1
|
Radfar F, Shahbazi M, Tahmasebi Boroujeni S, Arab Ameri E, Farahmandfar M. Moderate aerobic training enhances the effectiveness of insulin therapy through hypothalamic IGF1 signaling in rat model of Alzheimer's disease. Sci Rep 2024; 14:15996. [PMID: 38987609 PMCID: PMC11237031 DOI: 10.1038/s41598-024-66637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that is connected with a decline in a person's memory as well as their cognitive ability. One of the key topics of AD research has been the exploration of metabolic causes. We investigated the effects of treadmill exercise and intranasal insulin on learning and memory impairment and the expression of IGF1, BDNF, and GLUT4 in hypothalamus. The animals were put into 9 groups at random. In this study, we examined the impact of insulin on spatial memory in male Wistar rats and analyzed the effects of a 4-week pretreatment of moderate treadmill exercise and insulin on the mechanisms of improved hypothalamic glucose metabolism through changes in gene and protein expression of IGF1, BDNF, and GLUT4. We discovered that rat given Aβ25-35 had impaired spatial learning and memory, which was accompanied by higher levels of Aβ plaque burden in the hippocampus and lower levels of IGF1, BDNF, and GLUT4 mRNA and protein expression in the hypothalamus. Additionally, the administration of exercise training and intranasal insulin results in the enhancement of spatial learning and memory impairments, the reduction of plaque burden in the hippocampus, and the enhancement of the expression of IGF1, BDNF, and GLUT4 in the hypothalamus of rats that were treated with Aβ25-35. Our results show that the improvement of learning and spatial memory due to the improvement of metabolism and upregulation of the IGF1, BDNF, and GLUT4 pathways can be affected by pretreatment exercise and intranasal insulin.
Collapse
Affiliation(s)
- Forough Radfar
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran
| | - Mehdi Shahbazi
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran.
| | - Shahzad Tahmasebi Boroujeni
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran
| | - Elahe Arab Ameri
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran
| | - Maryam Farahmandfar
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 14177-55469, Iran.
| |
Collapse
|
2
|
Athanasiou N, Bogdanis GC, Mastorakos G. Endocrine responses of the stress system to different types of exercise. Rev Endocr Metab Disord 2023; 24:251-266. [PMID: 36242699 PMCID: PMC10023776 DOI: 10.1007/s11154-022-09758-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 10/17/2022]
Abstract
Physical activity is an important part of human lifestyle although a large percentage of the population remains sedentary. Exercise represents a stress paradigm in which many regulatory endocrine systems are involved to achieve homeostasis. These endocrine adaptive responses may be either beneficial or harmful in case they exceed a certain threshold. The aim of this review is to examine the adaptive endocrine responses of hypothalamic-pituitary-adrenal axis (HPA), catecholamines, cytokines, growth hormone (GH) and prolactin (PRL) to a single bout or regular exercise of three distinct types of exercise, namely endurance, high-intensity interval (HIIE) and resistance exercise. In summary, a single bout of endurance exercise induces cortisol increase, while regular endurance exercise-induced activation of the HPA axis results to relatively increased basal cortisolemia; single bout or regular exercise induce similar GH peak responses; regular HIIE training lowers basal cortisol concentrations, while catecholamine response is reduced in regular HIIE compared with a single bout of HIIE. HPA axis response to resistance exercise depends on the intensity and volume of the exercise. A single bout of resistance exercise is characterized by mild HPA axis stimulation while regular resistance training in elderly results in attenuated inflammatory response and decreased resting cytokine concentrations. In conclusion, it is important to consider which type of exercise and what threshold is suitable for different target groups of exercising people. This approach intends to suggest types of exercise appropriate for different target groups in health and disease and subsequently to introduce them as medical prescription models.
Collapse
Affiliation(s)
- Nikolaos Athanasiou
- grid.5216.00000 0001 2155 0800Unit of Endocrinology, Diabetes mellitus and Metabolism, School of medicine, ARETAIEION hospital, National and Kapodistrian University of Athens, Neofytou Vamva str 10674, Athens, Greece
- grid.414655.70000 0004 4670 4329Dermatology Department, Evangelismos General hospital, Athens, Greece Ipsilantou 45-47, 10676
| | - Gregory C. Bogdanis
- grid.5216.00000 0001 2155 0800School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Dafne, Greece
| | - George Mastorakos
- grid.5216.00000 0001 2155 0800Unit of Endocrinology, Diabetes mellitus and Metabolism, School of medicine, ARETAIEION hospital, National and Kapodistrian University of Athens, Neofytou Vamva str 10674, Athens, Greece
| |
Collapse
|
3
|
Rauskolb S, Andreska T, Fries S, von Collenberg CR, Blum R, Monoranu CM, Villmann C, Sendtner M. Insulin-like growth factor 5 associates with human Aß plaques and promotes cognitive impairment. Acta Neuropathol Commun 2022; 10:68. [PMID: 35513854 PMCID: PMC9074221 DOI: 10.1186/s40478-022-01352-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Risk factors such as dysregulation of Insulin-like growth factor (IGF) signaling have been linked to Alzheimer's disease. Here we show that Insulin-like Growth Factor Binding Protein 5 (Igfbp5), an inhibitory binding protein for insulin-like growth factor 1 (Igf-1) accumulates in hippocampal pyramidal neurons and in amyloid plaques in brains of Alzheimer patients. We investigated the pathogenic relevance of this finding with transgenic mice overexpressing Igfbp5 in pyramidal neurons of the brain. Neuronal overexpression of Igfbp5 prevents the training-induced increase of hippocampal and cortical Bdnf expression and reduces the effects of exercise on memory retention, but not on learning acquisition. Hence, elevated IGFBP5 expression could be responsible for some of the early cognitive deficits that occur during the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Stefanie Rauskolb
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Sophie Fries
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Cora Ruedt von Collenberg
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany.
| |
Collapse
|
4
|
Gradari S, Herrera A, Tezanos P, Fontán-Lozano Á, Pons S, Trejo JL. The Role of Smad2 in Adult Neuroplasticity as Seen through Hippocampal-Dependent Spatial Learning/Memory and Neurogenesis. J Neurosci 2021; 41:6836-6849. [PMID: 34210778 PMCID: PMC8360684 DOI: 10.1523/jneurosci.2619-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
Adult neural plasticity is an important and intriguing phenomenon in the brain, and adult hippocampal neurogenesis is directly involved in modulating neural plasticity by mechanisms that are only partially understood. We have performed gain-of-function and loss-of-function experiments to study Smad2, a transcription factor selected from genes that are demethylated after exercise through the analysis of an array of physical activity-induced factors, and their corresponding gene expression, and an efficient inducer of plasticity. In these studies, changes in cell number and morphology were analyzed in the hippocampal dentate gyrus (cell proliferation and survival, including regional distribution, and structural maturation/differentiation, including arborization, dendritic spines, and neurotransmitter-specific vesicles) of sedentary male mice, after evaluation in a battery of behavioral tests. As a result, we reveal a role for Smad2 in the balance of proliferation versus maturation of differentiating immature cells (Smad2 silencing increases both the proliferation and survival of cycling cells in the dentate granule cell layer), and in the plasticity of both newborn and mature neurons in mice (by decreasing dendritic arborization and dendritic spine number). Moreover, Smad2 silencing specifically compromises spatial learning in mice (through impairments of spatial tasks acquisition both in long-term learning and working memory). These data suggest that Smad2 participates in adult neural plasticity by influencing the proliferation and maturation of dentate gyrus neurons.SIGNIFICANCE STATEMENT Smad2 is one of the main components of the transforming growth factor-β (TGF-β) pathway. The commitment of cell fate in the nervous system is tightly coordinated by SMAD2 signaling, as are further differentiation steps (e.g., dendrite and axon growth, myelination, and synapse formation). However, there are no studies that have directly evaluated the role of Smad2 gene in hippocampus of adult animals. Modulation of these parameters in the adult hippocampus can affect hippocampal-dependent behaviors, which may shed light on the mechanisms that regulate adult neurogenesis and behavior. We demonstrate here a role for Smad2 in the maturation of differentiating immature cells and in the plasticity of mature neurons. Moreover, Smad2 silencing specifically compromises the spatial learning abilities of adult male mice.
Collapse
Affiliation(s)
- Simona Gradari
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Antonio Herrera
- Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - Patricia Tezanos
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Ángela Fontán-Lozano
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
- Department of Physiology, School of Biology, University of Sevilla, 41004 Sevilla, Spain
| | - Sebastián Pons
- Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - José Luis Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| |
Collapse
|
5
|
Abstract
The natural aging process is carried out by a progressive loss of homeostasis leading to a functional decline in cells and tissues. The accumulation of these changes stem from a multifactorial process on which both external (environmental and social) and internal (genetic and biological) risk factors contribute to the development of adult chronic diseases, including type 2 diabetes mellitus (T2D). Strategies that can slow cellular aging include changes in diet, lifestyle and drugs that modulate intracellular signaling. Exercise is a promising lifestyle intervention that has shown antiaging effects by extending lifespan and healthspan through decreasing the nine hallmarks of aging and age-associated inflammation. Herein, we review the effects of exercise to attenuate aging from a clinical to a cellular level, listing its effects upon various tissues and systems as well as its capacity to reverse many of the hallmarks of aging. Additionally, we suggest AMPK as a central regulator of the cellular effects of exercise due to its integrative effects in different tissues. These concepts are especially relevant in the setting of T2D, where cellular aging is accelerated and exercise can counteract these effects through the reviewed antiaging mechanisms.
