T, Liu D, Hanitsch LG, Steiner S, Scheibenbogen C, Jacobs R, Grimbacher B, Schmidt RE, Atschekzei F. Late-Onset Antibody Deficiency Due to Monoallelic Alterations in NFKB1. Front Immunol 2019; 10:2618. [PMID: 31803180 PMCID: PMC6871540 DOI: 10.3389/fimmu.2019.02618] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Adult-onset primary immunodeficiency is characterized by recurrent infections, hypogammaglobulinemia, and poor antibody response to vaccines. In this study, we have analyzed targeted gene panel sequencing results of 270 patients diagnosed with antibody deficiency and identified five disease-associated variants in NFKB1 in five unrelated families. We detected two single base pair deletions and two single base pair insertions, causing severe protein truncations, and one missense mutation. Immunoblotting, lymphocyte stimulation, immunophenotyping, and ectopic expression assays demonstrated the functional relevance of NFKB1 mutations. Besides antibody deficiency, clinical manifestations included infections, autoimmune features, lymphoproliferation, lymphoma, Addison's disease, type 2 diabetes and asthma. Although partial clinical penetrance was observed in almost all pedigrees, all carriers presented a deficiency in certain serum immunoglobulins and the majority showed a lack of memory B cells (CD19+CD27+). Among all tested genes, NFKB1 alterations were the most common monoallelic cause of antibody deficiency in our cohort.
Collapse
Affiliation(s)
- Claudia Schröder
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany.,Hannover Biomedical Research School (HBRS), Hannover Medical School, Hanover, Germany
| | - Georgios Sogkas
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
| | - Manfred Fliegauf
- Center for Chronic Immunodeficiency, Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany
| | - Di Liu
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany
| | - Leif G Hanitsch
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Sophie Steiner
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Roland Jacobs
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.,DZIF - German Center for Infection Research, Hannover Medical School, Hanover, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Hanover, Germany
| | - Reinhold E Schmidt
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany.,Hannover Biomedical Research School (HBRS), Hannover Medical School, Hanover, Germany.,DZIF - German Center for Infection Research, Hannover Medical School, Hanover, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Hanover, Germany
| | - Faranaz Atschekzei
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Hanover, Germany
| |
Collapse
|
37
|
Acquired Pure Red Cell Aplasia and Acquired Amegakaryocytic Thrombocytopenia Associated With Clonal Expansion of T-Cell Large Granular Lymphocytes in a Patient With Lipopolysaccharide-responsive Beige-like Anchor (LRBA) Protein Deficiency. J Pediatr Hematol Oncol 2019; 41:e542-e545. [PMID: 30188351 DOI: 10.1097/mph.0000000000001292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acquired pure red cell aplasia and acquired amegakaryocytic thrombocytopenic purpura are rare in children. Similarly, clonal expansion of T-cell large granular lymphocytes is infrequently seen in pediatrics. Lipopolysaccharide-responsive beige-like anchor (LRBA) protein deficiency is a recently described immunodeficiency syndrome that has been associated with inflammatory bowel disease and autoimmune phenomena such as Evans syndrome. Here, we describe a patient with LRBA deficiency who developed acquired pure red cell aplasia and acquired amegakaryocytic thrombocytopenic purpura associated with expansion of clonal T-cell large granular lymphocytes. This has not been described in the literature previously and adds to the knowledge on the spectrum of manifestations of LRBA deficiency.
