1
|
Li M, Liu X, Chen W, Xu H, Huang F, Yao Q, Jia X, Huang Y. Alleviating Effect of Lactiplantibacillus plantarum HYY-S10 on Colitis in Mice Based on an Analysis of the Immune Axis in the Intestine. Microorganisms 2025; 13:840. [PMID: 40284675 PMCID: PMC12029376 DOI: 10.3390/microorganisms13040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
The pathogenesis of ulcerative colitis (UC) has been fundamentally associated with intestinal microbiota dysbiosis and disruption of immune homeostasis. This study systematically investigates the therapeutic potential of Lactiplantibacillus plantarum HYY-S10 (HYY-S10), a novel strain isolated from De'ang sour tea in Yun an, China, with a focus on its mechanisms for alleviating colitis through the modulation of gut microbiota. Using a dextran sulfate sodium (DSS)-induced colitis model in C57BL/6J mice, our findings demonstrated that seven days of oral supplementation with HYY-S10 (1 × 108 CFU/mL, 0.2 mL/10 g body weight) significantly improved Disease Activity Index (DAI) scores and attenuated characteristic colitis symptoms, including progressive weight loss, rectal bleeding, and abnormal stool consistency. Administration of HYY-S10 exhibited significant immunomodulatory effects characterized by the downregulation of pro-inflammatory mediators (such as IL-1β, IL-6, IFN-γ, and LPS) while concomitantly upregulating anti-inflammatory IL-10 expression. Additionally, the strain enhanced intestinal antioxidant capacity by increasing GSH-Px activity, which collectively contributed to the reduction in intestinal inflammation. Furthermore, HYY-S10 demonstrated multifaceted protective effects by ameliorating oxidative stress through the restoration of redox homeostasis and modulation of gut microbial ecology. Probiotic intervention significantly increased short-chain fatty acids (SCFAs) production and notably enhanced the relative abundance of beneficial taxa, including Akkermansia and Ruminococcus_B, while restoring microbial diversity and ecological stability. Collectively, our results demonstrate that HYY-S10 alleviates experimental colitis by modulating the intestinal immune axis and microbiota composition, providing mechanistic insights to support its potential as a probiotic-based therapeutic strategy for UC.
Collapse
Affiliation(s)
- Mengna Li
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, China; (M.L.)
| | - Xintong Liu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, China; (M.L.)
| | - Weijian Chen
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, China; (M.L.)
| | - Haoyue Xu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, China; (M.L.)
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, China; (M.L.)
| | - Qingbo Yao
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, China; (M.L.)
| | - Xiangze Jia
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanyan Huang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, China; (M.L.)
| |
Collapse
|
2
|
He ZH, Jin Y, Chen D, Zheng HX, Xiang JE, Jiang YJ, Wen ZS. Seleno-chitooligosaccharide-induced modulation of intestinal barrier function: Role of inflammatory cytokines, tight junction proteins, and gut microbiota in mice. J Appl Biomed 2025; 23:45-55. [PMID: 40145885 DOI: 10.32725/jab.2025.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/26/2025] [Indexed: 03/28/2025] Open
Abstract
This study aimed to explore the function of Seleno-chitooligosaccharide (SOA) on the intestinal barrier through regulation of inflammatory cytokines, tight junction protein, and gut microbiota in mice. The results of ELISA assay demonstrated that SOA significantly increased the levels of IL-2, IL-10, and IFN-γ in serum and ileum. Meanwhile, SOA increased the levels of IL-4 in the ileum (p < 0.05). In addition, Diamine Oxidase (DAO) concentration was decreased in ileum by SOA treatments (p < 0.05). The administration of SOA significantly upregulated the expression of ZO-1 and Occludin in the ileum (p < 0.05). By 16S rDNA sequencing, reduced ratio of Bacillota/Bacteroidota was observed in SOA treated mice. Within the phylum of Bacteroidota, SOA increased the relative abundance of Deferribacterota, uncultured Bacteroidales bacterium, and Bacteroides. Within the phylum of Bacillota, increased relative abundance of Erysipelatoclostridium and Lachnoclostridium, and reduced relative abundance of Ruminococcaceae UCG-010 were observed with SOA supplement. In summary, SOA has the potential to modulate the function of intestinal barrier function and prevent intestinal diseases.
Collapse
Affiliation(s)
| | | | - Die Chen
- Zhejiang Ocean University, School of Food and Pharmacy, Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan, Zhejiang Province 316022, China
| | - Hui-Xin Zheng
- Zhejiang Ocean University, School of Food and Pharmacy, Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan, Zhejiang Province 316022, China
| | - Jia-Er Xiang
- Zhejiang Ocean University, School of Food and Pharmacy, Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan, Zhejiang Province 316022, China
| | - Yong-Jun Jiang
- Zhejiang Ocean University, School of Food and Pharmacy, Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan, Zhejiang Province 316022, China
| | - Zheng-Shun Wen
- Zhejiang Ocean University, School of Food and Pharmacy, Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan, Zhejiang Province 316022, China
- Xianghu Lab, Venture Valley Building, 168 Gengwen Road, Xiaoshan District, Hangzhou, Zhejiang Province 311231, China
| |
Collapse
|
3
|
Jin Y, Liu H, Wang Y, Zhang R, Wang Q, Wang Y, Cui H, Wang X, Bian Y. Pathogenesis and treatment of colitis-associated colorectal cancer: Insights from Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119096. [PMID: 39532222 DOI: 10.1016/j.jep.2024.119096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory Bowel Disease (IBD) is an inflammatory intestinal disease, and with prolonged illness duration, the annual risk of IBD progressing to colitis-associated colorectal cancer (CAC) gradually increases. In recent years, there has been a noticeable trend towards the application of traditional Chinese medicine (TCM) in the treatment of CAC. AIM OF THIS REVIEW This comprehensive review summarizes the pathogenesis of CAC and details the therapeutic benefits of TCM in treating CAC, including various TCM prescriptions and ingredients, establishing the theoretical foundation for the application of TCM in CAC treatment. METHODS We assessed literature published before March 24, 2024, from several databases, including Web of Science, PubMed, Scopus and Google Scholar. The keywords used include "traditional Chinese medicine", "traditional Chinese medicine prescriptions", "traditional Chinese medicine ingredients", "herbal medicine", "colitis-associated colorectal cancer", "inflammatory bowel disease", "colorectal cancer" and "colitis-cancer transformation". We conducted a comprehensive collection and collation of pertinent scientific articles from various databases, focusing on the efficacy of TCM in the prevention and treatment of "colitis-cancer transformation". RESULTS This paper provides a concise summary and thorough analysis of twenty-eight prescriptions and ingredients of TCM for the prevention and treatment of CAC, based on existing experimental and clinical research. There are positive signs that TCM can effectively prevent and treat the "colitis-cancer transformation" through repairing the intestinal mucosal barrier, correcting intestinal flora imbalance, and regulating intestinal immune responses. CONCLUSION TCM possesses comprehensive regulatory advantages that are multifaceted, multilevel, and multitarget. It has a definite curative effect in the prevention and treatment of CAC. It is essential to enhance the clinical efficacy of TCM in the prevention and treatment of CAC based on syndrome differentiation and treatment, with the assistance of modern medicine.