Collapse
|
6
|
Al Shoyaib A, Alamri FF, Syeara N, Jayaraman S, Karamyan ST, Arumugam TV, Karamyan VT. The Effect of Histone Deacetylase Inhibitors Panobinostat or Entinostat on Motor Recovery in Mice After Ischemic Stroke. Neuromolecular Med 2021; 23:471-484. [PMID: 33590407 DOI: 10.1007/s12017-021-08647-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Using rigorous and clinically relevant experimental design and analysis standards, in this study, we investigated the potential of histone deacetylase (HDAC) inhibitors panobinostat and entinostat to enhance recovery of motor function after photothrombotic stroke in male mice. Panobinostat, a pan-HDAC inhibitor, is a FDA-approved drug for certain cancers, whereas entinostat is a class-I HDAC inhibitor in late stage of clinical investigation. The drugs were administered every other day (panobinostat-3 or 10 mg/kg; entinostat-1.7 or 5 mg/kg) starting from day 5 to 15 after stroke. To imitate the current standard of care in stroke survivors, i.e., physical rehabilitation, the animals run on wheels (2 h daily) from post-stroke day 9 to 41. The predetermined primary end point was motor recovery measured in two tasks of spontaneous motor behaviors in grid-walking and cylinder tests. In addition, we evaluated the running distance and speed throughout the study, and the number of parvalbumin-positive neurons in medial agranular cortex (AGm) and infarct volumes at the end of the study. Both sensorimotor tests revealed that combination of physical exercise with either drug did not substantially affect motor recovery in mice after stroke. This was accompanied by negligible changes of parvalbumin-positive neurons recorded in AGm and comparable infarct volumes among experimental groups, while dose-dependent increase in acetylated histone 3 was observed in peri-infarct cortex of drug-treated animals. Our observations suggest that add-on panobinostat or entinostat therapy coupled with limited physical rehabilitation is unlikely to offer therapeutic modality for stroke survivors who have motor dysfunction.
Collapse
Affiliation(s)
- Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA
| | - Faisal F Alamri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA.,College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Nausheen Syeara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA
| | - Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA
| | - Serob T Karamyan
- Department of Pharmacology, Faculty of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, USA.
| |
Collapse
|
7
|
Sampedro-Piquero P, Moreno-Fernández R. Building Resilience with Aerobic Exercise: Role of FKBP5. Curr Neuropharmacol 2021; 19:1156-1160. [PMID: 33829973 PMCID: PMC8719288 DOI: 10.2174/1570159x19666210408124937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022] Open
Abstract
Both preclinical and clinical studies have pointed that aerobic exercise, at moderate doses, is beneficial at all stages of life by promoting a range of physiological and neuroplastic adaptations that reduce the anxiety response. Previous research about this topic has repeatedly described how the regular practice of aerobic exercise induces a positive regulation of neuroplasticity and neurogenesis-related genes, as well as a better control of the HPA axis function. However, limited progress has been carried out in the integration of neuroendocrine and neuroplastic changes, as well as in introducing new factors to understand how aerobic exercise can promote resilience to future stressful conditions. Resilience is defined as the ability to adapt to stress while maintaining healthy mental and physical performance. Consistent findings point to an important role of FKBP5, the gene expressing FK506-binding protein 51 (FKBP51), as a strong inhibitor of the glucocorticoid receptor (GR), and thus, an important regulator of the stress response. We propose that aerobic exercise could contribute to modulate FKBP5 activity acting as a potential therapeutic approach for mood disorders. In this sense, aerobic exercise is well known for increasing the growth factor BDNF, which by downstream pathways could affect the FKBP5 activity. Therefore, our manuscript has the aim of analyzing how FKBP5 could constitute a promising target of aerobic exercise promoting resilient-related phenotypes.
Collapse
Affiliation(s)
- P. Sampedro-Piquero
- Address correspondence to these authors at the Department of Psychology, Faculty of Psychology, University of Oviedo. Plaza Feijoo s/n 33003, Oviedo, Spain; E-mails: ;
| | - R.D. Moreno-Fernández
- Address correspondence to these authors at the Department of Psychology, Faculty of Psychology, University of Oviedo. Plaza Feijoo s/n 33003, Oviedo, Spain; E-mails: ;
| |
Collapse
|
8
|
Wade NE, Kaiver CM, Wallace AL, Hatcher KF, Swartz AM, Lisdahl KM. Objective aerobic fitness level and neuropsychological functioning in healthy adolescents and emerging adults: Unique sex effects. PSYCHOLOGY OF SPORT AND EXERCISE 2020; 51:101794. [PMID: 35495562 PMCID: PMC9053538 DOI: 10.1016/j.psychsport.2020.101794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Objective Research suggests positive relationships between aerobic fitness and cognition in older adults; however, limited research has adequately investigated the relationship between objectively measured aerobic fitness and broad cognitive functioning in healthy adolescents and young adults without psychiatric or physical health disorders. Further, studies to date have disproportionately examined males and failed to examine sex differences. Here we examine the relationship between aerobic fitness and neuropsychological functioning in physically healthy youth and whether sex moderates these findings. Design Sixty-four healthy emerging adults (16-25 years-old; 32 female) underwent measurement of objective aerobic fitness (VO2 max) and neuropsychological assessment. Exclusion criteria included: left-handedness, prenatal medical issues or alcohol/illicit drug exposure, Axis-I psychiatric disorders, major medical disorders including metabolic conditions such as diabetes, hypertension, hyperlipidemia, major neurologic disorders, LOS greater than 2 min, intellectual disability or learning disability, regular substance use (e.g., greater than biweekly use of cannabis) or positive drug toxicology testing. Method Multiple regressions examined VO2 max, sex, sex*VO2interaction in relation to neurocognition, controlling for objectively measured body fat percentage. Results Prior to including body fat percentage, higher VO2 max related to improved working memory (Letter-Number Sequencing; p = .03) and selective attention (CPT-II hit response time standard error; p = .03). Aerobic fitness significantly interacted with sex, as higher-fit males had better performance on two sustained attention tasks while females did not demonstrate this pattern (CPT-II variability standard error, p = .047; Ruff 2&7 Total Speed, p = .02). Body fat percentage was positively slower cognitive flexibility (D-KEFS color-word switching/inhibition, p = .046). Conclusions VO2 independently predicted better working memory and selective attention. Increased aerobic fitness level related to increased performance on sustained attention tasks in males but not females. Therefore, aerobic fitness may be positively related to better cognitive functioning in physically healthy adolescents and emerging adults without metabolic conditions. Further research into factors (e.g., intensity or type of activity) that may relate to beneficial outcomes by sex are needed.
Collapse
Affiliation(s)
| | | | | | | | - Ann M. Swartz
- University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | |
Collapse
|
9
|
Stein AM, da Silva TMV, Coelho FGDM, Rueda AV, Camarini R, Galduróz RFS. Acute exercise increases circulating IGF-1 in Alzheimer's disease patients, but not in older adults without dementia. Behav Brain Res 2020; 396:112903. [PMID: 32937170 DOI: 10.1016/j.bbr.2020.112903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/20/2020] [Accepted: 09/05/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Increased Insulin-like growth factor I (IGF-1) has been associated with improvement of cognitive function in response to exercise. Evidences indicate a role for IGF-1 in beta-amyloid clearance and reducing hyperphosphorylation tau in Alzheimer's disease (AD). There is a need to investigate the IGF-1 response to exercise in AD patients due to well-known potential effects of exercise on IGF-1. The aim of this study was to examine circulating IGF-1 levels in AD patients and older adults without dementia after acute exercise and to verify the associations among cardiorespiratory fitness, cognition and IGF-1 levels. METHOD Seventy-four older adults (40 older adults without dementia and 34 AD patients) participated in this study. The outcomes included IGF-1 plasma levels and performance in the submaximal exercise stress test. Secondary outcomes included cognitive functions, depressive symptoms, level of physical activity, insulin-resistance, and cholesterol. All participants performed the incremental test on a treadmill and IGF-1 was collected before and after the exercise. RESULTS A tendency to the difference of baseline IGF-1 plasma levels between the groups was found. After the acute exercise AD patients also presented higher levels of circulating IGF-1 compared to the Older adults without dementia. Correlations among cardiorespiratory fitness and cognitive functions were found. CONCLUSION The findings suggest that AD patients and older adults respond differently to acute exercise in terms of circulating IGF-1 levels. This response seems to indicate either an IGF-1 resistance or a compensatory exercise-induced to lower IGF-1 levels in AD patients. Cardiorespiratory fitness is associated with global cognition, executive function, attention and information processing speed.
Collapse
Affiliation(s)
- Angelica Miki Stein
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus Rio Claro, Brazil; UTFPR, Federal University of Technology - Paraná (UTFPR), Campus Curitiba, Brazil.
| | - Thays Martins Vital da Silva
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus Rio Claro, Brazil; Instituto Federal Goiano, Campus Avançado Hidrolândia, Brazil
| | - Flávia Gomes de Melo Coelho
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus Rio Claro, Brazil; Postgraduate Program in Physical Education, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - André Veloso Rueda
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Campus São Paulo, Brazil
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Campus São Paulo, Brazil
| | - Ruth Ferreira Santos Galduróz
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus Rio Claro, Brazil; Center of Mathematics, Computing and Cognition, University Federal of ABC (UFABC), Campus São Bernardo, Brazil
| |
Collapse
|
10
|
Autio J, Stenbäck V, Gagnon DD, Leppäluoto J, Herzig KH. (Neuro) Peptides, Physical Activity, and Cognition. J Clin Med 2020; 9:jcm9082592. [PMID: 32785144 PMCID: PMC7464334 DOI: 10.3390/jcm9082592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Regular physical activity (PA) improves cognitive functions, prevents brain atrophy, and delays the onset of cognitive decline, dementia, and Alzheimer’s disease. Presently, there are no specific recommendations for PA producing positive effects on brain health and little is known on its mediators. PA affects production and release of several peptides secreted from peripheral and central tissues, targeting receptors located in the central nervous system (CNS). This review will provide a summary of the current knowledge on the association between PA and cognition with a focus on the role of (neuro)peptides. For the review we define peptides as molecules with less than 100 amino acids and exclude myokines. Tachykinins, somatostatin, and opioid peptides were excluded from this review since they were not affected by PA. There is evidence suggesting that PA increases peripheral insulin growth factor 1 (IGF-1) levels and elevated serum IGF-1 levels are associated with improved cognitive performance. It is therefore likely that IGF-1 plays a role in PA induced improvement of cognition. Other neuropeptides such as neuropeptide Y (NPY), ghrelin, galanin, and vasoactive intestinal peptide (VIP) could mediate the beneficial effects of PA on cognition, but the current literature regarding these (neuro)peptides is limited.
