1
|
Sun Y, Yu H, Guan Y. Glia Connect Inflammation and Neurodegeneration in Multiple Sclerosis. Neurosci Bull 2023; 39:466-478. [PMID: 36853544 PMCID: PMC10043151 DOI: 10.1007/s12264-023-01034-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
Affiliation(s)
- Ye Sun
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
|
3
|
Papiri G, D’Andreamatteo G, Cacchiò G, Alia S, Silvestrini M, Paci C, Luzzi S, Vignini A. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol 2023; 45:1443-1470. [PMID: 36826039 PMCID: PMC9954863 DOI: 10.3390/cimb45020094] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Multiple sclerosis (MS) represents the most common acquired demyelinating disorder of the central nervous system (CNS). Its pathogenesis, in parallel with the well-established role of mechanisms pertaining to autoimmunity, involves several key functions of immune, glial and nerve cells. The disease's natural history is complex, heterogeneous and may evolve over a relapsing-remitting (RRMS) or progressive (PPMS/SPMS) course. Acute inflammation, driven by infiltration of peripheral cells in the CNS, is thought to be the most relevant process during the earliest phases and in RRMS, while disruption in glial and neural cells of pathways pertaining to energy metabolism, survival cascades, synaptic and ionic homeostasis are thought to be mostly relevant in long-standing disease, such as in progressive forms. In this complex scenario, many mechanisms originally thought to be distinctive of neurodegenerative disorders are being increasingly recognized as crucial from the beginning of the disease. The present review aims at highlighting mechanisms in common between MS, autoimmune diseases and biology of neurodegenerative disorders. In fact, there is an unmet need to explore new targets that might be involved as master regulators of autoimmunity, inflammation and survival of nerve cells.
Collapse
Affiliation(s)
- Giulio Papiri
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Giordano D’Andreamatteo
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Gabriella Cacchiò
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Sonila Alia
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Mauro Silvestrini
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Cristina Paci
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Simona Luzzi
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| |
Collapse
|
4
|
Herrera-Imbroda J, Flores-López M, Ruiz-Sastre P, Gómez-Sánchez-Lafuente C, Bordallo-Aragón A, Rodríguez de Fonseca F, Mayoral-Cleríes F. The Inflammatory Signals Associated with Psychosis: Impact of Comorbid Drug Abuse. Biomedicines 2023; 11:biomedicines11020454. [PMID: 36830990 PMCID: PMC9953424 DOI: 10.3390/biomedicines11020454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Psychosis and substance use disorders are two diagnostic categories whose association has been studied for decades. In addition, both psychosis spectrum disorders and drug abuse have recently been linked to multiple pro-inflammatory changes in the central nervous system. We have carried out a narrative review of the literature through a holistic approach. We used PubMed as our search engine. We included in the review all relevant studies looking at pro-inflammatory changes in psychotic disorders and substance use disorders. We found that there are multiple studies that relate various pro-inflammatory lipids and proteins with psychosis and substance use disorders, with an overlap between the two. The main findings involve inflammatory mediators such as cytokines, chemokines, endocannabinoids, eicosanoids, lysophospholipds and/or bacterial products. Many of these findings are present in different phases of psychosis and in substance use disorders such as cannabis, cocaine, methamphetamines, alcohol and nicotine. Psychosis and substance use disorders may have a common origin in an abnormal neurodevelopment caused, among other factors, by a neuroinflammatory process. A possible convergent pathway is that which interrelates the transcriptional factors NFκB and PPARγ. This may have future clinical implications.
Collapse
Affiliation(s)
- Jesús Herrera-Imbroda
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Departamento de Farmacología y Pediatría, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - María Flores-López
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Psicología, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Paloma Ruiz-Sastre
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Correspondence: (P.R.-S.); (C.G.-S.-L.)
| | - Carlos Gómez-Sánchez-Lafuente
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Psicología, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Correspondence: (P.R.-S.); (C.G.-S.-L.)
| | - Antonio Bordallo-Aragón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fermín Mayoral-Cleríes
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
5
|
Romero MC, Merken L, Janssen P, Davare M. Neural effects of continuous theta-burst stimulation in macaque parietal neurons. eLife 2022; 11:e65536. [PMID: 36097816 PMCID: PMC9470151 DOI: 10.7554/elife.65536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Theta-burst transcranial magnetic stimulation (TBS) has become a standard non-invasive technique to induce offline changes in cortical excitability in human volunteers. Yet, TBS suffers from a high variability across subjects. A better knowledge about how TBS affects neural activity in vivo could uncover its mechanisms of action and ultimately allow its mainstream use in basic science and clinical applications. To address this issue, we applied continuous TBS (cTBS, 300 pulses) in awake behaving rhesus monkeys and quantified its after-effects on neuronal activity. Overall, we observed a pronounced, long-lasting, and highly reproducible reduction in neuronal excitability after cTBS in individual parietal neurons, with some neurons also exhibiting periods of hyperexcitability during the recovery phase. These results provide the first experimental evidence of the effects of cTBS on single neurons in awake behaving monkeys, shedding new light on the reasons underlying cTBS variability.
Collapse
Affiliation(s)
- Maria C Romero
- Laboratorium voor Neuro- en Psychofysiologie, The Leuven Brain InstituteLeuvenBelgium
| | - Lara Merken
- Laboratorium voor Neuro- en Psychofysiologie, The Leuven Brain InstituteLeuvenBelgium
| | - Peter Janssen
- Laboratorium voor Neuro- en Psychofysiologie, The Leuven Brain InstituteLeuvenBelgium
| | - Marco Davare
- Faculty of Life Sciences and Medicine, King's College LondonLondonUnited Kingdom
| |
Collapse
|
6
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
7
|
van Kessel E, Berendsen S, Baumfalk AE, Venugopal H, Krijnen EA, Spliet WGM, van Hecke W, Giuliani F, Seute T, van Zandvoort MJE, Snijders TJ, Robe PA. Tumor-related molecular determinants of neurocognitive deficits in patients with diffuse glioma. Neuro Oncol 2022; 24:1660-1670. [PMID: 35148403 PMCID: PMC9527514 DOI: 10.1093/neuonc/noac036] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cognitive impairment is a common and debilitating symptom in patients with diffuse glioma, and is the result of multiple factors. We hypothesized that molecular tumor characteristics influence neurocognitive functioning (NCF), and aimed to identify tumor-related markers of NCF in diffuse glioma patients. METHODS We examined the relation between cognitive performance (executive function, memory, and psychomotor speed) and intratumoral expression levels of molecular markers in treatment-naive patients with diffuse glioma. We performed a single-center study in a consecutive cohort, through a two-step design: (1) hypothesis-free differential expression and gene set enrichment analysis to identify candidate oncogenetic markers for cognitive impairment. Nineteen molecular markers of interest were derived from this set of genes, as well as from prior knowledge; (2) correlation of cognitive performance to intratumoral expression levels of these nineteen molecular markers, measured with immunohistochemistry. RESULTS From 708 included patients with immunohistochemical data, we performed an in-depth analysis of neuropsychological data in 197, and differential expression analysis in 65 patients. After correcting for tumor volume and location, we found significant associations between expression levels of CD3 and IDH-1 and psychomotor speed; between IDH-1, ATRX, NLGN3, BDNF, CK2Beta, EAAT1, GAT-3, SRF, and memory performance; and between IDH-1, P-STAT5b, NLGN3, CK2Beta, and executive functioning. P-STAT5b, CD163, CD3, and Semaphorin-3A were independently associated after further correction for histopathological grade. CONCLUSION Molecular characteristics of glioma can be independent determinants of patients' cognitive functioning. This suggests that besides tumor volume, location, and histological grade, variations in glioma biology influence cognitive performance through mechanisms that include perturbation of neuronal communication. These results pave the way towards targeted cognition improving therapies in neuro-oncology.
Collapse
Affiliation(s)
- Emma van Kessel
- Corresponding Author: Emma van Kesssel, MD, University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, internal address G03.232, PO Box 85500, 3508 XC Utrecht, The Netherlands ()
| | - Sharon Berendsen
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Anniek E Baumfalk
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Hema Venugopal
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Eva A Krijnen
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Wim G M Spliet
- University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | - Wim van Hecke
- University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | - Fabrizio Giuliani
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Tatjana Seute
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
8
|
Stampanoni Bassi M, Iezzi E, Centonze D. Multiple sclerosis: Inflammation, autoimmunity and plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:457-470. [PMID: 35034754 DOI: 10.1016/b978-0-12-819410-2.00024-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, experimental studies have clarified that immune system influences the functioning of the central nervous system (CNS) in both physiologic and pathologic conditions. The neuro-immune crosstalk plays a crucial role in neuronal development and may be critically involved in mediating CNS response to neuronal damage. Multiple sclerosis (MS) represents a good model to investigate how the immune system regulates neuronal activity. Accordingly, a growing body of evidence has demonstrated that increased levels of pro-inflammatory mediators may significantly impact synaptic mechanisms, influencing overall neuronal excitability and synaptic plasticity expression. In this chapter, we provide an overview of preclinical data and clinical studies exploring synaptic functioning noninvasively with transcranial magnetic stimulation (TMS) in patients with MS. Moreover, we examine how inflammation-driven synaptic dysfunction could affect synaptic plasticity expression, negatively influencing the MS course. Contrasting CSF inflammation together with pharmacologic enhancement of synaptic plasticity and application of noninvasive brain stimulation, alone or in combination with rehabilitative treatments, could improve the clinical compensation and prevent the accumulating deterioration in MS.
Collapse
Affiliation(s)
| | - Ennio Iezzi
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy; Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy.
| |
Collapse
|
9
|
Chaves AR, Kenny HM, Snow NJ, Pretty RW, Ploughman M. Sex-specific disruption in corticospinal excitability and hemispheric (a)symmetry in multiple sclerosis. Brain Res 2021; 1773:147687. [PMID: 34634288 DOI: 10.1016/j.brainres.2021.147687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Multiple Sclerosis (MS) is a neurodegenerative disease in which pathophysiology and symptom progression presents differently between the sexes. In a cohort of people with MS (n = 110), we used transcranial magnetic stimulation (TMS) to investigate sex differences in corticospinal excitability (CSE) and sex-specific relationships between CSE and cognitive function. Although demographics and disease characteristics did not differ between sexes, males were more likely to have cognitive impairment as measured by the Montreal Cognitive Assessment (MoCA); 53.3% compared to females at 26.3%. Greater CSE asymmetry was noted in females compared to males. Females demonstrated higher active motor thresholds and longer silent periods in the hemisphere corresponding to the weaker hand which was more typical of hand dominance patterns in healthy individuals. Males, but not females, exhibited asymmetry of nerve conduction latency (delayed MEP latency in the hemisphere corresponding to the weaker hand). In males, there was also a relationship between delayed onset of ipsilateral silent period (measured in the hemisphere corresponding to the weaker hand) and MoCA, suggestive of cross-callosal disruption. Our findings support that a sex-specific disruption in CSE exists in MS, pointing to interhemispheric disruption as a potential biomarker of cognitive impairment and target for neuromodulating therapies.
