1
|
Wang W, Lu Y, Qin GM, Ni LF, Xu BX, Liu CF, Yu BF, Wang HL, Pang M. LncRNA RP11-297P16.4 Promotes the Invasion and Metastasis of Non-Small-Cell Lung Carcinoma by Targeting the miR-145-5p/MMP-2/9 Axis. Biomedicines 2025; 13:617. [PMID: 40149594 PMCID: PMC11940468 DOI: 10.3390/biomedicines13030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Long noncoding RNAs (lncRNAs) participate in the occurrence and development of non-small-cell lung carcinoma (NSCLC). But for certain lncRNAs, their effects on NSCLC remain unclear. This work discovered that lncRNA RP11-297P16.4 is elevated in NSCLC. Methods: LncRNA RP11-297P16.4 expression within LUAD tissues and cells was measured through RT-qPCR and Western blot. To assess the role of the lncRNA RP11-297P16.4 in NSCLC, gain- or loss-of-function experiments were conducted using an NSCLC mouse tumor model. Results: Silencing of the lncRNA RP11-297P16.4 inhibited the NSCLC cell line invasion and migration potential, but re-expression of the lncRNA RP11-297P16.4 had the opposite effect. A luciferase reporter confirmed that the lncRNA RP11-297P16.4 functions as a competitive endogenous RNA (ceRNA) through the sponge of miR-145-5p. The expression of lncRNA RP11-297P16.4 was negatively correlated to the level of miR-145-5p in NSCLC cells, which sponged miR-145-5p and suppressed tumor cell migration and invasion by targeting matrix metalloproteinase 2 (MMP-2) and MMP-9. Conclusions: Our findings suggested that the lncRNA RP11-297P16.4/miR-145-5p/MMP-2/9 regulatory axis is the key pathway for mediating the migration and invasion of NSCLC.
Collapse
Affiliation(s)
- Wei Wang
- School of Basic Medical Sciences, Basic Medical Science Center, Institute of Cancer Biology, Shanxi Medical University, Jinzhong 030600, China; (W.W.); (Y.L.); (G.-M.Q.); (L.-F.N.); (B.-X.X.); (C.-F.L.); (B.-F.Y.)
| | - Yu Lu
- School of Basic Medical Sciences, Basic Medical Science Center, Institute of Cancer Biology, Shanxi Medical University, Jinzhong 030600, China; (W.W.); (Y.L.); (G.-M.Q.); (L.-F.N.); (B.-X.X.); (C.-F.L.); (B.-F.Y.)
| | - Guang-Mei Qin
- School of Basic Medical Sciences, Basic Medical Science Center, Institute of Cancer Biology, Shanxi Medical University, Jinzhong 030600, China; (W.W.); (Y.L.); (G.-M.Q.); (L.-F.N.); (B.-X.X.); (C.-F.L.); (B.-F.Y.)
| | - Lin-Feng Ni
- School of Basic Medical Sciences, Basic Medical Science Center, Institute of Cancer Biology, Shanxi Medical University, Jinzhong 030600, China; (W.W.); (Y.L.); (G.-M.Q.); (L.-F.N.); (B.-X.X.); (C.-F.L.); (B.-F.Y.)
| | - Bai-Xue Xu
- School of Basic Medical Sciences, Basic Medical Science Center, Institute of Cancer Biology, Shanxi Medical University, Jinzhong 030600, China; (W.W.); (Y.L.); (G.-M.Q.); (L.-F.N.); (B.-X.X.); (C.-F.L.); (B.-F.Y.)
| | - Chao-Feng Liu
- School of Basic Medical Sciences, Basic Medical Science Center, Institute of Cancer Biology, Shanxi Medical University, Jinzhong 030600, China; (W.W.); (Y.L.); (G.-M.Q.); (L.-F.N.); (B.-X.X.); (C.-F.L.); (B.-F.Y.)
| | - Bao-Feng Yu
- School of Basic Medical Sciences, Basic Medical Science Center, Institute of Cancer Biology, Shanxi Medical University, Jinzhong 030600, China; (W.W.); (Y.L.); (G.-M.Q.); (L.-F.N.); (B.-X.X.); (C.-F.L.); (B.-F.Y.)
| | - Hai-Long Wang
- School of Basic Medical Sciences, Basic Medical Science Center, Institute of Cancer Biology, Shanxi Medical University, Jinzhong 030600, China; (W.W.); (Y.L.); (G.-M.Q.); (L.-F.N.); (B.-X.X.); (C.-F.L.); (B.-F.Y.)