Collapse
Affiliation(s)
- Juho Autio
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
| | - Ville Stenbäck
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Biocenter Oulu, 90220 Oulu, Finland
| | - Dominique D. Gagnon
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Center of Research in Occupational Safety and Health, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Juhani Leppäluoto
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60-572 Poznan, Poland
- Correspondence:
| |
Collapse
|
11
|
Gursky ZH, Johansson JR, Klintsova AY. Postnatal alcohol exposure and adolescent exercise have opposite effects on cerebellar microglia in rat. Int J Dev Neurosci 2020; 80:558-571. [PMID: 32681672 DOI: 10.1002/jdn.10051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Developmental alcohol exposure results in altered neuroimmune function in both humans and rodents. Given the critical role for the principle neuroimmune cell, microglia, in maintaining synaptic form and function, microglial dysfunction in the cerebellum may be an important mechanism underlying the aberrant cerebellar connectivity observed in rodent models of fetal alcohol spectrum disorders. Using an established rodent model of alcohol exposure during human third-trimester fetal development, we examine the cerebellum of male and female Long Evans rats to determine the impact of early postnatal alcohol exposure on cerebellar microglia, and the potential therapeutic effects of an adolescent intervention consisting of voluntary exercise (running). All cerebelli were examined at postnatal day 42 (i.e., late adolescence), and microglia were labeled with Iba1, a microglia-specific protein. Early postnatal alcohol exposure caused an increase in microglial density throughout cerebellum and a reduction in cerebellar volume, and a reduction in the proportion of fully ramified (often called "resting state") microglia selective to lobules 1-4. In contrast, adolescent exercise decreased microglial density throughout cerebellum and increased cerebellar volume, while activating microglia (as indicated by increases in amoeboid microglia, and reductions in fully and partially ramified microglia) selectively in lobules 1-4. These results suggest that adolescent exercise may be a suitable intervention to ameliorate alcohol-induced neuroimmune dysfunction as it alters microglia density and cerebellar volume in opposite to the effects of developmental alcohol exposure. Importantly, exercise intervention can be flexibly implemented well after the time window of vulnerability to alcohol.
Collapse
Affiliation(s)
- Zachary H Gursky
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| | - Julia R Johansson
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| | - Anna Y Klintsova
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
12
|
Boyne P, Meyrose C, Westover J, Whitesel D, Hatter K, Reisman DS, Carl D, Khoury JC, Gerson M, Kissela B, Dunning K. Effects of Exercise Intensity on Acute Circulating Molecular Responses Poststroke. Neurorehabil Neural Repair 2020; 34:222-234. [PMID: 31976813 DOI: 10.1177/1545968319899915] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background. Exercise intensity can influence functional recovery after stroke, but the mechanisms remain poorly understood. Objective. In chronic stroke, an intensity-dependent increase in circulating brain-derived neurotrophic factor (BDNF) was previously found during vigorous exercise. Using the same serum samples, this study tested acute effects of exercise intensity on other circulating molecules related to neuroplasticity, including vascular-endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF1), and cortisol, with some updated analyses involving BDNF. Methods. Using a repeated-measures design, 16 participants with chronic stroke performed 3 exercise protocols in random order: treadmill high-intensity interval training (HIT-treadmill), seated-stepper HIT (HIT-stepper), and treadmill moderate-intensity continuous exercise (MCT-treadmill). Serum molecular changes were compared between protocols. Mediation and effect modification analyses were also performed. Results. VEGF significantly increased during HIT-treadmill, IGF1 increased during both HIT protocols and cortisol nonsignificantly decreased during each protocol. VEGF response was significantly greater for HIT-treadmill versus MCT-treadmill when controlling for baseline. Blood lactate positively mediated the effect of HIT on BDNF and cortisol. Peak treadmill speed positively mediated effects on BDNF and VEGF. Participants with comfortable gait speed ≥0.4 m/s had significantly lower VEGF and higher IGF1 responses, with a lower cortisol response during MCT-treadmill. Conclusions. BDNF and VEGF are promising serum molecules to include in future studies testing intensity-dependent mechanisms of exercise on neurologic recovery. Fast training speed and anaerobic intensity appear to be critical ingredients for eliciting these molecular responses. Serum molecular response differences between gait speed subgroups provide a possible biologic basis for previously observed differences in training responsiveness.
Collapse
Affiliation(s)
| | | | | | | | - Kristal Hatter
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Daniel Carl
- University of Cincinnati, Cincinnati, OH, USA
| | - Jane C Khoury
- University of Cincinnati, Cincinnati, OH, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
13
|
Maternal physical activity-induced adaptive transcriptional response in brain and placenta of mothers and rat offspring. J Dev Orig Health Dis 2019; 11:108-117. [PMID: 31203831 DOI: 10.1017/s2040174419000333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maternal physical activity induces brain functional changes and neuroplasticity, leading to an improvement of cognitive functions, such as learning and memory in the offspring. This study investigated the effects of voluntary maternal physical activity on the gene expression of the neurotrophic factors (NTFs): BDNF, NTF4, NTRK2, IGF-1 and IGF-1r in the different areas of mother's brain, placenta and foetus brain of rats. Female Wistar rats (n = 15) were individually housed in voluntary physical activity cages, containing a running wheel, for 4 weeks (period of adaptation) before gestation. Rats were classified as inactive (I, n = 6); active (A, n = 4) and very active (VA, n = 5) according to daily distance spontaneously travelled. During gestation, the dams continued to have access to the running wheel. At the 20th day of gestation, gene expression of NTFs was analysed in different areas of mother's brain (cerebellum, hypothalamus, hippocampus and cortex), placenta and the offspring's brain. NTFs gene expression was evaluated using quantitative PCR. Very active mothers showed upregulation of IGF-1 mRNA in the cerebellum (36.8%) and NTF4 mRNA expression in the placenta (24.3%). In the cortex, there was a tendency of up-regulation of NTRK2 mRNA (p = 0.06) in the A and VA groups when compared to I group. There were no noticeable changes in the gene expression of NTFs in the offspring's brain. Our findings suggest the existence of a developmental plasticity induced by maternal physical activity in specific areas of the brain and placenta representing the first investment for offspring during development.
Collapse
|
14
|
Cho SY, Roh HT. Taekwondo Enhances Cognitive Function as a Result of Increased Neurotrophic Growth Factors in Elderly Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16060962. [PMID: 30889827 PMCID: PMC6466246 DOI: 10.3390/ijerph16060962] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to investigate the effects of regular taekwondo (TKD) training on physical fitness, neurotrophic growth factors, cerebral blood flow (CBF) velocity, and cognitive function in elderly women. Thirty-seven women aged 65 or older were randomly assigned to either TKD (n = 19) or control (n = 18) group. TKD training was performed at 50⁻80% maximum heart rate (HRmax) for 60 min, five times per week for 16 weeks. All participants underwent the following examinations before and after the intervention: Senior Fitness Test; serum levels of neurotrophic growth factors, including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1); systolic, diastolic, and mean blood flow velocity and pulsatility index of the middle cerebral artery using Doppler ultrasonography; Mini-Mental State Examination for dementia screening (MMSE-DS); and Stroop Color and Word Test (word, color, and color-word). In the TKD group, lower body strength and flexibility, aerobic endurance levels, BDNF, VEGF, and IGF-1 serum levels as well as the color-word test scores were significantly increased after as compared to before the intervention (p < 0.05). No statistically significant differences were found in cerebral blood flow velocities and the MMSE-DS score (p > 0.05). These findings suggest that regular TKD training may be effective in improving not only fitness but also cognitive function in elderly women. The latter effect may be due to increased neurotrophic growth factor levels.
Collapse
Affiliation(s)
- Su-Youn Cho
- Department of Taekwondo, Youngsan University, Yangsan-si 50510, Korea.
| | - Hee-Tae Roh
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Busan 49315, Korea.
| |
Collapse
|
15
|
West RK, Wooden JI, Barton EA, Leasure JL. Recurrent binge ethanol is associated with significant loss of dentate gyrus granule neurons in female rats despite concomitant increase in neurogenesis. Neuropharmacology 2019; 148:272-283. [PMID: 30659841 DOI: 10.1016/j.neuropharm.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Binge drinking is becoming increasingly common among American women and girls. We have previously shown significant cell loss, downregulation of neurotrophins and microgliosis in female rats after a single 4-day ethanol exposure. To determine whether recurrent binge exposure would produce similar effects, we administered ethanol (5 g/kg) or iso-caloric control diet once-weekly for 11 weeks to adult female rats. As we have previously shown exercise neuroprotection against binge-induced damage, half the rats were given access to exercise wheels. Blood ethanol concentration (BEC) did not differ between sedentary and exercised groups, nor did it change across time. Using stereology, we quantified the number and/or size of neurons in the medial prefrontal cortex (mPFC) and hippocampal dentate gyrus (DG), as well as the number and activation state of microglia. Binged sedentary rats had significant cell loss in the dentate gyrus, but exercise eliminated this effect. Compared to sedentary controls, sedentary binged rats and all exercised rats showed increased neurogenesis in the DG. Number and nuclear volume of neurons in the mPFC were not changed. In the hippocampus and mPFC, the number of microglia with morphology indicative of partial activation was increased by recurrent binge ethanol and decreased by exercise. In summary, we show significant binge-induced loss of DG granule neurons despite increased neurogenesis, suggesting an unsuccessful compensatory response. Although exercise eliminated cell loss, our results indicate that infrequent, but recurrent exposure to clinically relevant BEC is neurotoxic.