Collapse
Affiliation(s)
- Arthur R Chaves
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Hannah M Kenny
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Nicholas J Snow
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Ryan W Pretty
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
10
|
Exercise protects from hippocampal inflammation and neurodegeneration in experimental autoimmune encephalomyelitis. Brain Behav Immun 2021; 98:13-27. [PMID: 34391817 DOI: 10.1016/j.bbi.2021.08.212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise is increasingly recommended as a supportive therapy for people with Multiple Sclerosis (pwMS). While clinical research has still not disclosed the real benefits of exercise on MS disease, animal studies suggest a substantial beneficial effect on motor disability and pathological hallmarks such as central and peripheral dysregulated immune response. The hippocampus, a core area for memory formation and learning, is a brain region involved in MS pathophysiology. Human and rodent studies suggest that the hippocampus is highly sensitive to the effects of exercise, the impact of which on MS hippocampal damage is still elusive. Here we addressed the effects of chronic voluntary exercise on hippocampal function and damage in experimental autoimmune encephalomyelitis (EAE), animal model of MS. Mice were housed in standard or wheel-equipped cages starting from the day of immunization and throughout the disease course. Although running activity was reduced during the symptomatic phase, exercise significantly ameliorated motor disability. Exercise improved cognition that was assessed through the novel object recognition test and the nest building in presymptomatic and acute stages of the disease, respectively. In the acute phase exercise was shown to prevent EAE-induced synaptic plasticity abnormalities in the CA1 area, by promoting the survival of parvalbumin-positive (PV+) interneurons and by attenuating inflammation. Indeed, exercise significantly reduced microgliosis in the CA1 area, the expression of tumour necrosis factor (TNF) in microglia and, to a lesser extent, the hippocampal level of interleukin 1 beta (IL-1β), previously shown to contribute to aberrant synaptic plasticity in the EAE hippocampus. Notably, exercise exerted a precocious and long-lasting mitigating effect on microgliosis that preceded its neuroprotective action, likely underlying the improved cognitive function observed in both presymptomatic and acute phase EAE mice. Overall, these data provide evidence that regular exercise improves cognitive function and synaptic and neuronal pathology that typically affect EAE/MS brains.
Collapse
|
11
|
Shaker T, Chattopadhyaya B, Amilhon B, Cristo GD, Weil AG. Transduction of inflammation from peripheral immune cells to the hippocampus induces neuronal hyperexcitability mediated by Caspase-1 activation. Neurobiol Dis 2021; 160:105535. [PMID: 34673150 DOI: 10.1016/j.nbd.2021.105535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/30/2021] [Accepted: 10/17/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Recent studies report infiltration of peripheral blood mononuclear cells (PBMCs) into the central nervous system (CNS) in epileptic disorders, suggestive of a potential contribution of PBMC extravasation to the generation of seizures. Nevertheless, the underlying mechanisms involved in PBMC infiltrates promoting neuronal predisposition to ictogenesis remain unclear. Therefore, we developed an in vitro model mimicking infiltration of activated PBMCs into the brain in order to investigate potential transduction of inflammatory signals from PBMCs to the CNS. METHODS To establish our model, we first extracted PBMCs from rat spleen, then, immunologically primed PBMCs with lipopolysaccharide (LPS), followed by further activation with nigericin. Thereafter, we co-cultured these activated PBMCs with organotypic cortico-hippocampal brain slice cultures (OCHSCs) derived from the same rat, and compared PBMC-OCHSC co-cultures to OCHSCs exposed to PBMCs in the culture media. We further targeted a potential molecular pathway underlying transduction of peripheral inflammation to OCHSCs by incubating OCHSCs with the Caspase-1 inhibitor VX-765 prior to co-culturing PBMCs with OCHSCs. After 24 h, we analyzed inflammation markers in the cortex and the hippocampus using semiquantitative immunofluorescence. In addition, we analyzed neuronal activity by whole-cell patch-clamp recordings in cortical layer II/III and hippocampal CA1 pyramidal neurons. RESULTS In the cortex, co-culturing immunoreactive PBMCs treated with LPS + nigericin on top of OCHSCs upregulated inflammatory markers and enhanced neuronal excitation. In contrast, no excitability changes were detected after adding primed PBMCs (i.e. treated with LPS only), to OCHSCs. Strikingly, in the hippocampus, both immunoreactive and primed PBMCs elicited similar pro-inflammatory and pro-excitatory effects. However, when immunoreactive and primed PBMCs were cultured in the media separately from OCHSCs, only immunoreactive PBMCs gave rise to neuroinflammation and hyperexcitability in the hippocampus, whereas primed PBMCs failed to produce any significant changes. Finally, VX-765 application to OCHSCs, co-cultured with either immunoreactive or primed PBMCs, prevented neuroinflammation and hippocampal hyperexcitability in OCHSCs. CONCLUSIONS Our study shows a higher susceptibility of the hippocampus to peripheral inflammation as compared to the cortex, mediated via Caspase-1-dependent signaling pathways. Thus, our findings suggest that Caspase-1 inhibition may potentially provide therapeutic benefits during hippocampal neuroinflammation and hyperexcitability secondary to peripheral innate immunity.
Collapse
Affiliation(s)
- Tarek Shaker
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada.
| | | | - Bénédicte Amilhon
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada
| | - Graziella Di Cristo
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada
| | - Alexander G Weil
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada.
| |
Collapse
|
12
|
Lucerne KE, Kiraly DD. The role of gut-immune-brain signaling in substance use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:311-370. [PMID: 33648673 DOI: 10.1016/bs.irn.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Substance use disorders (SUDs) are debilitating neuropsychiatric conditions that exact enormous costs in terms of loss of life and individual suffering. While much progress has been made defining the neurocircuitry and intracellular signaling cascades that contribute to SUDs, these studies have yielded limited effective treatment options. This has prompted greater exploration of non-traditional targets in addiction. Emerging data suggest inputs from peripheral systems, such as the immune system and the gut microbiome, impact multiple neuropsychiatric diseases, including SUDs. Until recently the gut microbiome, peripheral immune system, and the CNS have been studied independently; however, current work shows the gut microbiome and immune system critically interact to modulate brain function. Additionally, the gut microbiome and immune system intimately regulate one another via extensive bidirectional communication. Accumulating evidence suggests an important role for gut-immune-brain communication in the pathogenesis of substance use disorders. Thus, a better understanding of gut-immune-brain signaling could yield important insight to addiction pathology and potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
13
|
Interleukin-1β Alters Hebbian Synaptic Plasticity in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21196982. [PMID: 32977401 PMCID: PMC7584038 DOI: 10.3390/ijms21196982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
In multiple sclerosis (MS), inflammation alters synaptic transmission and plasticity, negatively influencing the disease course. In the present study, we aimed to explore the influence of the proinflammatory cytokine IL-1β on peculiar features of associative Hebbian synaptic plasticity, such as input specificity, using the paired associative stimulation (PAS). In 33 relapsing remitting-MS patients and 15 healthy controls, PAS was performed on the abductor pollicis brevis (APB) muscle. The effects over the motor hot spot of the APB and abductor digiti minimi (ADM) muscles were tested immediately after PAS and 15 and 30 min later. Intracortical excitability was tested with paired-pulse transcranial magnetic stimulation (TMS). The cerebrospinal fluid (CSF) levels of IL-1β were calculated. In MS patients, PAS failed to induce long-term potentiation (LTP)-like effects in the APB muscle and elicited a paradoxical motor-evoked potential (MEP) increase in the ADM. IL-1β levels were negatively correlated with the LTP-like response in the APB muscle. Moreover, IL-1β levels were associated with synaptic hyperexcitability tested with paired-pulse TMS. Synaptic hyperexcitability caused by IL-1β may critically contribute to alter Hebbian plasticity in MS, inducing a loss of topographic specificity.
Collapse
|
14
|
Bruno A, Dolcetti E, Rizzo FR, Fresegna D, Musella A, Gentile A, De Vito F, Caioli S, Guadalupi L, Bullitta S, Vanni V, Balletta S, Sanna K, Buttari F, Stampanoni Bassi M, Centonze D, Mandolesi G. Inflammation-Associated Synaptic Alterations as Shared Threads in Depression and Multiple Sclerosis. Front Cell Neurosci 2020; 14:169. [PMID: 32655374 PMCID: PMC7324636 DOI: 10.3389/fncel.2020.00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
In the past years, several theories have been advanced to explain the pathogenesis of Major Depressive Disorder (MDD), a neuropsychiatric disease that causes disability in general population. Several theories have been proposed to define the MDD pathophysiology such as the classic "monoamine-theory" or the "glutamate hypothesis." All these theories have been recently integrated by evidence highlighting inflammation as a pivotal player in developing depressive symptoms. Proinflammatory cytokines have been indeed claimed to contribute to stress-induced mood disturbances and to major depression, indicating a widespread role of classical mediators of inflammation in emotional control. Moreover, during systemic inflammatory diseases, peripherally released cytokines circulate in the blood, reach the brain and cause anxiety, anhedonia, social withdrawal, fatigue, and sleep disturbances. Accordingly, chronic inflammatory disorders, such as the inflammatory autoimmune disease multiple sclerosis (MS), have been associated to higher risk of MDD, in comparison with overall population. Importantly, in both MS patients and in its experimental mouse model, Experimental Autoimmune Encephalomyelitis (EAE), the notion that depressive symptoms are reactive epiphenomenon to the MS pathology has been recently challenged by the evidence of their early manifestation, even before the onset of the disease. Furthermore, in association to such mood disturbance, inflammatory-dependent synaptic dysfunctions in several areas of MS/EAE brain have been observed independently of brain lesions and demyelination. This evidence suggests that a fine interplay between the immune and nervous systems can have a huge impact on several neurological functions, including depressive symptoms, in different pathological conditions. The aim of the present review is to shed light on common traits between MDD and MS, by looking at inflammatory-dependent synaptic alterations associated with depression in both diseases.