Collapse
|
38
|
Aggarwal V, Banday AZ, Jindal AK, Das J, Rawat A. Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis 2019; 7:26-37. [PMID: 32181273 PMCID: PMC7063417 DOI: 10.1016/j.gendis.2019.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Common variable immunodeficiency disorders (CVID), a heterogeneous group of inborn errors of immunity, is the most common symptomatic primary immunodeficiency disorder. Patients with CVID have highly variable clinical presentation. With the advent of whole genome sequencing and genome wide association studies (GWAS), there has been a remarkable improvement in understanding the genetics of CVID. This has also helped in understanding the pathogenesis of CVID and has drastically improved the management of these patients. A multi-omics approach integrating the DNA sequencing along with RNA sequencing, proteomics, epigenetic and metabolomics profile is the need of the hour to unravel specific CVID associated disease pathways and novel therapeutic targets. In this review, we elaborate various techniques that have helped in understanding the genetics of CVID.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aaqib Zaffar Banday
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Kumar Jindal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jhumki Das
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
39
|
Abstract
Primary immunodeficiency diseases are a heterogeneous group of rare inherited disorders of innate or adaptive immune system function. Patients with primary immunodeficiencies typically present with recurrent and severe infections in infancy or young adulthood. More recently, the co-occurrence of autoimmune, benign lymphoproliferative, atopic, and malignant complications has been described. The diagnosis of a primary immunodeficiency disorder requires a thorough assessment of a patient's underlying immune system function. Historically, this has been accomplished at the time of symptomatic presentation by measuring immunoglobulins, complement components, protective antibody titers, or immune cell counts in the peripheral blood. Although these data can be used to critically assess the degree of immune dysregulation in the patient, this approach fall short in at least 2 regards. First, this assessment often occurs after the patient has suffered life-threatening infectious or autoinflammatory complications. Second, these data fail to uncover an underlying molecular cause of the patient's primary immune dysfunction, prohibiting the use of molecularly targeted therapeutic interventions. Within the last decade, the field of primary immunodeficiency diagnostics has been revolutionized by 2 major molecular advancements: (1) the onset of newborn screening in 2008, and (2) the onset of next-generation sequencing in 2010. In this article, the techniques of newborn screening and next-generation sequencing are reviewed and their respective impacts on the field of primary immunodeficiency disorders are discussed with a specific emphasis on severe combined immune deficiency and common variable immune deficiency.
Collapse
Affiliation(s)
- Jocelyn R Farmer
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Center for Advanced Molecular Diagnostics, Brigham and Women's Hospital, Boston, MA, USA.
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Center for Advanced Molecular Diagnostics, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
40
|
Yska HAF, Elsink K, Kuijpers TW, Frederix GWJ, van Gijn ME, van Montfrans JM. Diagnostic Yield of Next Generation Sequencing in Genetically Undiagnosed Patients with Primary Immunodeficiencies: a Systematic Review. J Clin Immunol 2019; 39:577-591. [PMID: 31250335 PMCID: PMC6697711 DOI: 10.1007/s10875-019-00656-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND As the application of next generation sequencing (NGS) is moving to earlier stages in the diagnostic pipeline for primary immunodeficiencies (PIDs), re-evaluation of its effectiveness is required. The aim of this study is to systematically review the diagnostic yield of NGS in PIDs. METHODS PubMed and Embase databases were searched for relevant studies. Studies were eligible when describing the use of NGS in patients that had previously been diagnosed with PID on clinical and/or laboratory findings. Relevant data on study characteristics, technological performance and diagnostic yield were extracted. RESULTS Fourteen studies were eligible for data extraction. Six studies described patient populations from specific PID subcategories. The remaining studies included patients with unsorted PIDs. The studies were based on populations from Italy, Iran, Turkey, Thailand, the Netherlands, Norway, Saudi Arabia, Sweden, the UK, and the USA. Eight studies used an array-based targeted gene panel, four used WES in combination with a PID filter, and two used both techniques. The mean reported reading depth ranged from 98 to 1337 times. Five studies described the sensitivity of the applied techniques, ranging from 83 to 100%, whereas specificity ranged from 45 to 99.9%. The percentage of patients who were genetically diagnosed ranged from 15 to 79%. Several studies described clinical implications of the genetic findings. DISCUSSION NGS has the ability to contribute significantly to the identification of molecular mechanisms in PID patients. The diagnostic yield highly depends on population and on the technical circumstances under which NGS is employed. Further research is needed to determine the exact diagnostic yield and clinical implications of NGS in patients with PID.