Collapse
Affiliation(s)
- Rebecca K West
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - Jessica I Wooden
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - Emily A Barton
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States; Department of Biology & Biochemistry, University of Houston, Houston, TX, 77204-5022, United States.
| |
Collapse
|
16
|
Llorens-Martín M. Exercising New Neurons to Vanquish Alzheimer Disease. Brain Plast 2018; 4:111-126. [PMID: 30564550 PMCID: PMC6296267 DOI: 10.3233/bpl-180065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia in individuals over 65 years of age. The neuropathological hallmarks of the condition are Tau neurofibrillary tangles and Amyloid-β senile plaques. Moreover, certain susceptible regions of the brain experience a generalized lack of neural plasticity and marked synaptic alterations during the progression of this as yet incurable disease. One of these regions, the hippocampus, is characterized by the continuous addition of new neurons throughout life. This phenomenon, named adult hippocampal neurogenesis (AHN), provides a potentially endless source of new synaptic elements that increase the complexity and plasticity of the hippocampal circuitry. Numerous lines of evidence show that physical activity and environmental enrichment (EE) are among the most potent positive regulators of AHN. Given that neural plasticity is markedly decreased in many neurodegenerative diseases, the therapeutic potential of making certain lifestyle changes, such as increasing physical activity, is being recognised in several non-pharmacologic strategies seeking to slow down or prevent the progression of these diseases. This review article summarizes current evidence supporting the putative therapeutic potential of EE and physical exercise to increase AHN and hippocampal plasticity both under physiological and pathological circumstances, with a special emphasis on neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSIC-UAM, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases CIBERNED, Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, Kim E, Rompala A, Oram MK, Asselin C, Aronson J, Zhang C, Miller SJ, Lesinski A, Chen JW, Kim DY, van Praag H, Spiegelman BM, Gage FH, Tanzi RE. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science 2018; 361:eaan8821. [PMID: 30190379 PMCID: PMC6149542 DOI: 10.1126/science.aan8821] [Citation(s) in RCA: 537] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/04/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Adult hippocampal neurogenesis (AHN) is impaired before the onset of Alzheimer's disease (AD) pathology. We found that exercise provided cognitive benefit to 5×FAD mice, a mouse model of AD, by inducing AHN and elevating levels of brain-derived neurotrophic factor (BDNF). Neither stimulation of AHN alone, nor exercise, in the absence of increased AHN, ameliorated cognition. We successfully mimicked the beneficial effects of exercise on AD mice by genetically and pharmacologically inducing AHN in combination with elevating BDNF levels. Suppressing AHN later led to worsened cognitive performance and loss of preexisting dentate neurons. Thus, pharmacological mimetics of exercise, enhancing AHN and elevating BDNF levels, may improve cognition in AD. Furthermore, applied at early stages of AD, these mimetics may protect against subsequent neuronal cell death.
Collapse
Affiliation(s)
- Se Hoon Choi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Enjana Bylykbashi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zena K Chatila
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Star W Lee
- Laboratoy of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Benjamin Pulli
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gregory D Clemenson
- Laboratoy of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Eunhee Kim
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alexander Rompala
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mary K Oram
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Caroline Asselin
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jenna Aronson
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sean J Miller
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andrea Lesinski
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - John W Chen
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Henriette van Praag
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Fred H Gage
- Laboratoy of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
18
|
Stein AM, Silva TMV, Coelho FGDM, Arantes FJ, Costa JLR, Teodoro E, Santos-Galduróz RF. Physical exercise, IGF-1 and cognition A systematic review of experimental studies in the elderly. Dement Neuropsychol 2018; 12:114-122. [PMID: 29988330 PMCID: PMC6022990 DOI: 10.1590/1980-57642018dn12-020003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
One of hypothetical mechanisms related to cognition is exercise-induced IGF-1.
Collapse
Affiliation(s)
- Angelica Miki Stein
- Institute of Biosciences, UNESP (Universidade Estadual Paulista) Physical Activity and Aging Lab (LAFE), Rio Claro, SP, Brazil
| | - Thays Martins Vital Silva
- Institute of Biosciences, UNESP (Universidade Estadual Paulista) Physical Activity and Aging Lab (LAFE), Rio Claro, SP, Brazil.,Instituto Federal Goiano - Campus Morrinhos, Morrinhos, GO, Brazil
| | - Flávia Gomes de Melo Coelho
- Institute of Biosciences, UNESP (Universidade Estadual Paulista) Physical Activity and Aging Lab (LAFE), Rio Claro, SP, Brazil.,Postgraduate Program in Physical Education, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Franciel José Arantes
- Institute of Biosciences, UNESP (Universidade Estadual Paulista) Physical Activity and Aging Lab (LAFE), Rio Claro, SP, Brazil
| | - José Luiz Riani Costa
- Institute of Biosciences, UNESP (Universidade Estadual Paulista) Physical Activity and Aging Lab (LAFE), Rio Claro, SP, Brazil
| | - Elizabeth Teodoro
- Center of Mathematics, Computing and Cognition, UFABC, University Federal of ABC, Santo André, SP, Brazil
| | | |
Collapse
|
19
|
Maynard ME, Barton EA, Robinson CR, Wooden JI, Leasure JL. Sex differences in hippocampal damage, cognitive impairment, and trophic factor expression in an animal model of an alcohol use disorder. Brain Struct Funct 2017; 223:195-210. [PMID: 28752318 DOI: 10.1007/s00429-017-1482-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Compared to men, women disproportionally experience alcohol-related organ damage, including brain damage, and while men remain more likely to drink and to drink heavily, there is cause for concern because women are beginning to narrow the gender gap in alcohol use disorders. The hippocampus is a brain region that is particularly vulnerable to alcohol damage, due to cell loss and decreased neurogenesis. In the present study, we examined sex differences in hippocampal damage following binge alcohol. Consistent with our prior findings, we found a significant binge-induced decrement in dentate gyrus (DG) granule neurons in the female DG. However, in the present study, we found no significant decrement in granule neurons in the male DG. We show that the decrease in granule neurons in females is associated with both spatial navigation impairments and decreased expression of trophic support molecules. Finally, we show that post-binge exercise is associated with an increase in trophic support and repopulation of the granule neuron layer in the female hippocampus. We conclude that sex differences in alcohol-induced hippocampal damage are due in part to a paucity of trophic support and plasticity-related signaling in females.
Collapse
Affiliation(s)
- Mark E Maynard
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA.,Department of Neurobiology and Anatomy, University of Texas Health Science Center, PO Box 20708, Houston, TX, 77225-0708, USA
| | - Emily A Barton
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA
| | - Caleb R Robinson
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA.,Department of Biology, Eastern Nazarene College, 23 E Elm Ave, Shrader Hall 30B, Quincy, MA, 02170, USA
| | - Jessica I Wooden
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA. .,Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5022, USA.
| |
Collapse
|
20
|
Docx L, Emsell L, Van Hecke W, De Bondt T, Parizel PM, Sabbe B, Morrens M. White matter microstructure and volitional motor activity in schizophrenia: A diffusion kurtosis imaging study. Psychiatry Res Neuroimaging 2017; 260:29-36. [PMID: 28012424 DOI: 10.1016/j.pscychresns.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 09/18/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Avolition is a core feature of schizophrenia and may arise from altered brain connectivity. Here we used diffusion kurtosis imaging (DKI) to investigate the association between white matter (WM) microstructure and volitional motor activity. Multi-shell diffusion MRI and 24-h actigraphy data were obtained from 20 right-handed patients with schizophrenia and 16 right-handed age and gender matched healthy controls. We examined correlations between fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), and motor activity level, as well as group differences in these measures. In the patient group, increasing motor activity level was positively correlated with MK in the inferior, medial and superior longitudinal fasciculus, the corpus callosum, the posterior fronto-occipital fasciculus and the posterior cingulum. This association was not found in control subjects or in DTI measures. These results show that a lack of volitional motor activity in schizophrenia is associated with potentially altered WM microstructure in posterior brain regions associated with cognitive function and motivation. This could reflect both illness related dysconnectivity which through altered cognition, manifests as reduced volitional motor activity, and/or the effects of reduced physical activity on brain WM.