Collapse
Affiliation(s)
- Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| | | | - Francesca De Vito
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | - Silvia Caioli
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sara Balletta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Krizia Sanna
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | | | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| |
Collapse
|
15
|
Atabaki R, Roohbakhsh A, Moghimi A, Mehri S. Protective effects of maternal administration of curcumin and hesperidin in the rat offspring following repeated febrile seizure: Role of inflammation and TLR4. Int Immunopharmacol 2020; 86:106720. [PMID: 32585605 DOI: 10.1016/j.intimp.2020.106720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Neuroinflammation has a key role in seizure generation and perpetuation in the neonatal period, and toll-like receptor 4 (TLR4) pathway has a prominent role in neuroinflammatory diseases. Administration of antioxidants and targeting TLR4 in the embryonic period may protect rat offspring against the next incidence of febrile seizure and its harmful effects. Curcumin and hesperidin are natural compounds with anti-inflammatory and antioxidant properties and have an inhibitory action on TLR4 receptors. We evaluated the effect of maternal administration of curcumin and hesperidin on infantile febrile seizure and subsequent memory dysfunction in adulthood. Hyperthermia febrile seizure was induced on postnatal days 9-11 on male rat pups with 24 h intervals, in a Plexiglas box that was heated to ~45 °C by a heat lamp. We used enzyme-linked immunosorbent assay, Western blotting, malondialdehyde (MDA), and glutathione (GSH) assessment for evaluation of inflammatory cytokine levels, TLR4 protein expression, and oxidative responses in the hippocampal tissues. For assessing working memory and long-term potentiation, the double Y-maze test and Schaffer collateral-CA1 in vivo electrophysiological recording were performed, respectively Our results showed that curcumin and hesperidin decreased TNF-α, IL-10, and TLR4 protein expression and reversed memory dysfunction. However, they did not provoke a significant effect on GSH content or amplitude and slope of recorded fEPSPs in the hippocampus. In addition, curcumin, but not hesperidin, decreased interleukin-1β (IL-1β) and MDA levels. These findings imply that curcumin and hesperidin induced significant protective effects on febrile seizures, possibly via their anti-inflammatory and antioxidant properties and downregulation of TLR4.
Collapse
Affiliation(s)
- Rabi Atabaki
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Moghimi
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran.
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Ferrazzano G, Crisafulli SG, Baione V, Tartaglia M, Cortese A, Frontoni M, Altieri M, Pauri F, Millefiorini E, Conte A. Early diagnosis of secondary progressive multiple sclerosis: focus on fluid and neurophysiological biomarkers. J Neurol 2020; 268:3626-3645. [PMID: 32504180 DOI: 10.1007/s00415-020-09964-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Most patients with multiple sclerosis presenting with a relapsing-remitting disease course at diagnosis transition to secondary progressive multiple sclerosis (SPMS) 1-2 decades after onset. SPMS is characterized by predominant neurodegeneration and atrophy. These pathogenic hallmarks result in unsatisfactory treatment response in SPMS patients. Therefore, early diagnosis of SPMS is necessary for prompt treatment decisions. The aim of this review was to assess neurophysiological and fluid biomarkers that have the potential to monitor disease progression and support early SPMS diagnosis. METHODS We performed a systematic review of studies that analyzed the role of neurophysiological techniques and fluid biomarkers in supporting SPMS diagnosis using the preferred reporting items for systematic reviews and meta-analyses statement. RESULTS From our initial search, we selected 24 relevant articles on neurophysiological biomarkers and 55 articles on fluid biomarkers. CONCLUSION To date, no neurophysiological or fluid biomarker is sufficiently validated to support the early diagnosis of SPMS. Neurophysiological measurements, including short interval intracortical inhibition and somatosensory temporal discrimination threshold, and the neurofilament light chain fluid biomarker seem to be the most promising. Cross-sectional studies on an adequate number of patients followed by longitudinal studies are needed to confirm the diagnostic and prognostic value of these biomarkers. A combination of neurophysiological and fluid biomarkers may be more sensitive in detecting SPMS conversion.
Collapse
Affiliation(s)
- Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Tartaglia
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Cortese
- Multiple Sclerosis Center, San Filippo Neri Hospital, Rome, Italy
| | - Marco Frontoni
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marta Altieri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Flavia Pauri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
17
|
Effect of sildenafil on neuroinflammation and synaptic plasticity pathways in experimental autoimmune encephalomyelitis. Int Immunopharmacol 2020; 85:106581. [PMID: 32442900 DOI: 10.1016/j.intimp.2020.106581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic immuno-inflammatory disease of the central nervous system characterized by demyelination and axonal damage. Cognitive changes are common in individuals with MS since inflammatory molecules secreted by microglia interfere with the physiological mechanisms of synaptic plasticity. According to previous data, inhibition of PDE5 promotes the accumulation of cGMP, which inhibits neuroinflammation and seems to improve synaptic plasticity and memory. The present study aimed to evaluate the effect of sildenafil on the signaling pathways of neuroinflammation and synaptic plasticity in experimental autoimmune encephalomyelitis (EAE). C57BL/6 mice were divided into three experimental groups (n = 10/group): (a) Control; (b) EAE; (c) EAE + sild (25 mg/kg/21 days). Sildenafil was able to delay the onset and attenuate the severity of the clinical symptoms of EAE. The drug also reduced the infiltration of CD4+ T lymphocytes and their respective IL-17 and TNF-α cytokines. Moreover, sildenafil reduced neuroinflammation in the hippocampus (assessed by the reduction of inflammatory markers IL-1β, pIKBα and pNFkB and reactive gliosis, as well as elevating the inhibitory cytokines TGF-β and IL-10). Moreover, sildenafil induced increased levels of NeuN, BDNF and pCREB, protein kinases (PKA, PKG, and pERK) and synaptophysin, and modulated the expression of the glutamate receptors AMPA and NMDA. The present findings demonstrated that sildenafil has therapeutic potential for cognitive deficit associated with multiple sclerosis.
Collapse
|
18
|
Modeling Resilience to Damage in Multiple Sclerosis: Plasticity Meets Connectivity. Int J Mol Sci 2019; 21:ijms21010143. [PMID: 31878257 PMCID: PMC6981966 DOI: 10.3390/ijms21010143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 02/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelinating white matter lesions and neurodegeneration, with a variable clinical course. Brain network architecture provides efficient information processing and resilience to damage. The peculiar organization characterized by a low number of highly connected nodes (hubs) confers high resistance to random damage. Anti-homeostatic synaptic plasticity, in particular long-term potentiation (LTP), represents one of the main physiological mechanisms underlying clinical recovery after brain damage. Different types of synaptic plasticity, including both anti-homeostatic and homeostatic mechanisms (synaptic scaling), contribute to shape brain networks. In MS, altered synaptic functioning induced by inflammatory mediators may represent a further cause of brain network collapse in addition to demyelination and grey matter atrophy. We propose that impaired LTP expression and pathologically enhanced upscaling may contribute to disrupting brain network topology in MS, weakening resilience to damage and negatively influencing the disease course.
Collapse
|
19
|
Stampanoni Bassi M, Buttari F, Maffei P, De Paolis N, Sancesario A, Gilio L, Pavone L, Pasqua G, Simonelli I, Sica F, Fantozzi R, Bellantonio P, Centonze D, Iezzi E. Practice-dependent motor cortex plasticity is reduced in non-disabled multiple sclerosis patients. Clin Neurophysiol 2019; 131:566-573. [PMID: 31818686 DOI: 10.1016/j.clinph.2019.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/19/2019] [Accepted: 10/16/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Skill acquisition after motor training involves synaptic long-term potentiation (LTP) in primary motor cortex (M1). In multiple sclerosis (MS), LTP failure ensuing from neuroinflammation could contribute to worsen clinical recovery. We therefore addressed whether practice-dependent plasticity is altered in MS. METHODS Eighteen relapsing-remitting (RR)-MS patients and eighteen healthy controls performed 600 fast abductions of index finger in 30 blocks of 20 movements. Before and after practice, transcranial magnetic stimulation (TMS) was delivered over the hot spot of the trained first dorsal interosseous muscle. Movements kinematics, measures of cortical excitability, and the input/output curves of motor evoked potentials (MEPs) were assessed. RESULTS Kinematic variables of movement improved with practice in patients and controls to a similar extent, although patients showed lower MEPs amplitude increase after practice. Practice did not change the difference in resting motor threshold values observed between patients and controls, nor did modulate short-interval intracortical inhibition. Clinical/radiological characteristics were not associated to practice-dependent effects. CONCLUSIONS Practice-induced reorganization of M1 is altered in non-disabled RR-MS patients, as shown by impaired MEPs modulation after motor learning. SIGNIFICANCE These findings suggest that in RR-MS physiological mechanisms of practice-dependent plasticity are altered.
Collapse
Affiliation(s)
- Mario Stampanoni Bassi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Pierpaolo Maffei
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Nicla De Paolis
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Andrea Sancesario
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Luana Gilio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Luigi Pavone
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Gabriele Pasqua
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Ilaria Simonelli
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy; Service of Medical Statistics & Information Technology, Fondazione Fatebenefratelli per la Ricerca e la Formazione Sanitaria e Sociale, Lungotevere de' Cenci 5, 00186 Rome, Italy
| | - Francesco Sica
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Roberta Fantozzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Paolo Bellantonio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy; Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy.
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| |
Collapse
|
20
|
Stampanoni Bassi M, Iezzi E, Mori F, Simonelli I, Gilio L, Buttari F, Sica F, De Paolis N, Mandolesi G, Musella A, De Vito F, Dolcetti E, Bruno A, Furlan R, Finardi A, Marfia GA, Centonze D, Rizzo FR. Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis. Neurorehabil Neural Repair 2019; 33:825-835. [DOI: 10.1177/1545968319868713] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Synaptic plasticity helps in reducing the clinical expression of brain damage and represents a useful mechanism to compensate the negative impact of new brain lesions in multiple sclerosis (MS). Inflammation, altering synaptic plasticity, could negatively influence the disease course in relapsing-remitting MS (RR-MS). Objective: In the present study, we explored whether interleukin (IL)-6, a major proinflammatory cytokine involved in MS pathogenesis, alters synaptic plasticity and affects the ability to compensate for ongoing brain damage. Methods: The effect of IL-6 incubation on long-term potentiation (LTP) induction was explored in vitro, in mice hippocampal slices. We also explored the correlation between the cerebrospinal fluid (CSF) levels of this cytokine and the LTP-like effect induced by the paired associative stimulation (PAS) in a group of RR-MS patients. Finally, we examined the correlation between the CSF levels of IL-6 at the time of diagnosis and the prospective disease activity in a cohort of 150 RR-MS patients. Results: In vitro LTP induction was abolished by IL-6. Consistently, in patients with MS, a negative correlation emerged between IL-6 CSF concentrations and the effect of PAS. In MS patients, longer disease duration before diagnosis was associated with higher IL-6 CSF concentrations. In addition, elevated CSF levels of IL-6 were associated with greater clinical expression of new inflammatory brain lesions, unlike in patients with low or absent IL-6 concentrations, who had a better disease course. Conclusions: IL-6 interfering with synaptic plasticity mechanisms may impair the ability to compensate the clinical manifestation of new brain lesions in RR-MS patients.