Collapse
Affiliation(s)
- Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haizhao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Yuhui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruixuan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiaochu Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China
| | - Yao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangling Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Shao Y, Mu Q, Wang R, Luo H, Song Z, Wang P, Song J, Ge C, Zhang J, Min J, Wang F. SLC39A10 is a key zinc transporter in T cells and its loss mitigates autoimmune disease. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2817-y. [PMID: 39862347 DOI: 10.1007/s11427-024-2817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Zinc homeostasis plays an essential role in maintaining immune function and is tightly regulated by zinc transporters. We previously reported that the zinc transporter SLC39A10, located in the cell membrane, critically regulates the susceptibility of macrophages to inflammatory stimuli; however, the functional role of SLC39A10 in T cells is currently unknown. Here, we identified two SNPs in SLC39A10 that are associated with inflammatory bowel disease (IBD). We then generated transgenic mice with T cell-specific deletion of Slc39a10 (cKO) and found that its loss not only protects against disease progression in IBD and experimental autoimmune encephalomyelitis (EAE), but also induces massive apoptosis via a p53/p21- and Bcl2-independent process. Mechanistically, we show that Slc39a10 serves as a key zinc importer upon activation of T cell receptor to safeguard DNA replication. Together, these findings provide new mechanistic insights and potential targets for the development of new therapeutic strategies for the treatment and/or prevention of T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Yichang Shao
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qingdian Mu
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rong Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongbin Luo
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zijun Song
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Pengfei Wang
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jingshu Song
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chaodong Ge
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Qi C, Li A, Su F, Wang Y, Zhou L, Tang C, Feng R, Mao R, Chen M, Chen L, Koppelman GH, Bourgonje AR, Zhou H, Hu S. An atlas of the shared genetic architecture between atopic and gastrointestinal diseases. Commun Biol 2024; 7:1696. [PMID: 39719505 DOI: 10.1038/s42003-024-07416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Comorbidity among atopic diseases (ADs) and gastrointestinal diseases (GIDs) has been repeatedly demonstrated by epidemiological studies, whereas the shared genetic liability remains largely unknown. Here we establish an atlas of the shared genetic architecture between 10 ADs or related traits and 11 GIDs, comprehensively investigating the comorbidity-associated genomic regions, cell types, genes and genetically predicted causality. Although distinct genetic correlations between AD-GID are observed, including 14 genome-wide and 28 regional correlations, genetic factors of Crohn's disease (CD), ulcerative colitis (UC), celiac disease and asthma subtypes are converged on CD4+ T cells consistently across relevant tissues. Fourteen genes are associated with comorbidities, with three genes are known treatment targets, showing probabilities for drug repurposing. Lower expressions of WDR18 and GPX4 in PBMC CD4+ T cells predict decreased risk of CD and asthma, which could be novel drug targets. MR unveils certain ADs led to higher risk of GIDs or vice versa. Taken together, here we show distinct genetic correlations between AD-GID pairs, but the correlated genomic loci converge on the dysregulation of CD4+ T cells. Inhibiting WDR18 and GPX4 expressions might be candidate therapeutic strategies for CD and asthma. Estimated causality indicates potential guidance for preventing comorbidity.
Collapse
Affiliation(s)
- Cancan Qi
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Fengyuan Su
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu Wang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Longyuan Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ce Tang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rui Feng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-Sen University, Nanning, Guangxi, China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lianmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Gerard H Koppelman
- University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
- University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hongwei Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shixian Hu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Huai M, Pei M, Chen J, Duan X, Zhu Y, Yang F, Ge W. Oral creatine-modified selenium-based hyaluronic acid nanogel mediated mitochondrial energy recovery to drive the treatment of inflammatory bowel disease. J Nanobiotechnology 2024; 22:740. [PMID: 39609811 PMCID: PMC11603945 DOI: 10.1186/s12951-024-03007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
The damnification of mitochondrion is often considered to be an important culprit of inflammatory bowel disease (IBD), however, there are fewer reports of mechanisms of mitochondria-mediated IBD treatment. Therefore, we first proposed to reboot mitochondrial energy metabolism to treat IBD by capturing the double-sided factor of ROS and creatine (Cr)-assisted energy adjustment. Herein, an oral Cr-modified selenium-based hyaluronic acid (HA) nanogel (HASe-Cr nanogel) was fabricated for treatment of IBD, through ROS elimination and energy metabolism upgradation. More concretely, due to IBD lesion-specific positive charge and the high expression of CD44, HASe-Cr nanogel exhibited dual targeted inflammatory bio-functions, and ROS-driven degradation properties in high-yield ROS levels in inflammation areas. As expected, multifunctional HASe-Cr nanogel could effectively ameliorate IBD-related symptoms, such as mitochondrial biological function restoration, inhibition of M1-like macrophage polarization, gut mucosal reconstruction, microbial ecological repair, etc., thus excellently treating IBD. Overall, the proposed strategy underlined that the great potentiality of HASe-Cr nanogel by restarting mitochondrial metabolic energy in colitis lesions, providing new a pavement of mitochondrion-mediated colitis treatment in clinical applications.
Collapse
Affiliation(s)
- Manxiu Huai
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China
| | - Mingliang Pei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Chen
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xiaoyan Duan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China
| | - Yun Zhu
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China.
| |
Collapse
|
7
|
Younis MY, Khan MU, Khan U, Latif Khan T, Mukarram H, Jain K, Ilyas I, Jain W. The Current Role of Imaging in the Diagnosis of Inflammatory Bowel Disease and Detection of Its Complications: A Systematic Review. Cureus 2024; 16:e73134. [PMID: 39507607 PMCID: PMC11540425 DOI: 10.7759/cureus.73134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/08/2024] Open
Abstract
Inflammatory bowel disease (IBD) encompasses complex gastrointestinal (GI) conditions, primarily Crohn's disease (CD) and ulcerative colitis (UC), requiring precise imaging for effective diagnosis and management of complications. This systematic review aimed to evaluate the current role of imaging modalities in diagnosing IBD and detecting related complications. The review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We performed a literature search using text words and controlled vocabulary applying Boolean operators "AND," "OR," with various combinations on databases such as PubMed, Embase, and Cochrane Library. The search targeted open-access articles involving humans, with full-text available, and published in the English Language from 2005 to 2024. The quality of the included studies was assessed using the Cochrane Risk-of-Bias (RoB) checklist. Our search process identified 127 records from Cochrane (39), Embase (29), and PubMed (59). After removing 98 irrelevant records, 29 underwent further screening. Five were excluded as they involved irrelevant problems or outcomes, leaving us with 24 reports with full text, all of which were accessible. Following the eligibility assessment, two more reports were excluded due to inaccessibility, and 22 studies were included in the final analysis. The risk of bias and methodological quality assessment revealed that out of 22 studies analyzed, five (23%) had a high risk of bias, while 13 (59%) were classified as moderate risk, and four (18%) showed low risk. This distribution highlights a predominance of moderate-risk studies in research on imaging in IBD, emphasizing the need for enhanced study designs in future investigations. Our findings revealed the varying effectiveness of imaging modalities in diagnosing complications of CD and UC. Magnetic resonance enterography (MRE) stands out as the preferred method for CD due to its high sensitivity and noninvasive nature. In contrast, colonoscopy remains the gold standard for UC, providing direct visualization of mucosal lesions. While techniques like ultrasound and capsule endoscopy offer valuable insights, they have limitations that may affect their utility in certain cases.