Collapse
Affiliation(s)
- Hemmo A F Yska
- Department of Pediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Kim Elsink
- Department of Pediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert W J Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Mariëlle E van Gijn
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
41
|
Ameratunga R, Ahn Y, Steele R, Woon ST. Transient hypogammaglobulinaemia of infancy: many patients recover in adolescence and adulthood. Clin Exp Immunol 2019; 198:224-232. [PMID: 31260083 DOI: 10.1111/cei.13345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 01/11/2023] Open
Abstract
Transient hypogammaglobulinaemia of infancy (THI) is a relatively rare disorder where there is an exaggeration of the physiological nadir of immunoglobulin (Ig)G between loss of transplacentally acquired maternal IgG and production by the infant. Patients may be vulnerable to infections during the period of hypogammaglobulinaemia. The precise time to recovery in all infants is currently unknown. We sought to determine the clinical features and time-course of recovery for patients with THI. We reviewed our experience with THI over the last three decades in order to describe clinical and laboratory features, as well as the time-course of recovery. Forty-seven patients were identified with THI. Only thirty-seven per cent remitted by 4 years of age, while some patients did not recover until the third or fourth decade. In keeping with previous studies, the majority (25 of 47) presented with recurrent infections, nine had a family history of immunodeficiency and 13 had adverse reactions to food as their dominant clinical manifestation. Chronic tonsillitis developed in 10 patients and symptoms improved following surgery. The group with food allergies recovered sooner than those presenting with infections or with a family history immunodeficiency. Eight patients failed to respond to at least one routine childhood vaccine. Two have IgA deficiency and four individuals recovering in adolescence and adulthood continue to have borderline/low IgG levels. None have progressed to common variable immunodeficiency disorders (CVID). THI is a misnomer, as the majority do not recover in infancy. Recovery from THI can extend into adulthood. THI must be considered in the differential diagnosis of adolescents or young adults presenting with primary hypogammaglobulinemia.
Collapse
Affiliation(s)
- R Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Y Ahn
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - R Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - S-T Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
42
|
Ameratunga R, Ahn Y, Steele R, Woon ST. The Natural History of Untreated Primary Hypogammaglobulinemia in Adults: Implications for the Diagnosis and Treatment of Common Variable Immunodeficiency Disorders (CVID). Front Immunol 2019; 10:1541. [PMID: 31379811 PMCID: PMC6652801 DOI: 10.3389/fimmu.2019.01541] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Adults with primary hypogammaglobulinemia are frequently encountered by clinicians. Where IgG levels are markedly decreased, most patients are treated with subcutaneous or intravenous immunoglobulin (SCIG/IVIG), because of the presumed risk of severe infections. The natural history of untreated severe asymptomatic hypogammaglobulinemia is thus unknown. Similarly, there are no long-term prospective studies examining the natural history of patients with moderate reductions in IgG. Methods: In 2006, we began a prospective cohort study of patients with symptomatic and asymptomatic reductions in IgG who were not immediately commenced on SCIG/IVIG. Over the course of 12 years, 120 patients were enrolled in the NZ hypogammaglobulinemia study (NZHS) including 59 who were asymptomatic. Results: Five patients with profound primary hypogammaglobulinemia (IgG < 3 g/l), who were not on regular SCIG/IVIG have remained well for a mean duration of 139 months. This study has also shown most asymptomatic patients with moderate hypogammaglobulinemia (IgG 3.0–6.9 g/l) have been in good health for a mean observation period of 96 months. We have only identified one asymptomatic patient with moderate hypogammaglobulinemia who experienced progressive decline in IgG levels to <3 g/l and was accepted for IVIG replacement. Prospective monitoring has shown that none have suffered catastrophic infections or any of the severe autoimmune or inflammatory sequelae associated with Common Variable Immunodeficiency Disorders (CVID). Unexpectedly, 18.1% of asymptomatic and 41.6% of symptomatic hypogammaglobulinemic patients spontaneously increased their IgG into the normal range (≥7.0 g/l) on at least one occasion, which we have termed transient hypogammaglobulinemia of adulthood (THA). In this study, vaccine challenge responses have correlated poorly with symptomatic state and long-term prognosis including subsequent SCIG/IVIG treatment. Conclusions: In spite of our favorable experience, we recommend patients with severe asymptomatic hypogammaglobulinemia are treated with SCIG/IVIG because of the potential risk of severe infections. Patients with moderate asymptomatic hypogammaglobulinemia have a good prognosis. Patients with symptomatic hypogammaglobulinemia are a heterogeneous group where some progress to SCIG/IVIG replacement, while many others spontaneously recover. This study has implications for the diagnosis and treatment of CVID.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Yeri Ahn
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
43
|
Gupta S, Pattanaik D, Krishnaswamy G. Common Variable Immune Deficiency and Associated Complications. Chest 2019; 156:579-593. [PMID: 31128118 DOI: 10.1016/j.chest.2019.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022] Open
Abstract
Common variable immunodeficiency disorders refer to a relatively common primary immune deficiency group of diseases that present with infectious and inflammatory complications secondary to defects in antibody production and sometimes in cellular immunity. The disorder often presents in middle age or later with recurrent sinopulmonary infections, bronchiectasis, or a plethora of noninfectious complications such as autoimmune disorders, granulomatous interstitial lung disease, GI diseases, malignancies (including lymphoma), and multisystem granulomatous disease resembling sarcoidosis. Infusion of immunoglobulin by IV or subcutaneous is the mainstay of therapy. Management of complications is often difficult as immune suppression may be necessary in these conditions and entails the use of medications and biologicals which may further increase the risk for infections. Specifically, bronchiectasis, granulomatous lymphocytic interstitial lung disease, repeated sinopulmonary infections, and malignancies are sequelae of antibody deficiency that may present to the pulmonologist. This review will provide an updated understanding of the molecular aspects, differential diagnosis, presentations, and the management of common variable immunodeficiency disorders.