Collapse
Affiliation(s)
- Mario Stampanoni Bassi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
- Tor Vergata University, Department of Systems Medicine, Via Montpellier 1, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Mori
- Tor Vergata University, Department of Systems Medicine, Via Montpellier 1, Rome, Italy
| | - Ilaria Simonelli
- Fondazione Fatebenefratelli per la Ricerca e la Formazione Sanitaria e Sociale, Rome, Italy
| | - Luana Gilio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
- Tor Vergata University, Department of Systems Medicine, Via Montpellier 1, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Sica
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Nicla De Paolis
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Georgia Mandolesi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, Rome, Italy
- San Raffaele University, Via di Val Cannuta 247, Rome, Italy
| | - Alessandra Musella
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, Rome, Italy
- San Raffaele University, Via di Val Cannuta 247, Rome, Italy
| | - Francesca De Vito
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Ettore Dolcetti
- Tor Vergata University, Department of Systems Medicine, Via Montpellier 1, Rome, Italy
| | - Antonio Bruno
- Tor Vergata University, Department of Systems Medicine, Via Montpellier 1, Rome, Italy
| | | | | | - Girolama A. Marfia
- Tor Vergata University, Department of Systems Medicine, Via Montpellier 1, Rome, Italy
| | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
- Tor Vergata University, Department of Systems Medicine, Via Montpellier 1, Rome, Italy
| | | |
Collapse
|
21
|
Gentile A, De Vito F, Fresegna D, Rizzo FR, Bullitta S, Guadalupi L, Vanni V, Buttari F, Stampanoni Bassi M, Leuti A, Chiurchiù V, Marfia GA, Mandolesi G, Centonze D, Musella A. Peripheral T cells from multiple sclerosis patients trigger synaptotoxic alterations in central neurons. Neuropathol Appl Neurobiol 2019; 46:160-170. [DOI: 10.1111/nan.12569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/22/2019] [Indexed: 01/03/2023]
Affiliation(s)
- A. Gentile
- Synaptic Immunopathology Lab Department of Systems Medicine University of Rome Tor Vergata Rome Italy
- Synaptic Immunopathology Lab IRCCS San Raffaele Rome Italy
| | - F. De Vito
- Unit of Neurology IRCCS Neuromed Pozzilli Italy
| | - D. Fresegna
- Synaptic Immunopathology Lab IRCCS San Raffaele Rome Italy
| | - F. R. Rizzo
- Synaptic Immunopathology Lab Department of Systems Medicine University of Rome Tor Vergata Rome Italy
| | - S. Bullitta
- Synaptic Immunopathology Lab Department of Systems Medicine University of Rome Tor Vergata Rome Italy
- Synaptic Immunopathology Lab IRCCS San Raffaele Rome Italy
| | - L. Guadalupi
- Synaptic Immunopathology Lab Department of Systems Medicine University of Rome Tor Vergata Rome Italy
- Synaptic Immunopathology Lab IRCCS San Raffaele Rome Italy
| | - V. Vanni
- Synaptic Immunopathology Lab IRCCS San Raffaele Rome Italy
| | - F. Buttari
- Unit of Neurology IRCCS Neuromed Pozzilli Italy
| | | | - A. Leuti
- Department of Medicine Campus Bio‐Medico University of Rome Rome Italy
- European Center for Brain Research (CERC)/IRCCS Fondazione Santa Lucia Rome Italy
| | - V. Chiurchiù
- Department of Medicine Campus Bio‐Medico University of Rome Rome Italy
- European Center for Brain Research (CERC)/IRCCS Fondazione Santa Lucia Rome Italy
| | - G. A. Marfia
- Multiple Sclerosis Research Unit Department of Systems Medicine Tor Vergata University Rome Italy
| | - G. Mandolesi
- Synaptic Immunopathology Lab IRCCS San Raffaele Pisana and University San Raffaele Rome Italy
| | - D. Centonze
- Synaptic Immunopathology Lab Department of Systems Medicine University of Rome Tor Vergata Rome Italy
- Unit of Neurology IRCCS Neuromed Pozzilli Italy
| | - A. Musella
- Synaptic Immunopathology Lab IRCCS San Raffaele Pisana and University San Raffaele Rome Italy
| |
Collapse
|
22
|
Herradon G, Ramos-Alvarez MP, Gramage E. Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPβ/ζ Axis: Relevance in Therapeutic Development. Front Pharmacol 2019; 10:377. [PMID: 31031625 PMCID: PMC6474308 DOI: 10.3389/fphar.2019.00377] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a common factor of pathologies such as obesity, type 2 diabetes or neurodegenerative diseases. Chronic inflammation is considered part of the pathogenic mechanisms of different disorders associated with aging. Interestingly, peripheral inflammation and the associated metabolic alterations not only facilitate insulin resistance and diabetes but also neurodegenerative disorders. Therefore, the identification of novel pathways, common to the development of these diseases, which modulate the immune response and signaling is key. It will provide highly relevant information to advance our knowledge of the multifactorial process of aging, and to establish new biomarkers and/or therapeutic targets to counteract the underlying chronic inflammatory processes. One novel pathway that regulates peripheral and central immune responses is triggered by the cytokines pleiotrophin (PTN) and midkine (MK), which bind its receptor, Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, and inactivate its phosphatase activity. In this review, we compile a growing body of knowledge suggesting that PTN and MK modulate the immune response and/or inflammation in different pathologies characterized by peripheral inflammation associated with insulin resistance, such as aging, and in central disorders characterized by overt neuroinflammation, such as neurodegenerative diseases and endotoxemia. Evidence strongly suggests that regulation of the PTN and MK signaling pathways may provide new therapeutic opportunities particularly in those neurological disorders characterized by increased PTN and/or MK cerebral levels and neuroinflammation. Importantly, we discuss existing therapeutics, and others being developed, that modulate these signaling pathways, and their potential use in pathologies characterized by overt neuroinflammation.
Collapse
Affiliation(s)
- Gonzalo Herradon
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - M Pilar Ramos-Alvarez
- Departmento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
23
|
Lazo-Gomez R, Velázquez GDLLG, Mireles-Jacobo D, Sotomayor-Sobrino MA. Mechanisms of neurobehavioral abnormalities in multiple sclerosis: Contributions from neural and immune components. Clin Neurophysiol Pract 2019; 4:39-46. [PMID: 30911699 PMCID: PMC6416523 DOI: 10.1016/j.cnp.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis-related neurobehavioral abnormalities are one of the main components of disability in this disease. The same pathological processes that explain demyelination periods and neurodegeneration also allow the comprehension of neurobehavioral abnormalities. Inflammation in the central nervous system caused by cells of the immune system, especially lymphocytes, and by resident cells, such as astrocytes and microglia, directly modulate neurotransmission and synaptic physiology, resulting in behavioral changes (such as sickness behavior) and amplifying the degenerative mechanisms that occur in multiple sclerosis. In addition, neuronal death caused by glutamate-mediated excitotoxicity, alterations in GABAergic, serotonergic, and dopaminergic neurotransmission, and the mechanisms of axon damage are of foremost importance to explain the reduction in brain volume and the associated cognitive decline. Neuroinflammation and neurodegeneration are not isolated phenomena and various instances of interaction between them have been described. This presents attractive targets for the development of therapeutic strategies for this neglected component of multiple sclerosis related disability.
Collapse
Affiliation(s)
- Rafael Lazo-Gomez
- Neuroscience franchise, Novartis Pharma México, Calzada de Tlalpan 1779, San Diego Churubusco, 04120 Coyoacán, CDMX, Mexico
| | | | - Diego Mireles-Jacobo
- Neuroscience franchise, Novartis Pharma México, Calzada de Tlalpan 1779, San Diego Churubusco, 04120 Coyoacán, CDMX, Mexico
| | | |
Collapse
|
24
|
Chaves AR, Wallack EM, Kelly LP, Pretty RW, Wiseman HD, Chen A, Moore CS, Stefanelli M, Ploughman M. Asymmetry of Brain Excitability: A New Biomarker that Predicts Objective and Subjective Symptoms in Multiple Sclerosis. Behav Brain Res 2019; 359:281-291. [DOI: 10.1016/j.bbr.2018.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
|
25
|
Liu M, Liu X, Wang L, Wang Y, Dong F, Wu J, Qu X, Liu Y, Liu Z, Fan H, Yao R. TRPV4 Inhibition Improved Myelination and Reduced Glia Reactivity and Inflammation in a Cuprizone-Induced Mouse Model of Demyelination. Front Cell Neurosci 2018; 12:392. [PMID: 30455633 PMCID: PMC6230558 DOI: 10.3389/fncel.2018.00392] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/12/2018] [Indexed: 11/25/2022] Open
Abstract
The inhibition of demyelination and the promotion of remyelination are both considerable challenges in the therapeutic process for many central nervous system (CNS) diseases. Increasing evidence has demonstrated that neuroglial activation and neuroinflammation are responsible for myelin sheath damage during demyelinating disorders. It has been revealed that the nonselective cation channel transient receptor potential vanilloid 4 (TRPV4) profoundly affects a variety of physiological processes, including inflammation. However, its roles and mechanisms in demyelination have remained unclear. Here, for the first time, we found that there was a significant increase in TRPV4 in the corpus callosum in a demyelinated mouse model induced by cuprizone (CPZ). RN-1734, a TRPV4-antagonist, clearly alleviated demyelination and inhibited glial activation and the production of tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) without altering the number of olig2-positive cells. In vitro, RN-1734 treatment clearly inhibited the influx of calcium and decreased the levels of IL-1β and TNF-α in lipopolysaccharide (LPS)-activated microglial cells by suppressing NF-κB P65 phosphorylation. Apoptosis of oligodendrocyte induced by LPS-activated microglia was also alleviated by RN-1734. The results suggest that activation of TRPV4 in microglia is involved in oligodendrocyte apoptosis through the activation of the NF-κB signaling pathway, thus revealing a new mechanism of CNS demyelination.
Collapse
Affiliation(s)
- Meiying Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Xuan Liu
- Department of Rheumatology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lei Wang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yu Wang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jian Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yanan Liu
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Zhian Liu
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Hongbin Fan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
26
|
Herman FJ, Pasinetti GM. Principles of inflammasome priming and inhibition: Implications for psychiatric disorders. Brain Behav Immun 2018; 73:66-84. [PMID: 29902514 PMCID: PMC6526722 DOI: 10.1016/j.bbi.2018.06.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/28/2018] [Accepted: 06/09/2018] [Indexed: 12/27/2022] Open
Abstract
The production of inflammatory proteins by the innate immune system is a tightly orchestrated procedure that allows the body to efficiently respond to exogenous and endogenous threats. Recently, accumulating evidence has indicated that disturbances in the inflammatory response system not only provoke autoimmune disorders, but also can have deleterious effects on neuronal function and mental health. As inflammation in the brain is primarily mediated by microglia, there has been an expanding focus on the mechanisms through which these cells initiate and propagate neuroinflammation. Microglia can enter persistently active states upon their initial recognition of an environmental stressor and are thereafter prone to elicit amplified and persistent inflammatory responses following subsequent exposures to stressors. A recent focus on why primed microglia cells are susceptible to environmental insults has been the NLRP3 inflammasome. Its function within the innate immune system is regulated in such a manner that supports a role for the complex in gating neuroinflammatory responses. The activation of NLRP3 inflammasome in microglia results in the cleavage of zymogen inflammatory interleukins into functional forms that elicit a number of consequential effects in the local neuronal environment. There is evidence to support the principle that within primed neuroimmune systems a lowered threshold for NLRP3 activation can cause persistent neuroinflammation or the amplified production of inflammatory cytokines, such as IL-1β and IL-18. Over the course of an individual's lifetime, persistent neuroinflammation can subsequently lead to the pathophysiological signatures that define psychological disorders. Therefore, targeting the NLRP3 inflammasome complex may represent an innovative and consequential approach to limit neuroinflammatory states in psychiatric disorders, such as major depressive disorder.