Collapse
Affiliation(s)
| | - Muhammad Usman Khan
- Gastroenterology, Allama Iqbal Teaching Hospital Dera Ghazi Khan, Dera Ghazi Khan, PAK
| | - Usman Khan
- Medicine, Sir Ganga Ram Hospital, Lahore, PAK
| | | | - Hassan Mukarram
- Gastroenterology, Services Institute of Medical Sciences, Lahore, PAK
| | - Kanav Jain
- Medicine, Countess of Chester Trust, Chester, GBR
| | - Insha Ilyas
- Medicine, Countess of Chester Trust, Chester, GBR
| | - Wachi Jain
- Medicine, Lincoln County Hospital, Lincoln, GBR
| |
Collapse
|
8
|
Cai X, Wu W, Guo G, Chen J, Xu J, Lin W, Huang P, Lin C, Lin R. Physiologically-based pharmacokinetic modeling to predict the exposure and provide dosage regimens of Ustekinumab in pediatric patients with inflammatory bowel disease. Eur J Pharm Sci 2024; 199:106807. [PMID: 38797440 DOI: 10.1016/j.ejps.2024.106807] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Ustekinumab (UST), a fully human immunoglobulin G1 κ monoclonal antibody, exhibiting high affinity for the p40 subunit shared by IL-12 and IL-23, which play key roles in the pathogenesis of inflammatory bowel disease (IBD). By scaling the physiologically-based pharmacokinetic modeling (PBPK) model of UST in adult patients with IBD, we aim to predict effective dosages for UST in pediatric patients, thereby offering a more practical dosing regimen for real-world applications. In this work, a PBPK model for UST in adult patients with IBD has been developed using PK-Sim and Mobi. Advanced ontogeny model has been incorporated to extrapolate the model to pediatric patients. The simulation results showed that the fold errors of the predicted and observed values of the area under the curve (AUC) and peak plasma concentration (Cmax) were between 0.79 and 1.73. For children aged 6-18, it is recommended to administer the drug per kilogram of body weight, at the model-recommended dose, to achieve a median AUC similar to that of the adult reference population post-administration. This comprehensive model construction enables us to comprehensively and extensively explore the pharmacokinetic characteristics of UST in pediatric patients of different age groups, providing robust support for clinical applications and personalized drug therapy.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China.
| | - Wanhong Wu
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China.
| | - Guimu Guo
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China.
| | - Jiarui Chen
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China.
| | - Jianwen Xu
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China.
| | - WeiWei Lin
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China.
| | - Pinfang Huang
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China.
| | - Cuihong Lin
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China.
| | - Rongfang Lin
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China
- Department of Pharmacy, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China.
| |
Collapse
|
9
|
Li Q, Zhang C, Zhu M, Shan J, Qian H, Ma Y, Wang X. W-GA nanodots restore intestinal barrier functions by regulating flora disturbance and relieving excessive oxidative stress to alleviate colitis. Acta Biomater 2024; 182:260-274. [PMID: 38777175 DOI: 10.1016/j.actbio.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) may arise due to disruption of mucosal barriers as a result of dysregulation of the intestinal flora and excessive oxidative stress. The creation of nanomaterials with only microbiota-regulating effects often leads to inadequate therapeutic outcomes caused by the disruption of a healthy microbial balance and the emergence of tissue harm caused by excessive oxidative stress. This report describes the multifunctional activity of ultrasmall W-GA nanodots, which can precisely regulate the intestinal microbiome by inhibiting the abnormal expansion of Enterobacteriaceae during colitis and alleviating the damage caused by oxidative stress to the reconstructive microflora, ultimately restoring intestinal barrier function. W-GA nanodots have been synthesized through a simple coordination reaction and can be dispersed in various solvents in vitro, demonstrating favorable safety profiles in cells, significant clearance of reactive oxygen and nitrogen species (RONS), and increased cell survival in models of oxidative stress induced by hydrogen peroxide (H2O2). Through oral or intravenous administration, the W-GA nanodots were shown to be highly safe when tested in vivo, and they effectively reduced colon damage in mice with DSS-induced colitis by restoring the integrity of the intestinal barrier. W-GA nanodots have enabled the integration of microflora reprogramming and RONS clearance, creating a potent therapeutic strategy for treating gut inflammation. Consequently, the development of W-GA nanodots represents a promising strategy for enhancing the formation and preservation of the intestinal barrier to treat IBD by suppressing the growth of Enterobacteriaceae, a type of facultative anaerobic bacterium, and facilitating the effective removal of RONS. Ultimately, this leads to the restoration of the intestinal barrier's functionality. STATEMENT OF SIGNIFICANCE: An increasing number of nanoparticles are under development for treating inflammatory bowel disease. Although they can alleviate inflammation symptoms by regulating reactive oxygen and nitrogen species (RONS) and microbiota, their understanding of the mechanism behind microbiota regulation is limited. This study synthesized W-GA nanodots using a straightforward one-pot synthesis method. Simple synthesis holds significant promise for clinical applications, as it encompasses multiple nanoenzyme functions and also exhibits Enterobacteriaceae inhibitory properties.Thus, it contributes to ameliorating the current medical landscape of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Cong Zhang
- Division of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Mengmei Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Haisheng Qian
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| | - Yan Ma
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
10
|
Li N, Zhang G, Zhang X, Liu Y, Kong Y, Wang M, Ren X. A rapid-floating natural polysaccharide gel-raft with double-effect for the treatment of gastroesophageal reflux disease. Int J Biol Macromol 2024; 261:129667. [PMID: 38272401 DOI: 10.1016/j.ijbiomac.2024.129667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Gastroesophageal reflux disease (GERD) is a prevalent gastrointestinal condition characterized by regurgitating stomach contents into the esophagus, causing mucosal damage or erosion. Clinical physical protection treatment mainly relies on the use of floating rafts. Bletilla striata (BS) is widely regarded as the first-choice drug for treating digestive tract injuries in Chinese Medicine. The rapid-floating gel-raft (B-R) was prepared via a one-step swelling method using natural BS polysaccharide and glyceryl monooleate. Panax notoginseng saponins (PNS) were loaded to further prepare P/B-R according to clinical experience. Possessing hydrophobic dense, stratified porous structure and stable rheological properties, an outperforming floating performance of P/B-R was proven compared with Gaviscon® (alginate-antacid formulation) in vitro. In vivo imaging results showed that P/B-R can retain and adhere to the gastric mucosa of rats for up to 90 min, protecting and repairing the mucosa. Besides physical protection in situ, the systemic effects of antioxidant and anti-inflammatory actions for treating GERD were achieved through the intestinal release of PNS. Acid-labile PNS was protected by P/B-R against gastric acid, attaining the desired release and permeability. A significantly effective mucosa injury protective effect of P/B-R was found in ethanol-induced gastric damage model on rats. Moreover, P/B-R exhibits excellent biosafety at the cellular level.