| | - Min Pang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Province Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
2
|
Mohammadi F, Nejatollahi M, Sheikhnia F, Ebrahimi Y, Mohammadi M, Rashidi V, Alizadeh-Fanalou S, Azizzadeh B, Majidinia M. MiRNAs: main players of cancer drug resistance target ABC transporters. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03719-y. [PMID: 39808313 DOI: 10.1007/s00210-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters. Furthermore, additional mechanisms, such as the malfunctioning of apoptosis, alterations in DNA repair systems, and resistance mechanisms inherent to cancer stem cells, exacerbate the issue. Intriguingly, microRNAs (miRNAs) have demonstrated potential in modulating chemoresistance by specifically targeting ABC transporters, thereby offering promising new avenues for overcoming drug resistance. This narrative review aims to elucidate the molecular underpinnings of drug resistance, with a particular focus on the roles of ABC transporters and the regulatory influence of miRNAs on these transporters.
Collapse
Affiliation(s)
- Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Masoumeh Nejatollahi
- Research Center for High School Students, Education System Zanjan Province, Zanjan, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bita Azizzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Yang J, Xu Y, Fu Z, Chen J, Fan W, Wu X. Progress in research and development of temozolomide brain-targeted preparations: a review. J Drug Target 2023; 31:119-133. [PMID: 36039767 DOI: 10.1080/1061186x.2022.2119243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gliomas are a heterogeneous group of brain tumours with high malignancy, for which surgical resection remains the mainstay of treatment at present. However, the overall prognosis of gliomas remains poor because of their aggressiveness and high recurrence. Temozolomide (TMZ) has anti-proliferative and cytotoxic effects and is indicated for glioblastoma multiforme and recurrent mesenchymal astrocytoma. However, TMZ is disadvantaged by low efficacy and drug resistance, and therefore it is necessary to enhance the brain drug concentration of TMZ to improve its effectiveness and reduce the toxic and adverse effects from systemic administration. There have been many nano-formulations developed for the delivery of TMZ to gliomas that overcome the limitations of TMZ penetration to tumours and increase brain targeting. In this paper, we review the research progress of TMZ nano-formulations, and also discuss challenges and opportunities in the research and development of drug delivery systems, hoping that the data and information summarised herein could provide assistance for the clinical treatment of gliomas.
Collapse
Affiliation(s)
- Jiefen Yang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Zhiqin Fu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
4
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Muacevic A, Adler JR, Cirino M, Trevisan FA, Peria F, Tirapelli D, Carlotti Jr CG. Modulation of Genes and MicroRNAs in the Neurospheres of Glioblastoma Cell Lines U343 and T98G Induced by Ionizing Radiation and Temozolomide Therapy. Cureus 2022; 14:e32211. [PMID: 36620850 PMCID: PMC9812005 DOI: 10.7759/cureus.32211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Glioblastoma is the most prevalent primary malignant neoplasm of the central nervous system. It has increased its incidence, while the overall survival remains over 14 months. PURPOSE The purpose is to evaluate the expression of the genes EGFR, PTEN, MGMT, and IDH1/2, and microRNAs miR-181b, miR-145, miR-149, and miR-128a in adhered cells (AC) and neurospheres (NS) from cell lines (T98G and U343) submitted to temozolomide (TMZ) and ionizing radiation (IR). METHODS T98G and U343 were treated with TMZ, IR, and TMZ+IR. The analysis of gene expression and miRNAs was performed using real-time PCR. RESULTS This study demonstrated: a) an improvement in the expression of IDH1 after IR and TMZ + IR in the NS (T98G); b) an increase in the expression of MGMT in NS (T98G) in IR groups and TMZ + IR. The expression of miRNAs results as a) AC (U343) expressed more miR-181b after TMZ, IR, and TMZ + IR; and miR-128a improved after TMZ, IR, and TMZ + IR; b) NS (T98G) after TMZ + IR expressed: miR-181b; miR-149; miR-145 and miR-128a; c) NS (U343) after IR huge expressed miR-149 and miR-145. CONCLUSION IR was an independent and determining radioresistance factor in NS. However, we observed no complementarity action of oncomiRs regulation.