Collapse
Affiliation(s)
- Siddhi Gupta
- Department of Medicine, Division of Infectious Disease, Wake Forest School of Medicine, Winston Salem, NC
| | - Debendra Pattanaik
- Division of Allergy, Immunology and Rheumatology, University of Tennessee Health Science Center, Memphis TN
| | - Guha Krishnaswamy
- Department of Medicine, Division of Infectious Disease, Wake Forest School of Medicine, Winston Salem, NC; Division of Infectious Disease, Pulmonary, Allergy and Immunology, Wake Forest School of Medicine, Winston Salem, NC; Department of Medicine, Division of Allergy and Immunology, W.G. (Bill) Hefner VA Medical Center, Salisbury, NC.
| |
Collapse
|
44
|
Chandrakasan S, Chandra S, Davila Saldana BJ, Torgerson TR, Buchbinder D. Primary immune regulatory disorders for the pediatric hematologist and oncologist: A case-based review. Pediatr Blood Cancer 2019; 66:e27619. [PMID: 30697957 DOI: 10.1002/pbc.27619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/20/2022]
Abstract
An array of monogenic immune defects marked by autoimmunity, lymphoproliferation, and hyperinflammation rather than infections have been described. Primary immune regulatory disorders pose a challenge to pediatric hematologists and oncologists. This paper focuses on primary immune regulatory disorders including autoimmune lymphoproliferative syndrome (ALPS) and ALPS-like syndromes, immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-like disorders, common variable immunodeficiency (CVID), CVID-like, and late-onset combined immunodeficiency (CID) disorders. Hyperinflammatory disorders and those associated with increased susceptibility to lymphoid malignancies are also discussed. Using a case-based approach, a review of clinical pearls germane to the clinical and laboratory evaluation as well as the treatment of these disorders is provided.
Collapse
Affiliation(s)
- Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Blachy J Davila Saldana
- Division of Blood and Marrow Transplantation, Children's National Medical Center, Washington, District of Columbia.,Department of Pediatrics, The George Washington University, Washington, District of Columbia
| | - Troy R Torgerson
- Department of Pediatrics, Divisions of Immunology/Rheumatology University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - David Buchbinder
- Department of Hematology, Children's Hospital of Orange County, Orange, California.,Department of Pediatrics, University of California at Irvine, Orange, California
| |
Collapse
|
45
|
Aird A, Lagos M, Vargas-Hernández A, Posey JE, Coban-Akdemir Z, Jhangiani S, Mace EM, Reyes A, King A, Cavagnaro F, Forbes LR, Chinn IK, Lupski JR, Orange JS, Poli MC. Novel Heterozygous Mutation in NFKB2 Is Associated With Early Onset CVID and a Functional Defect in NK Cells Complicated by Disseminated CMV Infection and Severe Nephrotic Syndrome. Front Pediatr 2019; 7:303. [PMID: 31417880 PMCID: PMC6682634 DOI: 10.3389/fped.2019.00303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor kappa-B subunit 2 (NF-κB2/p100/p52), encoded by NFKB2 (MIM: 164012) belongs to the NF-κB family of transcription factors that play a critical role in inflammation, immunity, cell proliferation, differentiation and survival. Heterozygous C-terminal mutations in NFKB2 have been associated with early-onset common variable immunodeficiency (CVID), central adrenal insufficiency and ectodermal dysplasia. Only two previously reported cases have documented decreased natural killer (NK) cell cytotoxicity, and little is known about the role of NF-κB2 in NK cell maturation and function. Here we report a 13-year-old female that