Collapse
Affiliation(s)
- Francis J. Herman
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA,Department of Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA; Department of Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
27
|
Tchessalova D, Posillico CK, Tronson NC. Neuroimmune Activation Drives Multiple Brain States. Front Syst Neurosci 2018; 12:39. [PMID: 30210310 PMCID: PMC6123349 DOI: 10.3389/fnsys.2018.00039] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Neuroimmune signaling is increasingly identified as a critical component of neuronal processes underlying memory, emotion and cognition. The interactions of microglia and astrocytes with neurons and synapses, and the individual cytokines and immune signaling molecules that mediate these interactions are a current focus of much research. Here, we discuss neuroimmune activation as a mechanism triggering different states that modulate cognitive and affective processes to allow for appropriate behavior during and after illness or injury. We propose that these states lie on a continuum from a naïve homeostatic baseline state in the absence of stimulation, to acute neuroimmune activity and chronic activation. Importantly, consequences of illness or injury including cognitive deficits and mood impairments can persist long after resolution of immune signaling. This suggests that neuroimmune activation also results in an enduring shift in the homeostatic baseline state with long lasting consequences for neural function and behavior. Such different states can be identified in a multidimensional way, using patterns of cytokine and glial activation, behavioral and cognitive changes, and epigenetic signatures. Identifying distinct neuroimmune states and their consequences for neural function will provide a framework for predicting vulnerability to disorders of memory, cognition and emotion both during and long after recovery from illness.
Collapse
Affiliation(s)
- Daria Tchessalova
- Neuroscience Graduate Program, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | | | - Natalie Celia Tronson
- Neuroscience Graduate Program, School of Medicine, University of Michigan, Ann Arbor, MI, United States.,Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
28
|
Musella A, Gentile A, Rizzo FR, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F, Centonze D, Mandolesi G. Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Front Aging Neurosci 2018; 10:238. [PMID: 30135651 PMCID: PMC6092506 DOI: 10.3389/fnagi.2018.00238] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Aging is one of the main risk factors for the development of many neurodegenerative diseases. Emerging evidence has acknowledged neuroinflammation as potential trigger of the functional changes occurring during normal and pathological aging. Two main determinants have been recognized to cogently contribute to neuroinflammation in the aging brain, i.e., the systemic chronic low-grade inflammation and the decline in the regulation of adaptive and innate immune systems (immunosenescence, ISC). The persistence of the inflammatory status in the brain in turn may cause synaptopathy and synaptic plasticity impairments that underlie both motor and cognitive dysfunctions. Interestingly, such inflammation-dependent synaptic dysfunctions have been recently involved in the pathophysiology of multiple sclerosis (MS). MS is an autoimmune neurodegenerative disease, typically affecting young adults that cause an early and progressive deterioration of both cognitive and motor functions. Of note, recent controlled studies have clearly shown that age at onset modifies prognosis and exerts a significant effect on presenting phenotype, suggesting that aging is a significant factor associated to the clinical course of MS. Moreover, some lines of evidence point to the different impact of age on motor disability and cognitive deficits, being the former most affected than the latter. The precise contribution of aging-related factors to MS neurological disability and the underlying molecular and cellular mechanisms are still unclear. In the present review article, we first emphasize the importance of the neuroinflammatory dependent mechanisms, such as synaptopathy and synaptic plasticity impairments, suggesting their potential exacerbation or acceleration with advancing age in the MS disease. Lastly, we provide an overview of clinical and experimental studies highlighting the different impact of age on motor disability and cognitive decline in MS, raising challenging questions on the putative age-related mechanisms involved.
Collapse
Affiliation(s)
- Alessandra Musella
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| | - Antonietta Gentile
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Francesca Romana Rizzo
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca De Vito
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Vanni
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Livia Guadalupi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Fabio Buttari
- Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Diego Centonze
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Georgia Mandolesi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| |
Collapse
|
29
|
Multiple pathological mechanisms contribute to hippocampal damage in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neuroreport 2018; 29:19-24. [PMID: 29194293 DOI: 10.1097/wnr.0000000000000920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Emotional and cognitive deficits and associated hippocampal damage observed in multiple sclerosis (MS) are now recognized as primary disease manifestations. However, the pathological substrate of these dysfunctions is unclear. In the experimental autoimmune encephalomyelitis (EAE) MS model, impaired hippocampal-dependent functions are concomitant with severe microglial reactivity and neurodegeneration, but reports vary with respect to evidence of lymphocytic infiltration, raising questions as to the nature of the underlying neurodegenerative mechanisms. Our investigations of EAE-induced inflammation across the hippocampal formation showed CD3 infiltration only in regions adjacent to inflamed meningeal membranes interposed between the ventral aspect of the hippocampus and the dorsal aspect of the mid-brain, but widespread microglial reactivity across the structure. Regions that contact the lateral ventricles do not show inflammation, but CD3 cells are observed in the adjacent ventricular space and choroid plexus, suggesting that microglial reactivity in these regions results from exposure to proinflammatory mediators released into the ventricles. These data indicate that multiple pathophysiological mechanisms underlie hippocampal damage during EAE. Treatment with the immunomodulator FTY720 eliminates microglial reactivity across the whole structure, suggesting potential benefit for neuropsychological symptoms in MS.
Collapse
|
30
|
Tumor Necrosis Factor and Interleukin-1 β Modulate Synaptic Plasticity during Neuroinflammation. Neural Plast 2018; 2018:8430123. [PMID: 29861718 PMCID: PMC5976900 DOI: 10.1155/2018/8430123] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Cytokines are constitutively released in the healthy brain by resident myeloid cells to keep proper synaptic plasticity, either in the form of Hebbian synaptic plasticity or of homeostatic plasticity. However, when cytokines dramatically increase, establishing a status of neuroinflammation, the synaptic action of such molecules remarkably interferes with brain circuits of learning and cognition and contributes to excitotoxicity and neurodegeneration. Among others, interleukin-1β (IL-1β) and tumor necrosis factor (TNF) are the best studied proinflammatory cytokines in both physiological and pathological conditions and have been invariably associated with long-term potentiation (LTP) (Hebbian synaptic plasticity) and synaptic scaling (homeostatic plasticity), respectively. Multiple sclerosis (MS) is the prototypical neuroinflammatory disease, in which inflammation triggers excitotoxic mechanisms contributing to neurodegeneration. IL-β and TNF are increased in the brain of MS patients and contribute to induce the changes in synaptic plasticity occurring in MS patients and its animal model, the experimental autoimmune encephalomyelitis (EAE). This review will introduce and discuss current evidence of the role of IL-1β and TNF in the regulation of synaptic strength at both physiological and pathological levels, in particular speculating on their involvement in the synaptic plasticity changes observed in the EAE brain.
Collapse
|
31
|
Stampanoni Bassi M, Iezzi E, Marfia GA, Simonelli I, Musella A, Mandolesi G, Fresegna D, Pasqualetti P, Furlan R, Finardi A, Mataluni G, Landi D, Gilio L, Centonze D, Buttari F. Platelet-derived growth factor predicts prolonged relapse-free period in multiple sclerosis. J Neuroinflammation 2018; 15:108. [PMID: 29655371 PMCID: PMC5899838 DOI: 10.1186/s12974-018-1150-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023] Open
Abstract
Background In the early phases of relapsing-remitting multiple sclerosis (RR-MS), a clear correlation between brain lesion load and clinical disability is often lacking, originating the so-called clinico-radiological paradox. Different factors may contribute to such discrepancy. In particular, synaptic plasticity may reduce the clinical expression of brain damage producing enduring enhancement of synaptic strength largely dependent on neurotrophin-induced protein synthesis. Cytokines released by the immune cells during acute inflammation can alter synaptic transmission and plasticity possibly influencing the clinical course of MS. In addition, immune cells may promote brain repair during the post-acute phases, by secreting different growth factors involved in neuronal and oligodendroglial cell survival. Platelet-derived growth factor (PDGF) is a neurotrophic factor that could be particularly involved in clinical recovery. Indeed, PDGF promotes long-term potentiation of synaptic activity in vitro and in MS and could therefore represent a key factor improving the clinical compensation of new brain lesions. The aim of the present study is to explore whether cerebrospinal fluid (CSF) PDGF concentrations at the time of diagnosis may influence the clinical course of RR-MS. Methods At the time of diagnosis, we measured in 100 consecutive early MS patients the CSF concentrations of PDGF, of the main pro- and anti-inflammatory cytokines, and of reliable markers of neuronal damage. Clinical and radiological parameters of disease activity were prospectively collected during follow-up. Results CSF PDGF levels were positively correlated with prolonged relapse-free survival. Radiological markers of disease activity, biochemical markers of neuronal damage, and clinical parameters of disease progression were instead not influenced by PDGF concentrations. Higher CSF PDGF levels were associated with an anti-inflammatory milieu within the central nervous system. Conclusions Our results suggest that PDGF could promote a more prolonged relapse-free period during the course of RR-MS, without influencing inflammation reactivation and inflammation-driven neuronal damage and likely enhancing adaptive plasticity.
Collapse
Affiliation(s)
- Mario Stampanoni Bassi
- Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | - Girolama A Marfia
- Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Ilaria Simonelli
- Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,Service of Medical Statistics & Information Technology, Fondazione Fatebenefratelli per la Ricerca e la Formazione Sanitaria e Sociale, Lungotevere de' Cenci 5, 00186, Rome, Italy
| | - Alessandra Musella
- University and IRCCS San Raffaele, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Georgia Mandolesi
- University and IRCCS San Raffaele, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Diego Fresegna
- Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.,University and IRCCS San Raffaele, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Patrizio Pasqualetti
- Service of Medical Statistics & Information Technology, Fondazione Fatebenefratelli per la Ricerca e la Formazione Sanitaria e Sociale, Lungotevere de' Cenci 5, 00186, Rome, Italy
| | - Roberto Furlan
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Annamaria Finardi
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Giorgia Mataluni
- Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Doriana Landi
- Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Luana Gilio
- Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Diego Centonze
- Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy. .,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy.
| | - Fabio Buttari
- Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| |
Collapse
|
32
|
Wirsching I, Buttmann M, Odorfer T, Volkmann J, Classen J, Zeller D. Altered motor plasticity in an acute relapse of multiple sclerosis. Eur J Neurosci 2018; 47:251-257. [PMID: 29285814 DOI: 10.1111/ejn.13818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Abstract
In relapsing-remitting MS (RRMS), the symptoms of a clinical relapse subside over time. Neuroplasticity is believed to play an important compensatory role. In this study, we assessed excitability-decreasing plasticity during an acute relapse of MS and 12 weeks afterwards. Motor plasticity was examined in 19 patients with clinically isolated syndrome or RRMS during a steroid-treated relapse (t1) and 12 weeks afterwards (t2) using paired-associative stimulation (PAS10). This method combines repetitive electric nerve stimulation with transcranial magnetic stimulation of the contralateral motor cortex to model long-term synaptic depression in the human cortex. Additionally, 19 age-matched healthy controls were assessed. Motor-evoked potentials of the abductor pollicis brevis muscle were recorded before and after intervention. Clinical disability was assessed by the multiple sclerosis functional composite and the subscore of the nine-hole peg test taken as a measure of hand function. The effect of PAS10 was significantly different between controls and patients; at t1, but not at t2, baseline-normalized postinterventional amplitudes were significantly higher in patients (106 [IQR 98-137] % post10-15 and 111 [IQR 88-133] % post20-25) compared to controls (92 [IQR 85-111] % and 90 [IQR 75-102] %). Additional exploratory analysis indicated a potentially excitability-enhancing effect of PAS10 in patients as opposed to controls. Significant clinical improvement between t1 and t2 was not correlated with PAS10 effects. Our results indicate an alteration of PAS10-induced synaptic plasticity during relapse, presumably reflecting a polarity shift due to metaplastic processes within the motor cortex. Further studies will need to elucidate the functional significance of such changes for the clinical course of MS.