Collapse
Affiliation(s)
- Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guoqin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xueyan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yan Kong
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China..
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
11
|
Pratscher B, Kuropka B, Csukovich G, Doulidis PG, Spirk K, Kramer N, Freund P, Rodríguez-Rojas A, Burgener IA. Traces of Canine Inflammatory Bowel Disease Reflected by Intestinal Organoids. Int J Mol Sci 2024; 25:576. [PMID: 38203746 PMCID: PMC10778911 DOI: 10.3390/ijms25010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that affects humans and several domestic animal species, including cats and dogs. In this study, we have analyzed duodenal organoids derived from canine IBD patients using quantitative proteomics. Our objective was to investigate whether these organoids show phenotypic traits of the disease compared with control organoids obtained from healthy donors. To this aim, IBD and control organoids were subjected to quantitative proteomics analysis via liquid chromatography-mass spectrometry. The obtained data revealed notable differences between the two groups. The IBD organoids exhibited several alterations at the levels of multiple proteins that are consistent with some known IBD alterations. The observed phenotype in the IBD organoids to some degree mirrors the corresponding intestinal condition, rendering them a compelling approach for investigating the disease and advancing drug exploration. Additionally, our study revealed similarities to some human IBD biomarkers, further emphasizing the translational and comparative value of dogs for future investigations related to the causes and treatment of IBD. Relevant proteins such as CALU, FLNA, MSN and HMGA2, which are related to intestinal diseases, were all upregulated in the IBD duodenal organoids. At the same time, other proteins such as intestinal keratins and the mucosal immunity PIGR were depleted in these IBD organoids. Based on these findings, we propose that these organoids could serve as a valuable tool for evaluating the efficacy of therapeutic interventions against canine IBD.
Collapse
Affiliation(s)
- Barbara Pratscher
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Georg Csukovich
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Pavlos G. Doulidis
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Katrin Spirk
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Nina Kramer
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Patricia Freund
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Alexandro Rodríguez-Rojas
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| | - Iwan A. Burgener
- Clinic for Small Animals, Division for Small Animal Internal Medicine, Department for Small Animal and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (B.P.); (G.C.); (P.G.D.); (K.S.); (P.F.)
| |
Collapse
|
12
|
Vujasinovic M, Nikolic S, Gordon Achour A, Löhr JM. Autoimmune pancreatitis and micronutrients. Dig Liver Dis 2023; 55:1375-1381. [PMID: 37121818 DOI: 10.1016/j.dld.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Nutritional deficiencies, including fat-soluble vitamins and minerals have been detected in many autoimmune diseases, including those involving the digestive system, but have yet to be assessed in autoimmune pancreatitis (AIP). The aim of the present study was to determine the prevalence of micronutrient deficiencies in patients with AIP as well as to investigate their relationship with relapse. PATIENTS AND METHODS We retrospectively analysed medical records of patients treated for AIP. Demographic and clinical data were collected. RESULTS One hundred patients were included in the final analysis. The male-to-female ratio was 2.5:1; median age at diagnosis was 57 years (range 19-85). Median follow-up was 53 months, and during this time, 38% of patients suffered from at least one micronutrient deficiency. The most prevalent micronutrient deficiencies were vitamin D (16.1%) and zinc (25.5%). Relapse was observed in 37% of the AIP patients. Initial analysis showed that AIP relapse was associated with any micronutrient deficiency as well as zinc and vitamin D deficiency, but after stratifying for AIP type 1 and adjusting for PEI and elevated IgG4 levels, the association ceased to be statistically significant. CONCLUSION Zinc and vitamin D deficiencies may be common in patients with AIP, indicating that these micronutrients might play a role in the natural course of AIP. Importantly, any micronutrient deficiency may be prevalent even in the light of treated PEI, which emphasizes the potential of micronutrients as an additional tool in the workup and follow-up of AIP patients.
Collapse
Affiliation(s)
- Miroslav Vujasinovic
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm 141 86, Sweden; Department of Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.
| | - Sara Nikolic
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm 141 86, Sweden; Department of Gastroenterology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
| | - Alina Gordon Achour
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - J Matthias Löhr
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm 141 86, Sweden; Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Yang X, Li X, Wu Z, Cao L. Photocrosslinked methacrylated natural macromolecular hydrogels for tissue engineering: A review. Int J Biol Macromol 2023; 246:125570. [PMID: 37369259 DOI: 10.1016/j.ijbiomac.2023.125570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
A hydrogel is a three-dimensional (3D) network structure formed through polymer crosslinking, and these have emerged as a popular research topic in recent years. Hydrogel crosslinking can be classified as physical, chemical, or enzymatic, and photocrosslinking is a branch of chemical crosslinking. Compared with other methods, photocrosslinking can control the hydrogel crosslinking initiation, crosslinking time, and crosslinking strength using light. Owing to these properties, photocrosslinked hydrogels have important research prospects in tissue engineering, in situ gel formation, 3D bioprinting, and drug delivery. Methacrylic anhydride modification is a common method for imparting photocrosslinking properties to polymers, and graft-substituted polymers can be photocrosslinked under UV irradiation. In this review, we first introduce the characteristics of common natural polysaccharide- and protein-based hydrogels and the processes used for methacrylate group modification. Next, we discuss the applications of methacrylated natural hydrogels in tissue engineering. Finally, we summarize and discuss existing methacrylated natural hydrogels in terms of limitations and future developments. We expect that this review will help researchers in this field to better understand the synthesis of methacrylate-modified natural hydrogels and their applications in tissue engineering.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Histology and Embryology, Fuzhou Medical College of Nanchang University, Fuzhou 344000, PR China
| | - Xiaojing Li
- Department of Histology and Embryology, Fuzhou Medical College of Nanchang University, Fuzhou 344000, PR China
| | - Zhaoping Wu
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, PR China
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, PR China.