Collapse
Affiliation(s)
- Lise Docx
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; PC Broeders Alexianen Boechout, Provinciesteenweg 408, 2530 Boechout, Belgium.
| | - Louise Emsell
- University Psychiatry Centre (UPC)-KU Leuven, Leuven, Belgium
| | - Wim Van Hecke
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Timo De Bondt
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Paul M Parizel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Bernard Sabbe
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; PZ St Norbertus Duffel, Stationsstraat 25c, 2570 Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; PC Broeders Alexianen Boechout, Provinciesteenweg 408, 2530 Boechout, Belgium
| |
Collapse
|
21
|
Nishijima T, Kamidozono Y, Ishiizumi A, Amemiya S, Kita I. Negative rebound in hippocampal neurogenesis following exercise cessation. Am J Physiol Regul Integr Comp Physiol 2017; 312:R347-R357. [PMID: 28052868 DOI: 10.1152/ajpregu.00397.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 11/22/2022]
Abstract
Physical exercise can improve brain function, but the effects of exercise cessation are largely unknown. This study examined the time-course profile of hippocampal neurogenesis following exercise cessation. Male C57BL/6 mice were randomly assigned to either a control (Con) or an exercise cessation (ExC) group. Mice in the ExC group were reared in a cage with a running wheel for 8 wk and subsequently placed in a standard cage to cease the exercise. Exercise resulted in a significant increase in the density of doublecortin (DCX)-positive immature neurons in the dentate gyrus (at week 0). Following exercise cessation, the density of DCX-positive neurons gradually decreased and was significantly lower than that in the Con group at 5 and 8 wk after cessation, indicating that exercise cessation leads to a negative rebound in hippocampal neurogenesis. Immunohistochemistry analysis suggests that the negative rebound in neurogenesis is caused by diminished cell survival, not by suppression of cell proliferation and neural maturation. Neither elevated expression of ΔFosB, a transcription factor involved in neurogenesis regulation, nor increased plasma corticosterone, were involved in the negative neurogenesis rebound. Importantly, exercise cessation suppressed ambulatory activity, and a significant correlation between change in activity and DCX-positive neuron density suggested that the decrease in activity is involved in neurogenesis impairment. Forced treadmill running following exercise cessation failed to prevent the negative neurogenesis rebound. This study indicates that cessation of exercise or a decrease in physical activity is associated with an increased risk for impaired hippocampal function, which might increase vulnerability to stress-induced mood disorders.
Collapse
Affiliation(s)
- Takeshi Nishijima
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshika Kamidozono
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Atsushi Ishiizumi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Seiichiro Amemiya
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Ichiro Kita
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
22
|
Antonio-Santos J, Ferreira DJS, Gomes Costa GL, Matos RJB, Toscano AE, Manhães-de-Castro R, Leandro CG. Resistance Training Alters the Proportion of Skeletal Muscle Fibers but Not Brain Neurotrophic Factors in Young Adult Rats. J Strength Cond Res 2016; 30:3531-3538. [PMID: 27870699 PMCID: PMC5145253 DOI: 10.1519/jsc.0000000000001449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Antonio-Santos, J, Ferreira, DJS, Gomes Costa, GL, Matos, RJB, Toscano, AE, Manhães-de-Castro, R, and Leandro, CG. Resistance training alters the proportion of skeletal muscle fibers but not brain neurotrophic factors in young adult rats. J Strength Cond Res 30(12): 3531–3538, 2016—Resistance training (RT) is related to improved muscular strength and power output. Different programs of RT for rats have been developed, but peripheral and central response has not been evaluated directly in the same animal. To test the hypothesis that RT induces central and peripheral adaptations, this study evaluated the effects of a RT on the performance of a weekly maximum overload test, fiber-type typology, and brain neurotrophic factors in young adult rats. Thirty-one male Wistar rats (65 ± 5 days) were divided in 2 groups: nontrained (NT, n = 13) and trained (T, n = 18). Trained group was submitted to a program of RT ladder climbing, gradually added mass, 5 days per week during 8 weeks at 80% of individual maximum overload. This test was weekly performed to adjust the individual load throughout the weeks for both groups. After 48 hours from the last session of exercise, soleus and extensor digital longus (EDL) muscles were removed for myofibrillar ATPase staining analysis. Spinal cord, motor cortex, and cerebellum were removed for RT-PCR analysis of BDNF and insulin-like growth factor-1 (IGF-1) gene expression. In EDL muscle, T animals showed an increase in the proportion of type IIb fibers and a reduction of type IIa fibers. Insulin-like growth factor-1 gene expression was reduced in the cerebellum of T animals (NT: 1.025 ± 0.12; T: 0.57 ± 0.11). Our data showed that 8 weeks of RT were enough to increase maximum overload capacity and the proportion of glycolytic muscle fibers, but there were no associations with the expression of growth neurotrophic factors.
Collapse
Affiliation(s)
- José Antonio-Santos
- 1Department of Physical Education and Sport Science, Academic Center of Vitoria de Santo Antao, Federal University of Pernambuco, Recife, Brazil;2Department of Nursing, Academic Center of Vitoria de Santo Antao, Federal University of Pernambuco, Recife, Brazil; and3Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Llorens-Martín M, Teixeira CM, Jurado-Arjona J, Rakwal R, Shibato J, Soya H, Ávila J. Retroviral induction of GSK-3β expression blocks the stimulatory action of physical exercise on the maturation of newborn neurons. Cell Mol Life Sci 2016; 73:3569-82. [PMID: 27010990 PMCID: PMC11108461 DOI: 10.1007/s00018-016-2181-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Adult hippocampal neurogenesis (AHN) is a key process for certain types of hippocampal-dependent learning. Alzheimer's disease (AD) is accompanied by memory deficits related to alterations in AHN. Given that the increased activity of GSK-3β has been related to alterations in the population of hippocampal granule neurons in AD patients, we designed a novel methodology by which to induce selective GSK-3β overexpression exclusively in newborn granule neurons. To this end, we injected an rtTA-IRES-EGFP-expressing retrovirus into the hippocampus of tTO-GSK-3β mice. Using this novel retroviral strategy, we found that GSK-3β caused a cell-autonomous impairment of the morphological and synaptic maturation of newborn neurons. In addition, we examined whether GSK-3β overexpression in newborn neurons limits the effects of physical activity. While physical exercise increased the number of dendritic spines, the percentage of mushroom spines, and the head diameter of the same in tet-OFF cells, these effects were not triggered in tet-ON cells. This observation suggests that GSK-3β blocks the stimulatory actions of exercise. Given that the activity of GSK-3β is increased in the brains of individuals with AD, these data may be relevant for non-pharmacological therapies for AD.
Collapse
Affiliation(s)
- María Llorens-Martín
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), c/Valderrebollo 5, Madrid, Spain.
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute, New York, NY, USA
| | - Jerónimo Jurado-Arjona
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), c/Valderrebollo 5, Madrid, Spain
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
- Global Research Center for Innovative Life Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan
| | - Junko Shibato
- Global Research Center for Innovative Life Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Jesús Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), c/Valderrebollo 5, Madrid, Spain.
| |
Collapse
|
24
|
Herting MM, Keenan MF, Nagel BJ. Aerobic Fitness Linked to Cortical Brain Development in Adolescent Males: Preliminary Findings Suggest a Possible Role of BDNF Genotype. Front Hum Neurosci 2016; 10:327. [PMID: 27445764 PMCID: PMC4928533 DOI: 10.3389/fnhum.2016.00327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022] Open
Abstract
Aerobic exercise has been shown to impact brain structure and cognition in children and adults. Exercise-induced activation of a growth protein known as brain derived neurotrophic factor (BDNF) is thought to contribute to such relationships. To date, however, no study has examined how aerobic fitness relates to cortical brain structure during development and if BDNF genotype moderates these relationships. Using structural magnetic resonance imaging (MRI) and FreeSurfer, the current study examined how aerobic fitness relates to volume, thickness, and surface area in 34 male adolescents, 15 to 18 years old. Moreover, we examined if the val66met BDNF genotype moderated these relationships. We hypothesized that aerobic fitness would relate to greater thickness and volumes in frontal, parietal, and motor regions, and that these relationships would be less robust in individuals carrying a Met allele, since this genotype leads to lower BDNF expression. We found that aerobic fitness positively related to right rostral middle frontal cortical volume in all adolescents. However, results also showed BDNF genotype moderated the relationship between aerobic fitness and bilateral medial precuneus surface area, with a positive relationship seen in individuals with the Val/Val allele, but no relationship detected in those adolescents carrying a Met allele. Lastly, using self-reported levels of aerobic activity, we found that higher-fit adolescents showed larger right medial pericalcarine, right cuneus and left precuneus surface areas as compared to their low-fit peers. Our findings suggest that aerobic fitness is linked to cortical brain development in male adolescents, and that more research is warranted to determine how an individual’s genes may influence these relationships.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Pediatrics, Children's Hospital Los Angeles Los Angeles, CA, USA
| | - Madison F Keenan
- Department of Pediatrics, Children's Hospital Los Angeles Los Angeles, CA, USA
| | - Bonnie J Nagel
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
25
|
Fernandes J, Soares JCK, do Amaral Baliego LGZ, Arida RM. A single bout of resistance exercise improves memory consolidation and increases the expression of synaptic proteins in the hippocampus. Hippocampus 2016; 26:1096-103. [PMID: 27008926 DOI: 10.1002/hipo.22590] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
Abstract
Over the past decade, several studies have indicated that chronic resistance exercise (i.e., strength training, weight lifting, etc.) is beneficial for brain health and cognitive function. However, little is known about the effects of a single bout of resistance exercise on brain function, particularly on memory consolidation. Therefore, the purpose of the present study is to examine the effects of a single bout of resistance exercise applied immediately after the training of fear conditioning on memory consolidation and on the expression of IGF-1 and synaptic proteins in the hippocampus. Male Wistar rats were familiarized with climbing a ladder without a load for 3 days and randomly assigned into control (CTL) and resistance exercise (RES) groups. The RES group was subjected to a single bout of resistance exercise applied immediately after fear conditioning training. Subsequently, the animals were tested for contextual (24 h) and tone (48 h) fear memory. Another group of animals were subjected to a single bout of resistance exercise and euthanized 24 h later for hippocampal analysis of IGF-1 and synaptic proteins (synapsin I, synaptophysin, and PSD-95). The exercised rats improved contextual but not tone fear memory. Hippocampal IGF-1 was not altered by resistance exercise. However, the levels of synapsin I, synaptophysin, and PSD-95 increased significantly in the RES group. The results suggested that a single bout of resistance exercise applied immediately after fear conditioning could improve contextual memory, probably through the activation of pre- and postsynaptic machinery required for memory consolidation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jansen Fernandes
- Department of Physiology, Universidade Federal De São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | - Ricardo Mario Arida
- Department of Physiology, Universidade Federal De São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
26
|
Gradari S, Pallé A, McGreevy KR, Fontán-Lozano Á, Trejo JL. Can Exercise Make You Smarter, Happier, and Have More Neurons? A Hormetic Perspective. Front Neurosci 2016; 10:93. [PMID: 27013955 PMCID: PMC4789405 DOI: 10.3389/fnins.2016.00093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/23/2016] [Indexed: 11/15/2022] Open
Abstract
Exercise can make you smarter, happier and have more neurons depending on the dose (intensity) of the training program. It is well recognized that exercise protocols induce both positive and negative effects depending on the intensity of the exercise, among other key factors, a process described as a hormetic-like biphasic dose-response. However, no evidences have been reported till very recently about the biphasic response of some of the potential mediators of the exercise-induced actions. This hypothesis and theory will focus on the adult hippocampal neurogenesis (AHN) as a putative physical substrate for hormesis responses to exercise in the context of exercise-induced actions on cognition and mood, and on the molecular pathways which might potentially be mediating these actions.