Collapse
Affiliation(s)
- Isabelle Wirsching
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Thorsten Odorfer
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, 04103, Leipzig, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
33
|
Bodnar CN, Morganti JM, Bachstetter AD. Depression following a traumatic brain injury: uncovering cytokine dysregulation as a pathogenic mechanism. Neural Regen Res 2018; 13:1693-1704. [PMID: 30136679 PMCID: PMC6128046 DOI: 10.4103/1673-5374.238604] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A substantial number of individuals have long-lasting adverse effects from a traumatic brain injury (TBI). Depression is one of these long-term complications that influences many aspects of life. Depression can limit the ability to return to work, and even worsen cognitive function and contribute to dementia. The mechanistic cause for the increased depression risk associated with a TBI remains to be defined. As TBI results in chronic neuroinflammation, and priming of glia to a secondary challenge, the inflammatory theory of depression provides a promising framework for investigating the cause of depression following a TBI. Increases in cytokines similar to those seen in depression in the general population are also increased following a TBI. Biomarker levels of cytokines peak within hours-to-days after the injury, yet pro-inflammatory cytokines may still be elevated above physiological levels months-to-years following TBI, which is the time frame in which post-TBI depression can persist. As tumor necrosis factor α and interleukin 1 can signal directly at the neuronal synapse, pathophysiological levels of these cytokines can detrimentally alter neuronal synaptic physiology. The purpose of this review is to outline the current evidence for the inflammatory hypothesis of depression specifically as it relates to depression following a TBI. Moreover, we will illustrate the potential synaptic mechanisms by which tumor necrosis factor α and interleukin 1 could contribute to depression. The association of inflammation with the development of depression is compelling; however, in the context of post-TBI depression, the role of inflammation is understudied. This review attempts to highlight the need to understand and treat the psychological complications of a TBI, potentially by neuroimmune modulation, as the neuropsychiatric disabilities can have a great impact on the rehabilitation from the injury, and overall quality of life.
Collapse
Affiliation(s)
- Colleen N Bodnar
- Spinal Cord & Brain Injury Research Center, University of Kentucky; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Josh M Morganti
- Department of Neuroscience, University of Kentucky; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Adam D Bachstetter
- Spinal Cord & Brain Injury Research Center, University of Kentucky; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
34
|
Ferrara-Bowens TM, Chandler JK, Guignet MA, Irwin JF, Laitipaya K, Palmer DD, Shumway LJ, Tucker LB, McCabe JT, Wegner MD, Johnson EA. Neuropathological and behavioral sequelae in IL-1R1 and IL-1Ra gene knockout mice after soman (GD) exposure. Neurotoxicology 2017; 63:43-56. [DOI: 10.1016/j.neuro.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 01/03/2023]
|
35
|
Stampanoni Bassi M, Garofalo S, Marfia GA, Gilio L, Simonelli I, Finardi A, Furlan R, Sancesario GM, Di Giandomenico J, Storto M, Mori F, Centonze D, Iezzi E. Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis. Front Mol Neurosci 2017; 10:390. [PMID: 29209169 PMCID: PMC5702294 DOI: 10.3389/fnmol.2017.00390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022] Open
Abstract
Cognitive deficits are frequently observed in multiple sclerosis (MS), mainly involving processing speed and episodic memory. Both demyelination and gray matter atrophy can contribute to cognitive deficits in MS. In recent years, neuroinflammation is emerging as a new factor influencing clinical course in MS. Inflammatory cytokines induce synaptic dysfunction in MS. Synaptic plasticity occurring within hippocampal structures is considered as one of the basic physiological mechanisms of learning and memory. In experimental models of MS, hippocampal plasticity is profoundly altered by proinflammatory cytokines. Although mechanisms of inflammation-induced hippocampal pathology in MS are not completely understood, alteration of Amyloid-β (Aβ) metabolism is emerging as a key factor linking together inflammation, synaptic plasticity and neurodegeneration in different neurological diseases. We explored the correlation between concentrations of Aβ1–42 and the levels of some proinflammatory and anti-inflammatory cytokines (interleukin-1β (IL-1β), IL1-ra, IL-8, IL-10, IL-12, tumor necrosis factor α (TNFα), interferon γ (IFNγ)) in the cerebrospinal fluid (CSF) of 103 remitting MS patients. CSF levels of Aβ1–42 were negatively correlated with the proinflammatory cytokine IL-8 and positively correlated with the anti-inflammatory molecules IL-10 and interleukin-1 receptor antagonist (IL-1ra). Other correlations, although noticeable, were either borderline or not significant. Our data show that an imbalance between proinflammatory and anti-inflammatory cytokines may lead to altered Aβ homeostasis, representing a key factor linking together inflammation, synaptic plasticity and cognitive dysfunction in MS. This could be relevant to identify novel therapeutic approaches to hinder the progression of cognitive dysfunction in MS.
Collapse
Affiliation(s)
- Mario Stampanoni Bassi
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sara Garofalo
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Girolama A Marfia
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luana Gilio
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ilaria Simonelli
- Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Service of Medical Statistics & Information Technology, Fondazione Fatebenefratelli per la Ricerca e la Formazione Sanitaria e Sociale, Rome, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia M Sancesario
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Jonny Di Giandomenico
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Marianna Storto
- Clinical Pathology Unit, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Francesco Mori
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Centonze
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| |
Collapse
|
36
|
Monteleone F, Nicoletti CG, Stampanoni Bassi M, Iezzi E, Buttari F, Furlan R, Finardi A, Marfia GA, Centonze D, Mori F. Nerve growth factor is elevated in the CSF of patients with multiple sclerosis and central neuropathic pain. J Neuroimmunol 2017; 314:89-93. [PMID: 29174194 DOI: 10.1016/j.jneuroim.2017.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/26/2017] [Accepted: 11/17/2017] [Indexed: 01/03/2023]
Abstract
Central neuropathic pain (CNP) is common and disabling among patients with multiple sclerosis (MS). The pathological mechanisms underlying CNP in MS are not well understood. We explored whether NGF is implicated in the pathogenesis of CNP in MS. We measured NGF concentration in the CSF of 73 patients affected by MS, 15 with and 58 without CNP and 14 controls. We found increased levels of NGF in the CSF of patients with CNP compared to patients without and to controls. This finding supports the hypothesis that NGF plays a role in MS related CNP.
Collapse
Affiliation(s)
- Fabrizia Monteleone
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Carolina G Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Mario Stampanoni Bassi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Ennio Iezzi
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Fabio Buttari
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Girolama A Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy.
| | - Francesco Mori
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| |
Collapse
|
37
|
Fernández-Calle R, Vicente-Rodríguez M, Gramage E, de la Torre-Ortiz C, Pérez-García C, Ramos MP, Herradón G. Endogenous pleiotrophin and midkine regulate LPS-induced glial responses. Neurosci Lett 2017; 662:213-218. [PMID: 29061398 DOI: 10.1016/j.neulet.2017.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/04/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Abstract
Pleiotrophin (PTN) and Midkine (MK) are two growth factors that modulate neuroinflammation. PTN overexpression in the brain prevents LPS-induced astrocytosis in mice but potentiates microglial activation. The modest astrocytic response caused by a low dose of LPS (0.5mg/kg) is blocked in the striatum of MK-/- mice whereas microglial response is unaffected. We have now tested the effects of an intermediate dose of LPS (7.5mg/kg) in glial response in PTN-/- and MK-/- mice. We found that LPS-induced astrocytosis is prevented in prefrontal cortex and striatum of both PTN-/- and MK-/- mice. Some of the morphological changes of microglia induced by LPS tended to increase in both genotypes, particularly in PTN-/- mice. Since we previously showed that PTN potentiates LPS-induced activation of BV2 microglial cells, we tested the activation of FYN kinase, a substrate of the PTN receptor RPTPβ/ζ, and the subsequent ERK1/2 phosphorylation on LPS and PTN-treated BV2 cells. LPS effects on BV2 cells were not affected by the addition of PTN, suggesting that PTN does not recruit the FYN-MAP kinase signaling pathway in order to modulate LPS effects on microglial cells. Taking together, evidences demonstrate that regulation of astroglial responses to LPS administration are highly dependent on the levels of expression of PTN and MK. Further studies are needed to clarify the possible roles of endogenous expression of PTN and MK in LPS-induced microglial responses.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| | - Marta Vicente-Rodríguez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| | - Carlos de la Torre-Ortiz
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| | - Carmen Pérez-García
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| | - María P Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| |
Collapse
|
38
|
Araújo SES, Mendonça HR, Wheeler NA, Campello-Costa P, Jacobs KM, Gomes FCA, Fox MA, Fuss B. Inflammatory demyelination alters subcortical visual circuits. J Neuroinflammation 2017; 14:162. [PMID: 28821276 PMCID: PMC5562979 DOI: 10.1186/s12974-017-0936-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory demyelinating disease classically associated with axonal damage and loss; more recently, however, synaptic changes have been recognized as additional contributing factors. An anatomical area commonly affected in MS is the visual pathway; yet, changes other than those associated with inflammatory demyelination of the optic nerve, i.e., optic neuritis, have not been described in detail. Methods Adult mice were subjected to a diet containing cuprizone to mimic certain aspects of inflammatory demyelination as seen in MS. Demyelination and inflammation were assessed by real-time polymerase chain reaction and immunohistochemistry. Synaptic changes associated with inflammatory demyelination in the dorsal lateral geniculate nucleus (dLGN) were determined by immunohistochemistry, Western blot analysis, and electrophysiological field potential recordings. Results In the cuprizone model, demyelination was observed in retinorecipient regions of the subcortical visual system, in particular the dLGN, where it was found accompanied by microglia activation and astrogliosis. In contrast, anterior parts of the pathway, i.e., the optic nerve and tract, appeared largely unaffected. Under the inflammatory demyelinating conditions, as seen in the dLGN of cuprizone-treated mice, there was an overall decrease in excitatory synaptic inputs from retinal ganglion cells. At the same time, the number of synaptic complexes arising from gamma-aminobutyric acid (GABA)-generating inhibitory neurons was found increased, as were the synapses that contain the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2B and converge onto inhibitory neurons. These synaptic changes were functionally found associated with a shift toward an overall increase in network inhibition. Conclusions Using the cuprizone model of inflammatory demyelination, our data reveal a novel form of synaptic (mal)adaption in the CNS that is characterized by a shift of the excitation/inhibition balance toward inhibitory network activity associated with an increase in GABAergic inhibitory synapses and a possible increase in excitatory input onto inhibitory interneurons. In addition, our data recognize the cuprizone model as a suitable tool in which to assess the effects of inflammatory demyelination on subcortical retinorecipient regions of the visual system, such as the dLGN, in the absence of overt optic neuritis.