presented at 6 years of age with a history of early onset recurrent sinopulmonary infections, progressive hair loss, and hypogamaglobulinemia consistent with a clinical diagnosis of CVID. At 9 years of age she had cytomegalovirus (CMV) pneumonia that responded to ganciclovir treatment. Functional NK cell testing demonstrated decreased NK cell cytotoxicity despite normal NK cell numbers, consistent with a greater susceptibility to systemic CMV infection. Research exome sequencing (ES) was performed and revealed a novel de novo heterozygous nonsense mutation in NFKB2 (c.2611C>T, p.Gln871*) that was not carried by either of her parents. The variant was Sanger sequenced and confirmed to be de novo in the patient. At age 12, she presented with a reactivation of the systemic CMV infection that was associated with severe and progressive nephrotic syndrome with histologic evidence of pedicellar effacement and negative immunofluorescence. To our knowledge, this is the third NF-κB2 deficient patient in which an abnormal NK cell function has been observed, suggesting a role for non-canonical NF-κB2 signaling in NK cell cytotoxicity. NK cell function should be assessed in patients with mutations in the non-canonical NF-κB pathway to explore the risk for systemic viral infections that may lead to severe complications and impact patient survival. Similarly NF-κB2 should be considered in patients with combined immunodeficiency who have aberrant NK cell function. Further studies are needed to characterize the role of NF-κB2 in NK cell cytotoxic function.
Collapse
Affiliation(s)
- Alejandra Aird
- Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Macarena Lagos
- Clínica Las Condes, Santiago, Chile.,Hospital Padre Hurtado, Santiago, Chile
| | - Alexander Vargas-Hernández
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Shalini Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Emily M Mace
- Division of Immunogenetics, Department of Pediatrics, Morgan Stanley Children's Hospital of New York Presbyterian, Columbia University Irving Medical Center, New York, NY, United States
| | - Anaid Reyes
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Alejandra King
- Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Felipe Cavagnaro
- Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Lisa R Forbes
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Ivan K Chinn
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - James R Lupski
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jordan S Orange
- Division of Immunogenetics, Department of Pediatrics, Morgan Stanley Children's Hospital of New York Presbyterian, Columbia University Irving Medical Center, New York, NY, United States
| | - Maria Cecilia Poli
- Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.,Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
46
|
Crowley E, Muise A. Inflammatory Bowel Disease: What Very Early Onset Disease Teaches Us. Gastroenterol Clin North Am 2018; 47:755-772. [PMID: 30337031 DOI: 10.1016/j.gtc.2018.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, of which ulcerative colitis and Crohn's disease are the 2 most prevailing entities. Very early onset IBD (VEO-IBD) children diagnosed with IBD under age 6 years. Although the etiology of IBD is mostly unknown, it involves a complex interaction among host genetics, microbiota, environmental factors, and aberrant immune responses. Advances in the understanding of the genetic contribution, which appears to be much more significant in younger children, gives us a useful insight into the pathogenesis and potential future therapeutic targets in IBD.