Collapse
Affiliation(s)
- Simona Gradari
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Anna Pallé
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Kerry R McGreevy
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Ángela Fontán-Lozano
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José L Trejo
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
27
|
Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, Emanuele E, Joyner MJ, Lucia A. Exercise attenuates the major hallmarks of aging. Rejuvenation Res 2016; 18:57-89. [PMID: 25431878 DOI: 10.1089/rej.2014.1623] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regular exercise has multi-system anti-aging effects. Here we summarize how exercise impacts the major hallmarks of aging. We propose that, besides searching for novel pharmaceutical targets of the aging process, more research efforts should be devoted to gaining insights into the molecular mediators of the benefits of exercise and to implement effective exercise interventions for elderly people.
Collapse
Affiliation(s)
- Nuria Garatachea
- 1 Faculty of Health and Sport Science, University of Zaragoza , Huesca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Llorens-Martín M, Rábano A, Ávila J. The Ever-Changing Morphology of Hippocampal Granule Neurons in Physiology and Pathology. Front Neurosci 2016; 9:526. [PMID: 26834550 PMCID: PMC4717329 DOI: 10.3389/fnins.2015.00526] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022] Open
Abstract
Newborn neurons are continuously added to the hippocampal dentate gyrus throughout adulthood. In this review, we analyze the maturational stages that newborn granule neurons go through, with a focus on their unique morphological features during each stage under both physiological and pathological circumstances. In addition, the influence of deleterious (such as schizophrenia, stress, Alzheimer's disease, seizures, stroke, inflammation, dietary deficiencies, or the consumption of drugs of abuse or toxic substances) and neuroprotective (physical exercise and environmental enrichment) stimuli on the maturation of these cells will be examined. Finally, the regulation of this process by proteins involved in neurodegenerative and neurological disorders such as Glycogen synthase kinase 3β, Disrupted in Schizophrenia 1 (DISC-1), Glucocorticoid receptor, pro-inflammatory mediators, Presenilin-1, Amyloid precursor protein, Cyclin-dependent kinase 5 (CDK5), among others, will be evaluated. Given the recently acquired relevance of the dendritic branch as a functional synaptic unit required for memory storage, a full understanding of the morphological alterations observed in newborn neurons may have important consequences for the prevention and treatment of the cognitive and affective alterations that evolve in conjunction with impaired adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- María Llorens-Martín
- Molecular Neurobiology, Function of Microtubular Proteins, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid)Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Instituto de Salud Carlos III)Madrid, Spain
| | - Alberto Rábano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Instituto de Salud Carlos III)Madrid, Spain; Neuropathology Department, CIEN FoundationMadrid, Spain
| | - Jesús Ávila
- Molecular Neurobiology, Function of Microtubular Proteins, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid)Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Instituto de Salud Carlos III)Madrid, Spain
| |
Collapse
|
29
|
Mattson MP. Late-onset dementia: a mosaic of prototypical pathologies modifiable by diet and lifestyle. NPJ Aging Mech Dis 2015. [PMID: 28642821 PMCID: PMC5478237 DOI: 10.1038/npjamd.2015.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic late-onset dementia (ILOD) describes impairments of memory, reasoning and/or social abilities in the elderly that compromise their daily functioning. Dementia occurs in several major prototypical neurodegenerative disorders that are currently defined by neuropathological criteria, most notably Alzheimer’s disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD) and hippocampal sclerosis of aging (HSA). However, people who die with ILOD commonly exhibit mixed pathologies that vary within and between brain regions. Indeed, many patients diagnosed with probable AD exhibit only modest amounts of disease-defining amyloid β-peptide plaques and p-Tau tangles, and may have features of FTD (TDP-43 inclusions), Parkinson’s disease (α-synuclein accumulation), HSA and vascular lesions. Here I argue that this ‘mosaic neuropathological landscape’ is the result of commonalities in aging-related processes that render neurons vulnerable to the entire spectrum of ILODs. In this view, all ILODs involve deficits in neuronal energy metabolism, neurotrophic signaling and adaptive cellular stress responses, and associated dysregulation of neuronal calcium handling and autophagy. Although this mosaic of neuropathologies and underlying mechanisms poses major hurdles for development of disease-specific therapeutic interventions, it also suggests that certain interventions would be beneficial for all ILODs. Indeed, emerging evidence suggests that the brain can be protected against ILOD by lifelong intermittent physiological challenges including exercise, energy restriction and intellectual endeavors; these interventions enhance cellular stress resistance and facilitate neuroplasticity. There is also therapeutic potential for interventions that bolster neuronal bioenergetics and/or activate one or more adaptive cellular stress response pathways in brain cells. A wider appreciation that all ILODs share age-related cellular and molecular alterations upstream of aggregated protein lesions, and that these upstream events can be mitigated, may lead to implementation of novel intervention strategies aimed at reversing the rising tide of ILODs.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
30
|
Archer T, Garcia D. Exercise and Dietary Restriction for Promotion of Neurohealth Benefits. Health (London) 2015. [DOI: 10.4236/health.2015.71016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
The impacts of swimming exercise on hippocampal expression of neurotrophic factors in rats exposed to chronic unpredictable mild stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:729827. [PMID: 25477997 PMCID: PMC4244932 DOI: 10.1155/2014/729827] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022]
Abstract
Depression is associated with stress-induced neural atrophy in limbic brain regions, whereas exercise has antidepressant effects as well as increasing hippocampal synaptic plasticity by strengthening neurogenesis, metabolism, and vascular function. A key mechanism mediating these broad benefits of exercise on the brain is induction of neurotrophic factors, which instruct downstream structural and functional changes. To systematically evaluate the potential neurotrophic factors that were involved in the antidepressive effects of exercise, in this study, we assessed the effects of swimming exercise on hippocampal mRNA expression of several classes of the growth factors (BDNF, GDNF, NGF, NT-3, FGF2, VEGF, and IGF-1) and peptides (VGF and NPY) in rats exposed to chronic unpredictable mild stress (CUMS). Our study demonstrated that the swimming training paradigm significantly induced the expression of BDNF and BDNF-regulated peptides (VGF and NPY) and restored their stress-induced downregulation. Additionally, the exercise protocol also increased the antiapoptotic Bcl-xl expression and normalized the CUMS mediated induction of proapoptotic Bax mRNA level. Overall, our data suggest that swimming exercise has antidepressant effects, increasing the resistance to the neural damage caused by CUMS, and both BDNF and its downstream neurotrophic peptides may exert a major function in the exercise related adaptive processes to CUMS.
Collapse
|
32
|
Silverman MN, Deuster PA. Biological mechanisms underlying the role of physical fitness in health and resilience. Interface Focus 2014; 4:20140040. [PMID: 25285199 PMCID: PMC4142018 DOI: 10.1098/rsfs.2014.0040] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appears to buffer against stress-related disease owing to its blunting/optimizing effects on hormonal stress responsive systems, such as the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. This blunting appears to contribute to reduced emotional, physiological and metabolic reactivity as well as increased positive mood and well-being. Another mechanism whereby regular exercise and/or physical fitness may confer resilience is through minimizing excessive inflammation. Chronic psychological stress, physical inactivity and abdominal adiposity have been associated with persistent, systemic, low-grade inflammation and exert adverse effects on mental and physical health. The anti-inflammatory effects of regular exercise/activity can promote behavioural and metabolic resilience, and protect against various chronic diseases associated with systemic inflammation. Moreover, exercise may benefit the brain by enhancing growth factor expression and neural plasticity, thereby contributing to improved mood and cognition. In summary, the mechanisms whereby physical fitness promotes increased resilience and well-being and positive psychological and physical health are diverse and complex.
Collapse
Affiliation(s)
| | - Patricia A. Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
33
|
Hypoactivity affects IGF-1 level and PI3K/AKT signaling pathway in cerebral structures implied in motor control. PLoS One 2014; 9:e107631. [PMID: 25226394 PMCID: PMC4166665 DOI: 10.1371/journal.pone.0107631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
A chronic reduction in neuromuscular activity through prolonged body immobilization in human alters motor task performance through a combination of peripheral and central factors. Studies performed in a rat model of sensorimotor restriction have shown functional and biochemical changes in sensorimotor cortex. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of Insulin-like Growth Factor 1 (IGF-1), a growth factor known to mediate neuronal excitability and synaptic plasticity by inducing phosphorylation cascades which include the PI3K–AKT pathway. In order to better understand the influence of IGF-1 in cortical plasticity in rats submitted to a sensorimotor restriction, we analyzed the effect of hindlimb unloading on IGF-1 and its main molecular pathway in structures implied in motor control (sensorimotor cortex, striatum, cerebellum). IGF-1 level was determined by ELISA, and phosphorylation of its receptor and proteins of the PI3K–AKT pathway by immunoblot. In the sensorimotor cortex, our results indicate that HU induces a decrease in IGF-1 level; this alteration is associated to a decrease in activation of PI3K-AKT pathway. The same effect was observed in the striatum, although to a lower extent. No variation was noticed in the cerebellum. These results suggest that IGF-1 might contribute to cortical and striatal plasticity induced by a chronic sensorimotor restriction.