| |
Collapse
|
14
|
Liu C, Sun C, Cheng Y. β-Glucan alleviates mice with ulcerative colitis through interactions between gut microbes and amino acids metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4006-4016. [PMID: 36433918 DOI: 10.1002/jsfa.12357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 11/26/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Food polysaccharide 1,3-β-d-glucan (OBG) has been shown to alleviate ulcerative colitis (UC) in a mouse model, but the underlying mechanisms remain unclear. Here, we aimed to investigate potential mechanisms involving interactions among gut microbiota, microbial metabolites and host metabolic function. RESULTS OBG alleviated colonic inflammation, barrier dysfunction and intestinal concentrations of short-chain fatty acids in mice with UC. In addition, the relative abundance of Muribaculaceae, Alistipes, Erysipelatoclostridium and Blautia increased, whereas the abundance of Proteus, Lachnospiraceae and Ruminococcus decreased within the gut microbiota upon OBG treatment. Kyoto Encyclopedia of Genes and Genomes analyses showed that intestinal enzymes altered upon OBG treatment were mainly enriched in sub-pathways of amino acid biosynthesis. Metabolomics analyses showed that l-tryptophan, l-tyrosine, l-phenylalanine and l-alanine increased, which is consistent with the predictive metabolism of gut microbiota. Correlation analysis and interaction networks highlighted gut microbiota (especially Lactobacillus, Parabacteroides, Proteus and Blautia), metabolites (especially l-phenylalanine, l-tryptophan, l-tyrosine and acetic acid) and metabolism (phenylalanine, tyrosine and tryptophan biosynthesis) that may be key targets of OBG. CONCLUSION OBG is beneficial to the gut microecological balance in mice with colitis, mainly becaue of its impact on the interactions between gut microbes and amino acids metabolism (especially tyrosine and tryptophan metabolism). © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Changwu Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Huang Q, Yang Y, Zhu Y, Chen Q, Zhao T, Xiao Z, Wang M, Song X, Jiang Y, Yang Y, Zhang J, Xiao Y, Nan Y, Wu W, Ai K. Oral Metal-Free Melanin Nanozymes for Natural and Durable Targeted Treatment of Inflammatory Bowel Disease (IBD). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207350. [PMID: 36760016 DOI: 10.1002/smll.202207350] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Indexed: 05/11/2023]
Abstract
Oral antioxidant nanozymes bring great promise for inflammatory bowel disease (IBD) treatment. To efficiently eliminate reactive oxygen species (ROS), various metal-based nanozymes have been developed for the treatment of IBD but their practical applications are seriously impaired by unstable ROS-eliminating properties and potential metal ion leakage in the digestive tract. Here, the authors for the first time propose metal-free melanin nanozymes (MeNPs) with excellent gastrointestinal stability and biocompatibility as a favorable therapy strategy for IBD. Moreover, MeNPs have extremely excellent natural and long-lasting characteristics of targeting IBD lesions. In view of the dominant role of ROS in IBD, the authors further reveal that oral administration of MeNPs can greatly alleviate the six major pathological features of IBD: oxidative stress, endoplasmic reticulum stress, apoptosis, inflammation, gut barrier disruption, and gut dysbiosis. Overall, this strategy highlights the great clinical application prospects of metal-free MeNPs via harnessing ROS scavenging at IBD lesions, offering a paradigm for antioxidant nanozyme in IBD or other inflammatory diseases.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiangping Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinping Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Wei Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
16
|
Ameliorating Effects of Vitamin K2 on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Int J Mol Sci 2023; 24:ijms24032986. [PMID: 36769323 PMCID: PMC9917520 DOI: 10.3390/ijms24032986] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic recurrent inflammatory illness of the gastrointestinal system. The purpose of this study was to explore the alleviating effect of vitamin K2 (VK2) on UC, as well as its mechanism. C57BL/6J mice were given 3% DSS for seven days to establish UC, and they then received VK2 (15, 30, or 60 mg/kg·bw) and 5-aminosalicylic acid (100 mg/kg·bw) for two weeks. We recorded the clinical signs, body weights, colon lengths, and histological changes during the experiment. We detected the inflammatory factor expressions using enzyme-linked immunosorbent assay (ELISA) kits, and we detected the tight junction proteins using Western blotting. We analyzed the intestinal microbiota alterations and short-chain fatty acids (SCFAs) using 16S rRNA sequencing and targeted metabolomics. According to the results, VK2 restored the colon lengths, improved the colonic histopathology, reduced the levels of proinflammatory cytokines (such as IL-1β, TNF-α, and IL-6), and boosted the level of the immunosuppressive cytokine IL-10 in the colon tissues of the colitis mice. Moreover, VK2 promoted the expression of mucin and tight junction proteins (such as occludin and zonula occludens-1) in order to preserve the intestinal mucosal barrier function and prevent UC in mice. Additionally, after the VK2 intervention, the SCFAs and SCFA-producing genera, such as Eubacterium_ruminantium_group and Faecalibaculum, were elevated in the colon. In conclusion, VK2 alleviated the DSS-induced colitis in the mice, perhaps by boosting the dominant intestinal microflora, such as Faecalibaculum, by reducing intestinal microflora dysbiosis, and by modulating the expression of SCFAs, inflammatory factors, and intestinal barrier proteins.
Collapse
|
17
|
The Intake of Antioxidant Capacity of Children Depends on Their Health Status. Nutrients 2022; 14:nu14193965. [PMID: 36235618 PMCID: PMC9571961 DOI: 10.3390/nu14193965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
The gastrointestinal digestion of food and further gut microbial activity render a myriad of different molecules that could be responsible for the biological activities that are classically assigned to their parent compounds. This has been previously shown for some phytochemicals whose antioxidant capacity was either increased or decreased after being metabolized by gut microbes. Whether a global antioxidant capacity that is extracted from food is determined by the gut microbial community structure is still not well described. In the present study, we in vitro digested and fermented 48 different foods that were submitted to different culinary treatments using the stools of lean children, obese children, celiac children and children with an allergy to cow’s milk proteins. Their antioxidant capacities were assessed with the DPPH and FRAP assays, and the percentage that each food contributed to their daily antioxidant intake as well as their antioxidant capacity by portion size was inferred. Overall, cereals, fruits and vegetables displayed a higher contribution to their daily antioxidant intake, while tubers, fish and meat exhibited a higher antioxidant capacity by serving size. The food that was fermented in the lean children’s and those children that were allergic to cow’s milk protein’s fecal material, showed a higher antioxidant capacity, which could imply that there is a larger role of the gut microbiota in this area.
Collapse
|
18
|
Bifidobacterium breve Alleviates DSS-Induced Colitis in Mice by Maintaining the Mucosal and Epithelial Barriers and Modulating Gut Microbes. Nutrients 2022; 14:nu14183671. [PMID: 36145047 PMCID: PMC9503522 DOI: 10.3390/nu14183671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
This study was designed to explore the different intestinal barrier repair mechanisms of Bifidobacterium breve (B. breve) H4-2 and H9-3 with different exopolysaccharide (EPS) production in mice with colitis. The lipopolysaccharide (LPS)-induced IEC-6 cell inflammation model and dextran sulphate sodium (DSS)-induced mice colitis model were used. Histopathological changes, epithelial barrier integrity, short-chain fatty acid (SCFA) content, cytokine levels, NF-κB expression level, and intestinal flora were analyzed to evaluate the role of B. breve in alleviating colitis. Cell experiments indicated that both B. breve strains could regulate cytokine levels. In vivo experiments confirmed that oral administration of B. breve H4-2 and B. breve H9-3 significantly increased the expression of mucin, occludin, claudin-1, ZO-1, decreased the levels of IL-6, TNF-α, IL-1β and increased IL-10. Both strains of B. breve also inhibited the expression of the NF-κB signaling pathway. Moreover, B. breve H4-2 and H9-3 intervention significantly increased the levels of SCFAs, reduced the abundance of Proteobacteria and Bacteroidea, and increased the abundance of Muribaculaceae. These results demonstrate that EPS-producing B. breve strains H4-2 and H9-3 can regulate the physical, immune, and microbial barrier to repair the intestinal damage caused by DSS in mice. Of the two strains, H4-2 had a higher EPS output and was more effective at repair than H9-3. These results will provide insights useful for clinical applications and the development of probiotic products for the treatment of colitis.