Collapse
Affiliation(s)
- Sheila Espírito Santo Araújo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henrique Rocha Mendonça
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Paula Campello-Costa
- Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Flávia C A Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
39
|
miR-142-3p Is a Key Regulator of IL-1β-Dependent Synaptopathy in Neuroinflammation. J Neurosci 2017; 37:546-561. [PMID: 28100738 DOI: 10.1523/jneurosci.0851-16.2016] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNA) play an important role in post-transcriptional gene regulation of several physiological and pathological processes. In multiple sclerosis (MS), a chronic inflammatory and degenerative disease of the CNS, and in its mouse model, the experimental autoimmune encephalomyelitis (EAE), miRNA dysregulation has been mainly related to immune system dysfunction and white matter (WM) pathology. However, little is known about their role in gray matter pathology. Here, we explored miRNA involvement in the inflammation-driven alterations of synaptic structure and function, collectively known as synaptopathy, a neuropathological process contributing to excitotoxic neurodegeneration in MS/EAE. Particularly, we observed that miR-142-3p is increased in the CSF of patients with active MS and in EAE brains. We propose miR-142-3p as a molecular mediator of the IL-1β-dependent downregulation of the glial glutamate-aspartate transporter (GLAST), which causes an enhancement of the glutamatergic transmission in the EAE cerebellum. The synaptic abnormalities mediated by IL-1β and the clinical and neuropathological manifestations of EAE disappeared in miR-142 knock-out mice. Furthermore, we observed that in vivo miR-142-3p inhibition, either by a preventive and local treatment or by a therapeutic and systemic strategy, abolished IL-1β- and GLAST-dependent synaptopathy in EAE wild-type mice. Consistently, miR-142-3p was responsible for the glutamatergic synaptic alterations caused by CSF of patients with MS, and CSF levels of miR-142-3p correlated with prospective MS disease progression. Our findings highlight miR-142-3p as key molecular player in IL-1β-mediated synaptic dysfunction, possibly leading to excitotoxic damage in both EAE and MS diseases. Inhibition of miR-142-3p could be neuroprotective in MS. SIGNIFICANCE STATEMENT Current studies suggest the role of glutamate excitotoxicity in the development and progression of multiple sclerosis (MS) and of its mouse model experimental autoimmune encephalomyelitis (EAE). The molecular mechanisms linking inflammation and synaptic alterations in MS/EAE are still unknown. Here, we identified miR-142-3p as a determinant molecular actor in inflammation-dependent synaptopathy typical of both MS and EAE. miR-142-3p was upregulated in the CSF of MS patients and in EAE cerebellum. Inhibition of miR-142-3p, locally in EAE brain and in a MS chimeric ex vivo model, recovered glutamatergic synaptic enhancement typical of EAE/MS. We proved that miR-142-3p promoted the IL-1β-dependent glutamate dysfunction by targeting glutamate-aspartate transporter (GLAST), a crucial glial transporter involved in glutamate homeostasis. Finally, we suggest miR-142-3p as a negative prognostic factor in patients with relapsing-remitting multiple sclerosis.
Collapse
|
40
|
Stampanoni Bassi M, Mori F, Buttari F, Marfia GA, Sancesario A, Centonze D, Iezzi E. Neurophysiology of synaptic functioning in multiple sclerosis. Clin Neurophysiol 2017; 128:1148-1157. [DOI: 10.1016/j.clinph.2017.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 01/16/2023]
|
41
|
Nisticò R, Salter E, Nicolas C, Feligioni M, Mango D, Bortolotto ZA, Gressens P, Collingridge GL, Peineau S. Synaptoimmunology - roles in health and disease. Mol Brain 2017. [PMID: 28637489 PMCID: PMC5480158 DOI: 10.1186/s13041-017-0308-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence suggests that the nervous and immune systems are intricately linked. Many proteins first identified in the immune system have since been detected at synapses, playing different roles in normal and pathological situations. In addition, novel immunological functions are emerging for proteins typically expressed at synapses. Under normal conditions, release of inflammatory mediators generally represents an adaptive and regulated response of the brain to immune signals. On the other hand, when immune challenge becomes prolonged and/or uncontrolled, the consequent inflammatory response leads to maladaptive synaptic plasticity and brain disorders. In this review, we will first provide a summary of the cell signaling pathways in neurons and immune cells. We will then examine how immunological mechanisms might influence synaptic function, and in particular synaptic plasticity, in the healthy and pathological CNS. A better understanding of neuro-immune system interactions in brain circuitries relevant to neuropsychiatric and neurological disorders should provide specific biomarkers to measure the status of the neuroimmunological response and help design novel neuroimmune-targeted therapeutics.
Collapse
Affiliation(s)
- Robert Nisticò
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy. .,Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy.
| | - Eric Salter
- Department of Physiology, University of Toronto, and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Celine Nicolas
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Marco Feligioni
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy
| | - Dalila Mango
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, King's College, St Thomas' Campus, London, UK
| | - Graham L Collingridge
- Department of Physiology, University of Toronto, and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Stephane Peineau
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. .,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,INSERM-ERi 24 (GRAP), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| |
Collapse
|
42
|
Guida F, Boccella S, Iannotta M, De Gregorio D, Giordano C, Belardo C, Romano R, Palazzo E, Scafuro MA, Serra N, de Novellis V, Rossi F, Maione S, Luongo L. Palmitoylethanolamide Reduces Neuropsychiatric Behaviors by Restoring Cortical Electrophysiological Activity in a Mouse Model of Mild Traumatic Brain Injury. Front Pharmacol 2017; 8:95. [PMID: 28321191 PMCID: PMC5337754 DOI: 10.3389/fphar.2017.00095] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/14/2017] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major public health problem, which is associated with neurological dysfunction. In severe or moderate cases of TBI, in addition to its high mortality rate, subjects may encounter diverse behavioral dysfunctions. Previous reports suggest that an association between TBI and chronic pain syndromes tends to be more common in patients with mild forms of brain injury. Despite causing minimal brain damage, mild TBI (mTBI) often leads to persistent psychologically debilitating symptoms, which can include anxiety, various forms of memory and learning deficits, and depression. At present, no effective treatment options are available for these symptoms, and little is known about the complex cellular activity affecting neuronal activity that occurs in response to TBI during its late phase. Here, we used a mouse model to investigate the effect of Palmitoylethanolamide (PEA) on both the sensorial and neuropsychiatric dysfunctions associated with mTBI through behavioral, electrophysiological, and biomolecular approaches. Fourteen-day mTBI mice developed anxious, aggressive, and reckless behavior, whilst depressive-like behavior and impaired social interactions were observed from the 60th day onward. Altered behavior was associated with changes in interleukin 1 beta (IL-1β) expression levels and neuronal firing activity in the medial prefrontal cortex. Compared with vehicle, PEA restored the behavioral phenotype and partially normalized the biochemical and functional changes occurring at the supraspinal level. In conclusion, our findings reveal some of the supraspinal modifications responsible for the behavioral alterations associated with mTBI and suggest PEA as a pharmacological tool to ameliorate neurological dysfunction induced by the trauma.
Collapse
Affiliation(s)
- Francesca Guida
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN)Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Danilo De Gregorio
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Catia Giordano
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Rosaria Romano
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Maria A Scafuro
- Department of Anesthesiology, Surgery and Emergency, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Nicola Serra
- Department of Radiology, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Vito de Novellis
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN)Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN)Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy; Young Against Pain (YAP) Italian Group, NaplesItaly
| |
Collapse
|
43
|
Phospholipase D1 expression analysis in relapsing-remitting multiple sclerosis patients. Neurol Sci 2017; 38:865-872. [DOI: 10.1007/s10072-017-2857-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
|
44
|
Ayache SS, Créange A, Farhat WH, Zouari HG, Lesage C, Palm U, Abdellaoui M, Lefaucheur JP. Cortical excitability changes over time in progressive multiple sclerosis. FUNCTIONAL NEUROLOGY 2016; 30:257-63. [PMID: 26727704 DOI: 10.11138/fneur/2015.30.4.257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In 25 patients with progressive forms of multiple sclerosis (MS), motor cortex excitability was longitudinally studied over one year by means of transcranial magnetic stimulation (TMS). The following TMS parameters were considered: resting and active motor thresholds (MTs), input-output curve, short-interval intracortical inhibition (SICI), and intracortical facilitation. Clinical evaluation was based on the Expanded Disability Status Scale (EDSS). In the 16 patients not receiving disease-modifying drugs, the EDSS score worsened, resting MT increased, and SICI decreased. By contrast, no clinical for neurophysiological changes were found over time in the nine patients receiving immunomodulatory therapy. The natural course of progressive MS appears to be associated with a decline in cortical excitability of both pyramidal neurons and inhibitory circuits. This pilot study based on a small sample suggests that disease-modifying drugs may allow cortical excitability to remain stable, even in patients with progressive MS.
Collapse
|
45
|
Gentile A, Fresegna D, Musella A, Sepman H, Bullitta S, De Vito F, Fantozzi R, Usiello A, Maccarrone M, Mercuri NB, Lutz B, Mandolesi G, Centonze D. Interaction between interleukin-1β and type-1 cannabinoid receptor is involved in anxiety-like behavior in experimental autoimmune encephalomyelitis. J Neuroinflammation 2016; 13:231. [PMID: 27589957 PMCID: PMC5009553 DOI: 10.1186/s12974-016-0682-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
Background Mood disorders, including anxiety and depression, are frequently diagnosed in multiple sclerosis (MS) patients, even independently of the disabling symptoms associated with the disease. Anatomical, biochemical, and pharmacological evidence indicates that type-1 cannabinoid receptor (CB1R) is implicated in the control of emotional behavior and is modulated during inflammatory neurodegenerative diseases such as MS and experimental autoimmune encephalomyelitis (EAE). Methods We investigated whether CB1R could exert a role in anxiety-like behavior in mice with EAE. We performed behavioral, pharmacological, and electrophysiological experiments to explore the link between central inflammation, mood, and CB1R function in EAE. Results We observed that EAE-induced anxiety was associated with the downregulation of CB1R-mediated control of striatal GABA synaptic transmission and was exacerbated in mice lacking CB1R (CB1R-KO mice). Central blockade of interleukin-1β (IL-1β) reversed the anxiety-like phenotype of EAE mice, an effect associated with the concomitant rescue of dopamine (DA)-regulated spontaneous behavior, and DA-CB1R neurotransmission, leading to the rescue of striatal CB1R sensitivity. Conclusions Overall, results of the present investigation indicate that synaptic dysfunction linked to CB1R is involved in EAE-related anxiety and motivation-based behavior and contribute to clarify the complex neurobiological mechanisms underlying mood disorders associated to MS.