Collapse
|
34
|
Del Puerto A, Wandosell F, Garrido JJ. Neuronal and glial purinergic receptors functions in neuron development and brain disease. Front Cell Neurosci 2013; 7:197. [PMID: 24191147 PMCID: PMC3808753 DOI: 10.3389/fncel.2013.00197] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/10/2013] [Indexed: 11/23/2022] Open
Abstract
Brain development requires the interaction of complex signaling pathways, involving different cell types and molecules. For a long time, most attention has focused on neurons in a neuronocentric conceptualization of central nervous system development, these cells fulfilling an intrinsic program that establishes the brain’s morphology and function. By contrast, glia have mainly been studied as support cells, offering guidance or as the cells that react to brain injury. However, new evidence is appearing that demonstrates a more fundamental role of glial cells in the control of different aspects of neuronal development and function, events in which the influence of neurons is at best weak. Moreover, it is becoming clear that the function and organization of the nervous system depends heavily on reciprocal neuron–glia interactions. During development, neurons are often generated far from their final destination and while intrinsic mechanisms are responsible for neuronal migration and growth, they need support and regulatory influences from glial cells in order to migrate correctly. Similarly, the axons emitted by neurons often have to reach faraway targets and in this sense, glia help define the way that axons grow. Moreover, oligodendrocytes and Schwann cells ultimately envelop axons, contributing to the generation of nodes of Ranvier. Finally, recent publications show that astrocytes contribute to the modulation of synaptic transmission. In this sense, purinergic receptors are expressed widely by glial cells and neurons, and recent evidence points to multiple roles of purines and purinergic receptors in neuronal development and function, from neurogenesis to axon growth and functional axonal maturation, as well as in pathological conditions in the brain. This review will focus on the role of glial and neuronal secreted purines, and on the purinergic receptors, fundamentally in the control of neuronal development and function, as well as in diseases of the nervous system.
Collapse
Affiliation(s)
- Ana Del Puerto
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas Madrid, Spain ; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas Madrid, Spain
| | | | | |
Collapse
|
35
|
Sonntag WE, Deak F, Ashpole N, Toth P, Csiszar A, Freeman W, Ungvari Z. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci 2013; 5:27. [PMID: 23847531 PMCID: PMC3698444 DOI: 10.3389/fnagi.2013.00027] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an important anabolic hormone that decreases with age. In the past two decades, extensive research has determined that the reduction in IGF-1 is an important component of the age-related decline in cognitive function in multiple species including humans. Deficiency in circulating IGF-1 results in impairment in processing speed and deficiencies in both spatial and working memory. Replacement of IGF-1 or factors that increase IGF-1 to old animals and humans reverses many of these cognitive deficits. Despite the overwhelming evidence for IGF-1 as an important neurotrophic agent, the specific mechanisms through which IGF-1 acts have remained elusive. Recent evidence indicates that IGF-1 is both produced by and has important actions on the cerebrovasculature as well as neurons and glia. Nevertheless, the specific regulation and actions of brain- and vascular-derived IGF-1 is poorly understood. The diverse effects of IGF-1 discovered thus far reveal a complex endocrine and paracrine system essential for integrating many of the functions necessary for brain health. Identification of the mechanisms of IGF-1 actions will undoubtedly provide critical insight into regulation of brain function in general and the causes of cognitive decline with age.
Collapse
Affiliation(s)
- William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
The growth factors cascade and the dendrito-/synapto-genesis versus cell survival in adult hippocampal neurogenesis: the chicken or the egg. Ageing Res Rev 2013; 12:777-85. [PMID: 23777808 DOI: 10.1016/j.arr.2013.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 01/28/2023]
Abstract
The decision between cellular survival and death is governed by a balance between proapoptotic versus antiapoptotic signaling cascades. Growth factors are key actors, playing two main roles both at developmental and adult stages: a supporting antiapoptotic role through diverse actions converging in the mitochondria, and a promoter role of cell maturation and plasticity through dendritogenesis and synaptogenesis, especially relevant for the adult hippocampal neurogenesis, a case of development during adulthood. Here, both parallel roles mutually feed forward each other (the success in avoiding apoptosis lets the cell to grow and differentiate, which in turn lets the cell to reach new targets and form new synapses accessing new sources of growth factors to support cell survival) in a circular cause and consequence, or a "the chicken or the egg" dilemma. While identifying the first case of this dilemma makes no sense, one possible outcome might have biological relevance: the decision between survival and death in the adult hippocampal neurogenesis is mainly concentrated at a specific time window, and recent data suggest some divergences between the survival and the maturational promoter effect of growth factors. This review summarizes these evidences suggesting how growth factors might contribute to the live-or-die decision of adult-born immature granule neurons through influencing the maturation of the young neuron by means of its connectivity into a mature functional circuit.
Collapse
|
37
|
Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab 2012; 16:706-22. [PMID: 23168220 PMCID: PMC3518570 DOI: 10.1016/j.cmet.2012.08.012] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/01/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
Evolution favored individuals with superior cognitive and physical abilities under conditions of limited food sources, and brain function can therefore be optimized by intermittent dietary energy restriction (ER) and exercise. Such energetic challenges engage adaptive cellular stress-response signaling pathways in neurons involving neurotrophic factors, protein chaperones, DNA-repair proteins, autophagy, and mitochondrial biogenesis. By suppressing adaptive cellular stress responses, overeating and a sedentary lifestyle may increase the risk of Alzheimer's and Parkinson's diseases, stroke, and depression. Intense concerted efforts of governments, families, schools, and physicians will be required to successfully implement brain-healthy lifestyles that incorporate ER and exercise.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
38
|
Are the neuroprotective effects of estradiol and physical exercise comparable during ageing in female rats? Biogerontology 2012; 13:413-27. [DOI: 10.1007/s10522-012-9386-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/07/2012] [Indexed: 12/19/2022]
|
39
|
Herting MM, Nagel BJ. Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents. Behav Brain Res 2012; 233:517-25. [PMID: 22610054 DOI: 10.1016/j.bbr.2012.05.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 11/19/2022]
Abstract
In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence--a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
40
|
Archer T, Svensson K, Alricsson M. Physical exercise ameliorates deficits induced by traumatic brain injury. Acta Neurol Scand 2012; 125:293-302. [PMID: 22233115 DOI: 10.1111/j.1600-0404.2011.01638.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2011] [Indexed: 12/11/2022]
Abstract
The extent and depth of traumatic brain injury (TBI) remains a major determining factor together with the type of structural insult and its location, whether mild, moderate or severe, as well as the distribution and magnitude of inflammation and loss of cerebrovascular integrity, and the eventual efficacy of intervention. The influence of exercise intervention in TBI is multiple, ranging from anti-apoptotic effects to the augmentation of neuroplasticity. Physical exercise diminishes cerebral inflammation by elevating factors and agents involved in immunomodulatory function, and buttresses glial cell, cerebrovascular, and blood-brain barrier intactness. It provides unique non-pharmacologic intervention that incorporate different physical activity regimes, whether dynamic or static, endurance or resistance. Physical training regimes ought necessarily to be adapted to the specific demands of diagnosis, type and degree of injury and prognosis for individuals who have suffered TBI.
Collapse
Affiliation(s)
| | - K. Svensson
- School of Education; Psychology and Sport Science; Linnaeus University; Kalmar; Sweden
| | | |
Collapse
|
41
|
Julian K, Beard C, Schmidt NB, Powers MB, Smits JAJ. Attention training to reduce attention bias and social stressor reactivity: an attempt to replicate and extend previous findings. Behav Res Ther 2012; 50:350-8. [PMID: 22466022 DOI: 10.1016/j.brat.2012.02.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 02/15/2012] [Accepted: 02/27/2012] [Indexed: 11/19/2022]
Abstract
Cognitive theories suggest that social anxiety is maintained, in part, by an attentional bias toward threat. Recent research shows that a single-session of attention modification training (AMP) reduces attention bias and vulnerability to a social stressor (Amir, Weber, Beard, Bomyea, & Taylor, 2008). In addition, exercise may augment the effects of attention training by its direct effects on attentional control and inhibition, thereby allowing participants receiving the AMP to more effectively disengage attention from the threatening cues and shift attention to the neutral cues. We attempted to replicate and extend previous findings by randomizing participants (N = 112) to a single-session of: a) Exercise + attention training (EX + AMP); b) Rest + attention training (REST + AMP); c) Exercise + attention control condition (EX + ACC); or d) Rest + attention control condition (REST + ACC) prior to completing a public speaking challenge. We used identical assessment and training procedures to those employed by Amir et al. (2008). Results showed there was no effect of attention training on attention bias or anxiety reactivity to the speech challenge and no interactive effects of attention training and exercise on attention bias or anxiety reactivity to the speech challenge. The failure to replicate previous findings is discussed.
Collapse
Affiliation(s)
- Kristin Julian
- Department of Psychology, Southern Methodist University, Dedman College, Dallas, TX 75275, USA
| | | | | | | | | |
Collapse
|
42
|
Okamoto M, Soya H. Mild exercise model for enhancement of hippocampal neurogenesis: A possible candidate for promotion of neurogenesis. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Abstract
Neurons of the central nervous system (CNS) of adult mammals can be damaged in a variety of ways. Most neurons rapidly die after injury. Even if the injured CNS neurons do not die in a short time, the neurons eventually die because they are not able to regenerate their axons to reconnect with their normal targets. In addition, neurons are normally not replaced. Therefore, much work has been directed toward understanding of the molecular regulation of the CNS degeneration following injury, and different experimental strategies are being used to try to protect the damaged neurons. Following axonal lesion, the neurons not only need to survive but also to reconnect to be functionally relevant, and efforts are directed toward not only survival but also axonal regeneration and proper rewiring of injured neurons. Recent experimental data suggest that electrical activity, endogenous or exogenous, can enhance neuronal survival and regeneration in vitro and in vivo. This chapter reviews the evidence that have been obtained on the role of neuronal electrical activity on neuroprotection. We will develop perspectives toward neuroprotection and regeneration of adult lesioned CNS neurons based on electrical activity-dependent cell survival that may be applicable to various diseases of the CNS.