Collapse
|
19
|
Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M, Younesi S, Asemi Z, Yousefi B. From inflammatory bowel disease to colorectal cancer: what's the role of miRNAs? Cancer Cell Int 2022; 22:146. [PMID: 35410210 PMCID: PMC8996392 DOI: 10.1186/s12935-022-02557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disease with relapse and remission periods. Ulcerative colitis and Crohn's disease are two major forms of the disease. IBD imposes a lot of sufferings on the patient and has many consequences; however, the most important is the increased risk of colorectal cancer, especially in patients with Ulcerative colitis. This risk is increased with increasing the duration of disease, thus preventing the progression of IBD to cancer is very important. Therefore, it is necessary to know the details of events contributed to the progression of IBD to cancer. In recent years, the importance of miRNAs as small molecules with 20-22 nucleotides has been recognized in pathophysiology of many diseases, in which IBD and colorectal cancer have not been excluded. As a result, the effectiveness of these small molecules as therapeutic target is hopefully confirmed. This paper has reviewed the related studies and findings about the role of miRNAs in the course of events that promote the progression of IBD to colorectal carcinoma, as well as a review about the effectiveness of some of these miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Forough Alemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidina
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H. In-depth analysis of the mechanisms of aloe polysaccharides on mitigating subacute colitis in mice via microbiota informatics. Carbohydr Polym 2021; 265:118041. [PMID: 33966825 DOI: 10.1016/j.carbpol.2021.118041] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022]
Abstract
Aloe polysaccharides (APs) are indigestible bioactive polysaccharides, while can be fermented by colonic microbiota. Although plant polysaccharides can alleviate subacute ulcerative colitis (SUC), the mechanisms APs regulated SUC via colonic microbiota have not been fully explored. Hence, to elucidate the complex interactions between the novel APs, colonic microbiota, SCFAs, and inflammation, the SUC mouse model and in-depth analysis were performed, including multiple bioinformatics analysis and structural equation modeling (SEM). After APs intervention, SCFAs and SCFAs-producing genus, including Akkermansia and Blautia, were increased in colon, and the colonic inflammation and barrier dysfunction were alleviated significantly in SUC mice. Spearman analysis found positive correlations between microbiota and SCFAs. PICRUSt2 and KEGG analysis revealed 6-pyruvoyltetra hydropterin synthase in folate biosynthesis metabolism pathway was activated, while phosphotransferase system was inhibited. SEM results further proved APs was beneficial to gut micro-ecological balance in mice via SCFAs metabolism and anti-inflammatory functions. Together, APs could be exploited to alleviate SUC as dietary therapeutics.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Bin Hu
- School of Biotechnology, Jiangnan University, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
21
|
Liu C, Hua H, Zhu H, Cheng Y, Guo Y, Yao W, Qian H. Aloe polysaccharides ameliorate acute colitis in mice via Nrf2/HO-1 signaling pathway and short-chain fatty acids metabolism. Int J Biol Macromol 2021; 185:804-812. [PMID: 34229016 DOI: 10.1016/j.ijbiomac.2021.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 02/09/2023]
Abstract
Aloe polysaccharides (APs) are acetyl polysaccharides. It has been reported APs could protect mice from ulcerative colitis (UC), but the complex interactions between APs and the intestinal barrier were unclear. Here, we investigated the relationship between APs and UC, and determined the synergistic effects of Nrf2/HO-1 signaling pathway and short-chain fatty acids (SCFAs) metabolism on protecting intestinal barrier in acute UC mice. Results showed APs could scavenge free radicals in vitro. In vivo, APs had the antioxidant and anti-inflammatory effect both in serum and colon. Besides, the pathological results showed APs could alleviate colonic lesions. Furthermore, our study indicated treatment with APs effectively increased SCFAs production. The inhibition of acute UC in mice was correlated with the APs-mediated effects on improving the expression of ZO-1, occludin, Nrf2, HO-I, and NQO1. Thus, APs effectively promoted the intestinal barrier via Nrf2/HO-1 signaling pathway and SCFAs metabolism, effectively ameliorating acute colitis in mice.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Hanyi Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - HongKang Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
22
|
Wang RX, Zhou M, Ma HL, Qiao YB, Li QS. The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem 2021; 16:1576-1592. [PMID: 33528076 DOI: 10.1002/cmdc.202000996] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ren-Xiao Wang
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Hui-Lai Ma
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| |
Collapse
|
23
|
Kondubhatla K, Kaushal A, Daoud A, Shabbir H, Mostafa JA. Pro-Atherogenic Inflammatory Mediators in Inflammatory Bowel Disease Patients Increase the Risk of Thrombosis, Coronary Artery Disease, and Myocardial Infarction: A Scientific Dilemma. Cureus 2020; 12:e10544. [PMID: 33062549 PMCID: PMC7549854 DOI: 10.7759/cureus.10544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising ulcerative colitis and Crohn’s disease, is characterized by widespread inflammation of the gastrointestinal tract with systemic manifestations. Inflammation is one of the driving forces for the pathogenesis of atherosclerosis and its dreaded complications like myocardial infarction (MI). Yet, the association between IBD and myocardial infarction has not been thoroughly established. Myocardial infarction in IBD patients was predominantly seen in young women during the active disease process. At the same time, elevated levels of C-reactive protein and other pro-inflammatory markers were observed in both IBD and atherosclerosis. Increasing evidence suggests inflammation inhibits fibrinolysis, expresses procoagulants, and suppresses anticoagulants promoting thrombosis formation. Moreover, the alteration of gut microbiota impacts the pathogenesis of inflammation and predisposes one to ischemic heart disease. Accordingly, all IBD patients should be screened and counseled on lifestyle modifications for the traditional risk factors of atherosclerosis. Future researchers should consider conducting more clinical trials on anti-inflammatory medication targeting atherosclerosis and therapeutics, while targeting the gut microbiota to reverse the inflammatory atherosclerotic process.