Collapse
Affiliation(s)
- Antonietta Gentile
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Diego Fresegna
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Alessandra Musella
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Helena Sepman
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Francesca De Vito
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Roberta Fantozzi
- Unit of Neurology and of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077, Pozzilli, IS, Italy
| | - Alessandro Usiello
- Behavioural Neuroscience Laboratory, CEINGE Biotecnologie Avanzate, 80145, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples (SUN), Caserta, Italy
| | - Mauro Maccarrone
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Centro di Ricerca Integrata, Facoltà di Medicina e Chirurgia, Università Campus Bio-Medico, 00128, Rome, Italy
| | - Nicola B Mercuri
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Georgia Mandolesi
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy.,Unit of Neurology and of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077, Pozzilli, IS, Italy
| |
Collapse
|
46
|
Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, Piras E, Gargano F, Borsellino G, Battistini L, Schubart A, Mandolesi G, Centonze D. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation 2016; 13:207. [PMID: 27566665 PMCID: PMC5002118 DOI: 10.1186/s12974-016-0686-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background Data from multiple sclerosis (MS) and the MS rodent model, experimental autoimmune encephalomyelitis (EAE), highlighted an inflammation-dependent synaptopathy at the basis of the neurodegenerative damage causing irreversible disability in these disorders. This synaptopathy is characterized by an imbalance between glutamatergic and GABAergic transmission and has been proposed to be a potential therapeutic target. Siponimod (BAF312), a selective sphingosine 1-phosphate1,5 receptor modulator, is currently under investigation in a clinical trial in secondary progressive MS patients. We investigated whether siponimod, in addition to its peripheral immune modulation, may exert direct neuroprotective effects in the central nervous system (CNS) of mice with chronic progressive EAE. Methods Minipumps allowing continuous intracerebroventricular (icv) infusion of siponimod for 4 weeks were implanted into C57BL/6 mice subjected to MOG35-55-induced EAE. Electrophysiology, immunohistochemistry, western blot, qPCR experiments, and peripheral lymphocyte counts were performed. In addition, the effect of siponimod on activated microglia was assessed in vitro to confirm the direct effect of the drug on CNS-resident immune cells. Results Siponimod administration (0.45 μg/day) induced a significant beneficial effect on EAE clinical scores with minimal effect on peripheral lymphocyte counts. Siponimod rescued defective GABAergic transmission in the striatum of EAE, without correcting the EAE-induced alterations of glutamatergic transmission. We observed a significant attenuation of astrogliosis and microgliosis together with reduced lymphocyte infiltration in the striatum of EAE mice treated with siponimod. Interestingly, siponimod reduced the release of IL-6 and RANTES from activated microglial cells in vitro, which might explain the reduced lymphocyte infiltration. Furthermore, the loss of parvalbumin-positive (PV+) GABAergic interneurons typical of EAE brains was rescued by siponimod treatment, providing a plausible explanation of the selective effects of this drug on inhibitory synaptic transmission. Conclusions Altogether, our results show that siponimod has neuroprotective effects in the CNS of EAE mice, which are likely independent of its peripheral immune effect, suggesting that this drug could be effective in limiting neurodegenerative pathological processes in MS.
Collapse
Affiliation(s)
- Antonietta Gentile
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Alessandra Musella
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy
| | - Diego Fresegna
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Francesca De Vito
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Roberta Fantozzi
- Unit of Neurology and Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Eleonora Piras
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | - Francesca Gargano
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | | | - Luca Battistini
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | - Anna Schubart
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Georgia Mandolesi
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.
| | - Diego Centonze
- Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy.,Unit of Neurology and Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| |
Collapse
|
47
|
D'Amico E, Leone C, Hayrettin T, Patti F. Can we define a rehabilitation strategy for cognitive impairment in progressive multiple sclerosis? A critical appraisal. Mult Scler 2016; 22:581-9. [PMID: 26920381 DOI: 10.1177/1352458516632066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/17/2016] [Indexed: 01/25/2023]
Abstract
Cognitive impairment (CI) has been shown to be severe in patients with progressive forms of multiple sclerosis (MS), and the most frequently impaired domains are sustained attention, information processing speed, memory, and executive functions. In contrast to relapsing forms of MS, where studies have shown favorable results from cognitive rehabilitation, there is a lack of data on cognitive rehabilitation in progressive forms of MS. A specific approach in assessing CI and in designing and administering rehabilitation training for patients with progressive forms of MS is needed.
Collapse
Affiliation(s)
| | | | - Tumani Hayrettin
- Klinik und PoliklinikfürNeurologie der Universität Ulm, Ulm, Germany
| | | |
Collapse
|
48
|
Mori F, Nisticò R, Nicoletti CG, Zagaglia S, Mandolesi G, Piccinin S, Martino G, Finardi A, Rossini PM, Marfia GA, Furlan R, Centonze D. RANTES correlates with inflammatory activity and synaptic excitability in multiple sclerosis. Mult Scler 2016; 22:1405-1412. [PMID: 26733422 DOI: 10.1177/1352458515621796] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/18/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alterations of synaptic transmission induced by inflammatory activity have been linked to the pathogenic mechanisms of multiple sclerosis (MS). Regulated upon activation, normal T-cell expressed, and secreted (RANTES) is a pro-inflammatory chemokine involved in MS pathophysiology, potentially able to regulate glutamate release and plasticity in MS brains, with relevant consequences on the clinical manifestations of the disease. OBJECTIVE To assess the role of RANTES in the regulation of cortical excitability. METHODS We explored the association of RANTES levels in the cerebrospinal fluid (CSF) of newly diagnosed MS patients with magnetic resonance imaging (MRI) and laboratory measures of inflammatory activity, as well its role in the control of cortical excitability and plasticity explored by means of transcranial magnetic stimulation (TMS), and in hippocampal mouse slices in vitro. RESULTS CSF levels of RANTES were remarkably high only in active MS patients and were correlated with the concentrations of interleukin-1β. RANTES levels were associated with TMS measures of cortical synaptic excitability, but not with long-term potentiation (LTP)-like plasticity. Similar findings were obtained in mouse hippocampal slices in vitro, where we observed that RANTES enhanced basal excitatory synaptic transmission with no effect on LTP. CONCLUSION RANTES correlates with inflammation and synaptic excitability in MS brains.
Collapse
Affiliation(s)
- Francesco Mori
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Robert Nisticò
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, Roma, Italy/Laboratorio di Farmacologia della Plasticità Sinaptica, EBRI-European Brain Research Institute, Roma, Italy
| | - Carolina G Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Sara Zagaglia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/Clinica di Neurologia, Università Politecnica delle Marche, Ancona, Italy
| | | | - Sonia Piccinin
- Laboratorio di Farmacologia della Plasticità Sinaptica, EBRI-European Brain Research Institute, Roma, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Paolo M Rossini
- Institute of Neurology, Catholic University, Rome, Italy/Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Girolama A Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| |
Collapse
|
49
|
Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 2015; 11:711-24. [PMID: 26585978 DOI: 10.1038/nrneurol.2015.222] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) has long been regarded as a chronic inflammatory disease of the white matter that leads to demyelination and eventually to neurodegeneration. In the past decade, several aspects of MS pathogenesis have been challenged, and degenerative changes of the grey matter, which are independent of demyelination, have become a topic of interest. CNS inflammation in MS and experimental autoimmune encephalomyelitis (EAE; a disease model used to study MS in rodents) causes a marked imbalance between GABAergic and glutamatergic transmission, and a loss of synapses, all of which leads to a diffuse 'synaptopathy'. Altered synaptic transmission can occur early in MS and EAE, independently of demyelination and axonal loss, and subsequently causes excitotoxic damage. Inflammation-driven synaptic abnormalities are emerging as a prominent pathogenic mechanism in MS-importantly, they are potentially reversible and, therefore, represent attractive therapeutic targets. In this Review, we focus on the connection between inflammation and synaptopathy in MS and EAE, which sheds light not only on the pathophysiology of MS but also on that of primary neurodegenerative disorders in which inflammatory processes contribute to disease progression.
Collapse
Affiliation(s)
- Georgia Mandolesi
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Antonietta Gentile
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Diego Fresegna
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Francesca De Vito
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Bullitta
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Helena Sepman
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Girolama A Marfia
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Diego Centonze
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
50
|
Mandolesi G, Gentile A, Musella A, Centonze D. IL-1β dependent cerebellar synaptopathy in a mouse mode of multiple sclerosis. THE CEREBELLUM 2015; 14:19-22. [PMID: 25326653 DOI: 10.1007/s12311-014-0613-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is considered as an autoimmune inflammatory disease and is one of the main causes of motor disability in young adults. Focal white matter lesions consisting of T lymphocyte and macrophage infiltrates, demyelination, and axonal transection are clear hallmarks of MS disease. However, white matter pathology does not occur exclusively. Clinical and experimental studies have shown gray matter atrophy and lesions occurring in several brain regions, including the cerebellum. Cerebellar-dependent disability is very common in MS patients. Cerebellar deficits are also relatively refractory to symptomatic therapy and progress even under disease-modifying agents. However, the neuropathology underlying cerebellar dysfunction remains largely unknown. We recently demonstrated that the cerebellum is also targeted in experimental autoimmune encephalomyelitis (EAE), the most widely used animal model of MS. Electrophysiological studies, supported by immunofluorescence and biochemical analysis, revealed an imbalance between the spontaneous excitatory and inhibitory synaptic transmission at Purkinje cell synapses. While the frequency of the spontaneous inhibitory postsynaptic currents (sIPSC) during the acute phase of EAE was reduced in correlation with a selective degeneration of basket and stellate neurons, the glutamatergic transmission was enhanced due to a reduced expression and functioning of glutamate aspartate transporter (GLAST)/excitatory amino acid transporter 1 (EAAT1), the most abundant glutamate transporter expressed by Bergmann glia. Of note, we demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β), highly expressed in EAE cerebellum and released by infiltrating lymphocytes, was one of the molecular players directly responsible for such synaptic alterations during the acute phase. Furthermore, other brain regions in EAE mice seem to be affected by a similar inflammatory dependent synaptopathy, suggesting common molecular targets for potential therapeutic strategies. Accordingly, we observed that intracerebroventricular inhibition of IL-1β signaling in EAE mice was able to ameliorate inflammatory reaction, electrophysiological response, and clinical disability, indicating a pivotal role of IL-1β in EAE disease and likely, in MS.
Collapse
Affiliation(s)
- Georgia Mandolesi
- Fondazione Santa Lucia IRCSS, Via del Fosso di Fiorano 64, 00146, Rome, Italy,
| | | | | | | |
Collapse
|