Collapse
Affiliation(s)
- Eileen Crowley
- Cell Biology Program, Division of Gastroenterology, Hepatology and Nutrition, Inflammatory Bowel Disease Center, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; Department of Pediatric Gastroenterology, Hepatology and Nutrition, SickKids, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Aleixo Muise
- Department of Biochemistry, Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Pediatrics, Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Gastroenterology, Hepatology and Nutrition, Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, SickKids, Inflammatory Bowel Disease Centre, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
47
|
Soler-Palacín P, Garcia-Prat M, Martín-Nalda A, Franco-Jarava C, Rivière JG, Plaja A, Bezdan D, Bosio M, Martínez-Gallo M, Ossowski S, Colobran R. LRBA Deficiency in a Patient With a Novel Homozygous Mutation Due to Chromosome 4 Segmental Uniparental Isodisomy. Front Immunol 2018; 9:2397. [PMID: 30386343 PMCID: PMC6198091 DOI: 10.3389/fimmu.2018.02397] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
LRBA deficiency was first described in 2012 as an autosomal recessive disorder caused by biallelic mutations in the LRBA gene (OMIM #614700). It was initially characterized as producing early-onset hypogammaglobulinemia, autoimmune manifestations, susceptibility to inflammatory bowel disease, and recurrent infection. However, further reports expanded this phenotype (including patients without hypogammaglobulinemia) and described LRBA deficiency as a clinically variable syndrome with a wide spectrum of clinical manifestations. We present the case of a female patient who presented with type 1 diabetes, psoriasis, oral thrush, and enlarged liver and spleen at the age of 8 months. She later experienced recurrent bacterial and viral infections, including pneumococcal meningitis and Epstein Barr viremia. She underwent two consecutive stem cell transplants at the age of 8 and 9 years, and ultimately died. Samples from the patient and her parents were subjected to whole exome sequencing, which revealed a homozygous 1-bp insertion in exon 23 of the patient's LRBA gene, resulting in frameshift and premature stop codon. The patient's healthy mother was heterozygous for the mutation and her father tested wild-type. This finding suggested that either one copy of the paternal chromosome 4 bore a deletion including the LRBA locus, or the patient inherited two copies of the mutant maternal LRBA allele. The patient's sequencing data showed a 1-Mb loss of heterozygosity region in chromosome 4, including the LRBA gene. Comparative genomic hybridization array of the patient's and father's genomic DNA yielded normal findings, ruling out genomic copy number abnormalities. Here, we present the first case of LRBA deficiency due to a uniparental disomy (UPD). In contrast to classical Mendelian inheritance, UPD involves inheritance of 2 copies of a chromosomal region from only 1 parent. Specifically, our patient carried a small segmental isodisomy of maternal origin affecting 1 Mb of chromosome 4.
Collapse
Affiliation(s)
- Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Clara Franco-Jarava
- Jeffrey Modell Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Jacques G Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Alberto Plaja
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Daniela Bezdan
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mattia Bosio
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Jeffrey Modell Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Stephan Ossowski
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Roger Colobran
- Jeffrey Modell Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
48
|
Smulski CR, Eibel H. BAFF and BAFF-Receptor in B Cell Selection and Survival. Front Immunol 2018; 9:2285. [PMID: 30349534 PMCID: PMC6186824 DOI: 10.3389/fimmu.2018.02285] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
The BAFF-receptor (BAFFR) is encoded by the TNFRSF13C gene and is one of the main pro-survival receptors in B cells. Its function is impressively documented in humans by a homozygous deletion within exon 2, which leads to an almost complete block of B cell development at the stage of immature/transitional B cells. The resulting immunodeficiency is characterized by B-lymphopenia, agammaglobulinemia, and impaired humoral immune responses. However, different from mutations affecting pathway components coupled to B cell antigen receptor (BCR) signaling, BAFFR-deficient B cells can still develop into IgA-secreting plasma cells. Therefore, BAFFR deficiency in humans is characterized by very few circulating B cells, very low IgM and IgG serum concentrations but normal or high IgA levels.
Collapse
Affiliation(s)
- Cristian R Smulski
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Rotz SJ, Ware RE, Kumar A. Diagnosis and management of chronic and refractory immune cytopenias in children, adolescents, and young adults. Pediatr Blood Cancer 2018; 65:e27260. [PMID: 29856527 DOI: 10.1002/pbc.27260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/26/2018] [Accepted: 05/06/2018] [Indexed: 12/13/2022]
Abstract
Children, adolescents, and young adults with chronic refractory autoimmune cytopenias represent a rare but challenging group of patients, who are managed frequently by pediatric hematologists. Novel diagnostic tests and genomic discoveries are refining historical diagnoses of Evans syndrome and common variable immunodeficiency, while also elucidating the cellular and molecular basis for these disorders. Genetic characterization of chronic and refractory autoimmune cytopenias has led to targeted therapies with improved clinical outcomes and fewer off-target toxicities. In this review, we focus on the appropriate diagnostic workup, expanded genetic testing, and novel treatment opportunities that are available for these challenging patients.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| | - Russell E Ware
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ashish Kumar
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
50
|
Ameratunga R. Assessing Disease Severity in Common Variable Immunodeficiency Disorders (CVID) and CVID-Like Disorders. Front Immunol 2018; 9:2130. [PMID: 30323807 PMCID: PMC6172311 DOI: 10.3389/fimmu.2018.02130] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|