Collapse
Affiliation(s)
- Kaushik Kondubhatla
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Ayush Kaushal
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Ali Daoud
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Hassan Shabbir
- Hematology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
24
|
Porter AC, Aubrecht J, Birch C, Braun J, Cuff C, Dasgupta S, Gale JD, Hinton R, Hoffmann SC, Honig G, Linggi B, Schito M, Casteele NV, Sauer JM. Biomarkers of Crohn's Disease to Support the Development of New Therapeutic Interventions. Inflamm Bowel Dis 2020; 26:1498-1508. [PMID: 32840322 PMCID: PMC7500523 DOI: 10.1093/ibd/izaa215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Currently, 2 coprimary end points are used by health authorities to determine the effectiveness of therapeutic interventions in patients with Crohn's disease (CD): symptomatic remission (patient-reported outcome assessment) and endoscopic remission (ileocolonoscopy). However, there is lack of accepted biomarkers to facilitate regulatory decision-making in the development of novel therapeutics for the treatment of CD. METHODS With support from the Helmsley Charitable Trust, Critical Path Institute formed the Crohn's Disease Biomarkers preconsortium (CDBpC) with members from the pharmaceutical industry, academia, and nonprofit organizations to evaluate the CD biomarker landscape. Biomarkers were evaluated based on biological relevance, availability of biomarker assays, and clinical validation data. RESULTS The CDBpC identified the most critical need as pharmacodynamic/response biomarkers to monitor disease activity in response to therapeutic intervention. Fecal calprotectin (FC) and serum C-reactive protein (CRP) were identified as biomarkers ready for the regulatory qualification process. A number of exploratory biomarkers and potential panels of these biomarkers was also identified for additional development. Given the different factors involved in CD and disease progression, a combination of biomarkers, including inflammatory, tissue injury, genetic, and microbiome-associated biomarkers, will likely have the most utility. CONCLUSIONS The primary focus of the Inflammatory Bowel Disease Regulatory Science Consortium will be development of exploratory biomarkers and the qualification of FC and CRP for IBD. The Inflammatory Bowel Disease Regulatory Science Consortium, focused on tools to support IBD drug development, will operate in the precompetitive space to share data, biological samples for biomarker testing, and assay information for novel biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeremy D Gale
- Pfizer Worldwide, Research, Development and Medical, Cambridge, MA, USA
| | - Robert Hinton
- The David R Clare and Margaret C Clare Foundation, Morristown, NJ, USA
| | | | | | | | | | - Niels Vande Casteele
- Department of Medicine, University of California San Diego, CA, USA,Robarts Clinical Trials Inc., London, ON, Canada
| | - John-Michael Sauer
- Critical Path Institute, AZ, USA,Address correspondence to: John-Michael Sauer, Critical Path Institute, 1730 E. River Rd Suite 200, Tucson, Arizona 85718, USA. E-mail:
| |
Collapse
|
25
|
Pang J, Ding J, Zhang L, Zhang Y, Yang Y, Bai X, Liu X, Jin X, Guo H, Yang Y, Liu M. Effect of recombinant serine protease from adult stage of Trichinella spiralis on TNBS-induced experimental colitis in mice. Int Immunopharmacol 2020; 86:106699. [PMID: 32570037 DOI: 10.1016/j.intimp.2020.106699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is a chronic autoimmune disease. At present, worms and their products has been shown to have protective effects on immune-mediated diseases. Therefore, we aimed to investigate the effect of the recombination Trichinella spiralis (T. spiralis, Ts) adult serine protease-like protein rTs-ADSp-7 on a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD mouse model. Colitis was induced by intrarectal administration of a TNBS solution. The disease activity index (DAI), which included weight loss, diarrhoea, and bloody stool, was measured. Colon segments were stained with haematoxylin and eosin (H.E.) for histopathological score. Cytokine release in the serum was analysed by meso scale discovery (MSD). Cytokine release in the colon was detected by ELISA. Splenocytes were separated, and the cytokine profiles of Th1 (IFN-γ), Th2 (IL-4), Th17 (IL-17A) and Treg cells were analysed by flow cytometry. Our result showed that rTs-ADSp-7 reduced the clinical disease activity of TNBS-induced colitis in mice. In addition, we found that rTs-ADSp-7 reduced the production of Th1- and Th17-related cytokines while upregulating the expression of Th2- and Treg-related cytokines in TNBS-induced colitis mice. rTs-ADSp-7 also increased the population of Th2 and Treg cells in TNBS-induced colitis mice. rTs-ADSp-7 alleviated the severity of TNBS-induced colitis while balancing the CD4+ T cell immune response. rTs-ADSp-7 has therapeutic potential for colitis treatment and can be used as a helminth-derived protein therapy for CD or other Th1 immunity-mediated diseases.
Collapse
Affiliation(s)
- Jianda Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lixiao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuanyuan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, 6 Xiyuan Road, Puer, Yunnan, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Heng Guo
- Beijing Hi-Tech Institute, Beijing 100094, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, China.
| |
Collapse
|
26
|
Wessels I, Rink L. Micronutrients in autoimmune diseases: possible therapeutic benefits of zinc and vitamin D. J Nutr Biochem 2019; 77:108240. [PMID: 31841960 DOI: 10.1016/j.jnutbio.2019.108240] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
A functional immune system is essential for healthy life. This is achieved by the coordinate activation and interaction of different immune cells. One should be aware that activation of the immune response is as important as its deactivation when the pathogens are cleared, as otherwise host tissue can be damaged up to life-threatening levels. Autoimmune diseases (AID) represent a phenomenon of immune cells attacking host cells and tissue. Five to eight percent of the world's population are currently affected by 80-100 AID. In recent years, the incidence has been constantly increasing, reaching alarmingly high numbers particularly for type 1 diabetes mellitus, Crohn's disease, rheumatoid arthritis, Sjogren's syndrome and multiple sclerosis. This indicates a higher societal burden of AID for the future. This article provides an overview of general concepts of triggers and underlying mechanisms leading to self-destruction. Lately, several original concepts of disease etiology were revised, and there is a variety of hypotheses on triggers, underlying mechanisms and preventive actions. This article concentrates on the importance of nutrition, especially zinc and vitamin D, for balancing the immune function. Homespun nutritional remedies seem to reenter today's therapeutic strategies. Current treatment approaches are largely symptomatic or suppress the immune system. However, recent studies reveal significant benefits of nutrition-related therapeutic approaches including prevention and treatment of established disease, which offer a cost-efficient and trigger-unspecific alternative addressing balancing rather than suppression of the immune system. Zinc and vitamin D are currently the best studied and most promising candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
27
|
Li X, Lan X, Zhao Y, Wang G, Shi G, Li H, Hu Y, Xu X, Zhang B, Ye K, Gu X, Du C, Wang H. SDF-1/CXCR4 axis enhances the immunomodulation of human endometrial regenerative cells in alleviating experimental colitis. Stem Cell Res Ther 2019; 10:204. [PMID: 31286993 PMCID: PMC6615145 DOI: 10.1186/s13287-019-1298-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/25/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022] Open
Abstract
Endometrial regenerative cells (ERCs) are a new type of mesenchymal-like stromal cells, and their therapeutic potential has been tested in a variety of disease models. SDF-1/CXCR4 axis plays a chemotaxis role in stem/stromal cell migration. The aim of the present study was to investigate the role of SDF-1/CXCR4 axis in the immunomodulation of ERCs on the experimental colitis. The immunomodulation of ERCs in the presence or absence of pretreatment of SDF-1 or AMD3100 was examined in both in vitro cell culture system and dextran sulphate sodium-induced colitis in mice. The results showed that SDF-1 increased the expression of CXCR4 on the surface of ERCs. As compared with normal ERCs, the SDF-1-treated, CXCR4 high-expressing ERCs more significantly suppressed dendritic cell population as well as stimulated both type 2 macrophages and regulatory T cells in vitro and in vivo. Meanwhile, SDF-1-pretreated ERCs increased the generation of anti-inflammatory factors (e.g., IL-4, IL-10) and decreased the pro-inflammatory factors (e.g., IL-6, TNF-α). In addition, SDF-1-pretreated CM-Dil-labeled ERCs were found to engraft to injured colon. Our results may suggest that an SDF-1-induced high level of CXCR4 expression enhances the immunomodulation of ERCs in alleviating experimental colitis in mice.