Collapse
|
44
|
Gligoroska JP, Manchevska S. The effect of physical activity on cognition - physiological mechanisms. Mater Sociomed 2012; 24:198-202. [PMID: 23678325 PMCID: PMC3633396 DOI: 10.5455/msm.2012.24.198-202] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/25/2012] [Indexed: 11/25/2022] Open
Abstract
The presumption that physical activity, i.e. exercise, as an independent and separated factor influences different aspects of cognitive mechanisms is substantially supported by the literature. The investigations of the influence of physical activity on cognitive functioning have offered several mechanisms which could explain this relationship. Physiological mechanisms including increased cerebral blood flow, changes in neurotransmitter release, structural changes in central nervous system and altered arousal levels are based on physical changes that occur in the body as a consequence of the physical activity. There is evidence that physical training selectively increases angiogenesis, synaptogenesis and neurogenesis. The role of central (BDNF) and peripheral (estrogens, corticosteroids, growth hormone, IGF-1) factors in mediation of the effects of physical exercise on brain functions, has been promoted. Also, there is convergent data on molecular and cellular level, as well as on behavioral and systemic level which support the presumption that physical activity is beneficial to cognition. These data emphasizes the importance of promotion of physical activity during the life span for the prevention of contemporary (obesity, diabetes and cardiovascular) diseases and cognitive decline in humans.
Collapse
|
45
|
Bayod S, del Valle J, Canudas AM, Lalanza JF, Sanchez-Roige S, Camins A, Escorihuela RM, Pallàs M. Long-term treadmill exercise induces neuroprotective molecular changes in rat brain. J Appl Physiol (1985) 2011; 111:1380-90. [DOI: 10.1152/japplphysiol.00425.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Exercise enhances general health. However, its effects on neurodegeneration are controversial, and the molecular pathways in the brain involved in this enhancement are poorly understood. Here, we examined the effect of long-term moderate treadmill training on adult male rat cortex and hippocampus to identify the cellular mechanisms behind the effects of exercise. We compared three animal groups: exercised (30 min/day, 12 m/min, 5 days/wk, 36 wk), handled but nonexercised (treadmill handling procedure, 0 m/min), and sedentary (nonhandled and nonexercised). Moderate long-term exercise induced an increase in IGF-1 levels and also in energy parameters, such as PGC-1α and the OXPHOS system. Moreover, the sirtuin 1 pathway was activated in both the exercised and nonexercised groups but not in sedentary rats. This induction could be a consequence of exercise as well as the handling procedure. To determine whether the long-term moderate treadmill training had neuroprotective effects, we studied tau hyperphosphorylation and GSK3β activation. Our results showed reduced levels of phospho-tau and GSK3β activation mainly in the hippocampus of the exercised animals. In conclusion, in our rodent model, exercise improved several major brain parameters, especially in the hippocampus. These improvements induced the upregulation of sirtuin 1, a protein that extends life, the stimulation of mitochondrial biogenesis, the activation of AMPK, and the prevention of signs of neurodegeneration. These findings are consistent with other reports showing that physical exercise has positive effects on hormesis.
Collapse
Affiliation(s)
- S. Bayod
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona
- Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona; and
| | - J. del Valle
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona
- Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona; and
| | - A. M. Canudas
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona
- Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona; and
| | - J. F. Lalanza
- Department de Psiquiatria i Medicina Legal, Institut de Neurociencies, Fac de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - S. Sanchez-Roige
- Department de Psiquiatria i Medicina Legal, Institut de Neurociencies, Fac de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - A. Camins
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona
- Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona; and
| | - R. M. Escorihuela
- Department de Psiquiatria i Medicina Legal, Institut de Neurociencies, Fac de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - M. Pallàs
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona
- Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona; and
| |
Collapse
|
46
|
Kohman RA, Rodriguez-Zas SL, Southey BR, Kelley KW, Dantzer R, Rhodes JS. Voluntary wheel running reverses age-induced changes in hippocampal gene expression. PLoS One 2011; 6:e22654. [PMID: 21857943 PMCID: PMC3152565 DOI: 10.1371/journal.pone.0022654] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/27/2011] [Indexed: 12/18/2022] Open
Abstract
Normal aging alters expression of numerous genes within the brain. Some of these transcription changes likely contribute to age-associated cognitive decline, reduced neural plasticity, and the higher incidence of neuropathology. Identifying factors that modulate brain aging is crucial for improving quality of life. One promising intervention to counteract negative effects of aging is aerobic exercise. Aged subjects that exercise show enhanced cognitive performance and increased hippocampal neurogenesis and synaptic plasticity. Currently, the mechanisms behind the anti-aging effects of exercise are not understood. The present study conducted a microarray on whole hippocampal samples from adult (3.5-month-old) and aged (18-month-old) male BALB/c mice that were individually housed with or without running wheels for 8 weeks. Results showed that aging altered genes related to chromatin remodeling, cell growth, immune activity, and synapse organization compared to adult mice. Exercise was found to modulate many of the genes altered by aging, but in the opposite direction. For example, wheel running increased expression of genes related to cell growth and attenuated expression of genes involved in immune function and chromatin remodeling. Collectively, findings show that even late-onset exercise may attenuate age-related changes in gene expression and identifies possible pathways through which exercise may exert its beneficial effects.
Collapse
Affiliation(s)
- Rachel A Kohman
- Department of Psychology, Beckman Institute, University of Illinois, Urbana, Illinois, United States of America.
| | | | | | | | | | | |
Collapse
|
47
|
Åberg D, Jood K, Blomstrand C, Jern C, Nilsson M, Isgaard J, Aberg ND. Serum IGF-I levels correlate to improvement of functional outcome after ischemic stroke. J Clin Endocrinol Metab 2011; 96:E1055-64. [PMID: 21508132 DOI: 10.1210/jc.2010-2802] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT AND OBJECTIVE GH has positive cognitive effects when given to GH-IGF-I-deficient patients. GH and IGF-I exert both neuroprotective and regenerative effects on experimental stroke. We investigated whether the endogenous serum IGF-I (s-IGF-I) levels correlated with recovery of functional independence in patients who had suffered an ischemic stroke. SUBJECTS AND METHODS The s-IGF-I levels were measured in 407 patients (260 males, 147 females) with mean age of 55 (range, 18-69) yr and 40 randomly selected matched controls who were previously included in the Sahlgrenska Academy Study on Ischemic Stroke. Serum samples were collected on two occasions: acutely at 1-10 d (median, 4 d) after stroke and 3 months after the stroke. Recovery after ischemic stroke was evaluated using the modified Rankin scale 3 and 24 months after the stroke, and the Scandinavian Stroke Scale was used for assessments during the acute stage and 3 months after the stroke. RESULTS The s-IGF-I levels were higher in the acute stage than after 3 months and compared with the controls (P < 0.001 and P < 0.01, respectively), and the s-IGF-I levels were progressively lower in the elderly patients. The levels of s-IGF-I in the acute phase and after 3 months both positively correlated with improvement in the modified Rankin scale scores between 3 and 24 months (P = 0.001; r = 0.174, and P < 0.001; r = 0.24, respectively). CONCLUSION A high s-IGF-I during the rehabilitation phase of stroke correlates to better recovery of long-term function.
Collapse
Affiliation(s)
- Daniel Åberg
- Laboratory of Experimental Endocrinology, Sahlgrenska University Hospital, The SahlgrenskaAcademy at University of Gothenburg, SE-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Both healthy aging and the pathologic incidence of disorders associated with aging involve an array of debilities. Physical exercise harnesses implicit and inherent biologic characteristics amenable to the putative interventional influences under clinical, institutional or laboratory conditions. The neurodegenerative and pathophysiologic progressions that constitute Alzheimer's disease (AD), amnestic mild cognitive impairment (aMCI), normal aging, and different animal models of AD have shown the existence of several putative mechanisms. A large variety of moderating factors have demonstrated that the ever-proliferating plethora of neurotrophic factors, neurogenesis as observed through generality of expression and neuronal arborization. The insistent efficacy of brain vascular angiogenesis may delay also the comorbid incidence of depressive disorders with dementia pathology. The pathogenesis of aging may be contained by selective treatments: these diverse conditions, linked to the basis of the aging concept, have been shown, to greater or lesser extents, to respond to a variety of scheduled applications of physical exercise. The range of reports that provide accounts of the mechanisms mediating the positive progressive response to exercise intervention is far-ranging; these studies indicate that subtle changes at molecular, neuronal, vascular and epigenetic levels may exert notable consequence at functional expression and, perhaps most essentially, offer convincing expectancy of significant benefits.
Collapse
Affiliation(s)
- T Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
49
|
Bednarczyk MR, Hacker LC, Fortin-Nunez S, Aumont A, Bergeron R, Fernandes KJ. Distinct stages of adult hippocampal neurogenesis are regulated by running and the running environment. Hippocampus 2010; 21:1334-47. [DOI: 10.1002/hipo.20831] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2010] [Indexed: 12/13/2022]
|
50
|
Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neurosci Lett 2010; 479:161-5. [DOI: 10.1016/j.neulet.2010.05.058] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 05/05/2010] [Accepted: 05/20/2010] [Indexed: 11/22/2022]
|