Collapse
Affiliation(s)
- Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xu Lan
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Grace Wang
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ganggang Shi
- Department of Colorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hongyue Li
- Tianjin General Surgery Institute, Tianjin, China
| | - Yonghao Hu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xiaoxi Xu
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Kui Ye
- Department of Vascular Surgery, Tianjin Fourth Central Hospital, Tianjin, China
| | - Xiangying Gu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Caigan Du
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.,Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
28
|
Hanić M, Trbojević-Akmačić I, Lauc G. Inflammatory bowel disease - glycomics perspective. Biochim Biophys Acta Gen Subj 2019; 1863:1595-1601. [PMID: 31276732 DOI: 10.1016/j.bbagen.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) pathogenesis is still not well understood. It is considered to result from genetic susceptibility, environment, microbiota composition and aberrant immune response. Crohn's disease (CD) and ulcerative colitis (UC), forms of IBD, are sometimes indistinguishable by typical laboratory and clinical characteristics making timely diagnosis and subsequent therapy hit-and-miss. Glycosylation has shown a promising biomarker potential for early IBD diagnosis and effective response to treatment prediction. SCOPE OF REVIEW This mini-review briefly covers present knowledge of IBD pathophysiology, with a focus on recent research on the role of glycosylation in IBD pathogenesis and disease progression. MAJOR CONCLUSIONS Aberrant glycosylation significantly changes functionality of key proteins in intestinal niche and is involved in IBD etiology. GENERAL SIGNIFICANCE Elucidating mechanisms of IBD development is one of critical goals in managing this disease. Glycans are important for fine-tuning of intestinal processes that ensure homeostatic conditions which, if disrupted, lead to IBD.
Collapse
Affiliation(s)
- Maja Hanić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
| |
Collapse
|
29
|
|
30
|
Effect of Quercetin Monoglycosides on Oxidative Stress and Gut Microbiota Diversity in Mice with Dextran Sodium Sulphate-Induced Colitis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8343052. [PMID: 30539022 PMCID: PMC6260418 DOI: 10.1155/2018/8343052] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is linked to an intricate association of environmental, microbial, and host-related factors. This study examined the potential effects of dietary addition of two preparations from onion, one comprising quercetin aglycone alone (Q: 0.15% polyphenols, quercetin aglycone:quercetin monoglycosides, 98:2) and another comprising quercetin aglycone with monoglycosides (Q+MQ: 0.15% total polyphenols, quercetin aglycone:quercetin monoglycosides, 69:31), on dextran sodium sulphate- (DSS-) induced colitis in mice. The results revealed a significant decrease in the body weight gain of the mice with DSS-induced colitis, which was counteracted by the dietary Q or Q+MQ supplementation. Meanwhile, the oxidative stress indicated by myeloperoxidase (MPO), reduced glutathione (GSH), malondialdehyde (MDA), and serum nitrate (NO) concentrations was higher in mice with DSS-induced colitis than in the control group mice, but dietary Q or Q+MQ supplementation counteracted this trend. The colitis mice demonstrated reduced Chao1, angiotensin-converting enzyme (ACE), and Shannon indices and an increased Simpson index, but the colitis mice receiving dietary Q or Q+MQ exhibited higher Chao1, ACE, and Shannon indices and a reduced Simpson index. In conclusion, this research showed that even at a low dose, dietary Q or Q+MQ supplementation counteracts DSS-induced colitis in mice, indicating that Q or Q+MQ may be used as an adjuvant therapy for IBD patients.
Collapse
|
31
|
Pham VT, Seifert N, Richard N, Raederstorff D, Steinert RE, Prudence K, Mohajeri MH. The effects of fermentation products of prebiotic fibres on gut barrier and immune functions in vitro. PeerJ 2018; 6:e5288. [PMID: 30128177 PMCID: PMC6089210 DOI: 10.7717/peerj.5288] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
The beneficial effects of prebiotic fibres on human health have been related to their capacities to alter the gut microbiota and modify the growth of beneficial microorganisms. It is long appreciated that bacterial metabolites affect the host’s physiology. The inner lining of the intestinal tract is the first level of interaction between the host and bacteria and their metabolites. Therefore, we set out to test the effects of five common dietary fibres (oat β-glucan 28%; oat β-glucan 94%; dried chicory root containing inulin 75%; xylo-oligosaccharide; inulin 90%) and maltodextrin, after fermentation by human gut microbiota in vitro, on measures of gut barrier integrity using a Caco-2/HT29-MTX co-culture as well as mucus production and immune parameters using HT29-MTX and HT29 cell models, respectively. Our data show that all fibres, fermentation products increased the tightness of the gut barrier with oat β-glucan 28% having the largest effect. Fermentation supernatants were tested also in models of the compromised gut barrier (leaky gut). After the addition of ethanol as basolateral stressor, only fermentation supernatant of oat β-glucan 28%, oat β-glucan 94% and maltodextrin improved the gut barrier integrity, while oat β-glucan 28% and dried chicory root containing inulin 75% significantly improved the gut barrier integrity after addition of rhamnolipids as apical stressor. Using the Luminex Technology, we demonstrated an important role of oat β-glucan fermentation products in modulating cytokine and chemokine productions. Furthermore, treating the goblet cells with effluent from xylo-oligosaccharide fermentation significantly increased mucus production. In summary, our data emphasize the potential positive effects of fermentation supernatant of dietary fibres on gut-related physiological outcomes and show that prebiotic fibres may have promising potential to induce specific gut health benefits.
Collapse
Affiliation(s)
- Van T Pham
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Nicole Seifert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Nathalie Richard
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Daniel Raederstorff
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Robert E Steinert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Kevin Prudence
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - M Hasan Mohajeri
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| |
Collapse
|
32
|
Farrerol Ameliorates TNBS-Induced Colonic Inflammation by Inhibiting ERK1/2, JNK1/2, and NF-κB Signaling Pathway. Int J Mol Sci 2018; 19:ijms19072037. [PMID: 30011811 PMCID: PMC6073308 DOI: 10.3390/ijms19072037] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022] Open
Abstract
Farrerol, a type of 2, 3-dihydro-flavonoid, is obtained from Rhododendron. Previous studies have shown that Farrerol performs multiple biological activities, such as anti-inflammatory, antibacterial, and antioxidant activity. In this study, we aim to investigate the effect of Farrerol on colonic inflammation and explore its potential mechanisms. We found that the effect of Farrerol was evaluated via the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model in mice and found that Farrerol has a protective effect on TNBS-induced colitis. Farrerol administration significantly improved the weight change, clinical scores, colon length, and intestinal epithelium barrier damage and markedly decreased the inflammatory cytokines production in TNBS-induced mice. The protective effect of Farrerol was also observed in LPS-induced RAW264.7 cells. We found that Farrerol observably reduced the production of inflammatory mediators including IL-1β, IL-6, TNF-α, COX-2, and iNOS in LPS-induced RAW264.7 cells via suppressing AKT, ERK1/2, JNK1/2, and NF-κB p65 phosphorylation. In conclusion, the study found that Farrerol has a beneficial effect on TNBS-induced colitis and might be a natural therapeutic agent for IBD treatment.
Collapse
|