Collapse
|
6
|
A Systematic Review of Clinical Validated and Potential miRNA Markers Related to the Efficacy of Fluoropyrimidine Drugs. DISEASE MARKERS 2022; 2022:1360954. [PMID: 36051356 PMCID: PMC9427288 DOI: 10.1155/2022/1360954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is becoming increasingly prevalent worldwide. Fluoropyrimidine drugs are the primary chemotherapy regimens in routine clinical practice of CRC. However, the survival rate of patients on fluoropyrimidine-based chemotherapy varies significantly among individuals. Biomarkers of fluoropyrimidine drugs'' efficacy are needed to implement personalized medicine. This review summarized fluoropyrimidine drug-related microRNA (miRNA) by affecting metabolic enzymes or showing the relevance of drug efficacy. We first outlined 42 miRNAs that may affect the metabolism of fluoropyrimidine drugs. Subsequently, we filtered another 41 miRNAs related to the efficacy of fluoropyrimidine drugs based on clinical trials. Bioinformatics analysis showed that most well-established miRNA biomarkers were significantly enriched in the cancer pathways instead of the fluoropyrimidine drug metabolism pathways. The result also suggests that the miRNAs screened from metastasis patients have a more critical role in cancer development than those from non-metastasis patients. There are five miRNAs shared between these two lists. The miR-21, miR-215, and miR-218 can suppress fluoropyrimidine drugs'' catabolism. The miR-326 and miR-328 can reduce the efflux of fluoropyrimidine drugs. These five miRNAs could jointly act by increasing intracellular levels of fluoropyrimidine drugs'' cytotoxic metabolites, leading to better chemotherapy responses. In conclusion, we demonstrated that the dynamic changes in the transcriptional regulation via miRNAs might play significant roles in the efficacy and toxicity of the fluoropyrimidine drug. The reported miRNA biomarkers would help evaluate the efficacy of fluoropyrimidine drug-based chemotherapy and improve the prognosis of colorectal cancer patients.
Collapse
|
7
|
Ahmadpour S, Taghavi T, Sheida A, Tamehri Zadeh SS, Hamblin MR, Mirzaei H. Effects of microRNAs and long non-coding RNAs on chemotherapy response in glioma. Epigenomics 2022; 14:549-563. [PMID: 35473299 DOI: 10.2217/epi-2021-0439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioma is the most prevalent invasive primary tumor of the central nervous system. Glioma cells can spread and infiltrate into normal surrounding brain tissues. Despite the standard use of chemotherapy and radiotherapy after surgery in glioma patients, treatment resistance is still a problem, as the underlying mechanisms are still not fully understood. Non-coding RNAs are widely involved in tumor progression and treatment resistance mechanisms. In the present review, we discuss the pathways by which microRNAs and long non-coding RNAs can affect resistance to chemotherapy and radiotherapy, as well as offer potential therapeutic options for future glioma treatment.
Collapse
Affiliation(s)
- Sara Ahmadpour
- Department of Biotechnology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Ghaffarian Zirak R, Tajik H, Asadi J, Hashemian P, Javid H. The Role of Micro RNAs in Regulating PI3K/AKT Signaling Pathways in Glioblastoma. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:122-136. [PMID: 35463721 PMCID: PMC9013863 DOI: 10.30699/ijp.2022.539029.2726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022]
Abstract
Glioblastoma is a type of brain cancer with aggressive and invasive nature. Such features result from increased proliferation and migration and also poor apoptosis of glioma cells leading to resistance to current treatments such as chemotherapy and radiotherapy. In recent studies, micro RNAs have been introduced as a novel target for treating glioblastoma via regulation of apoptotic signaling pathway, remarkably PI3K/AKT, which affect cellular functions and blockage or progression of the tumor. In this review, we focus on PI3K/AKT signaling pathway and other related apoptotic processes contributing to glioblastoma and investigate the role of micro RNAs interfering in apoptosis, invasion and proliferation of glioma through such apoptotic processes pathways. Databases NCBI, PubMed, and Web of Science were searched for published English articles using keywords such as 'miRNA OR microRNA', 'Glioblastoma', 'apoptotic pathways', 'PI3K and AKT', 'Caspase signaling Pathway' and 'Notch pathway'. Most articles were published from 7 May 2015 to 16 June 2020. This study focused on PI3K/AKT signaling pathway affecting glioma cells in separated subparts. Also, other related apoptotic pathways as the Caspase cycle and Notch have been also investigated. Nearly 40 miRNAs were found as tumor suppressors or onco-miRNA, and their targets, which regulated subcomponents participating in proliferation, invasion, and apoptosis of the tumoral cells. Our review reveals that miRNAs affect key molecules in signaling apoptotic pathways, partly PI3K/AKT, making them potential therapeutic targets to overcome the tumor. However, their utility as a novel treatment for glioblastoma requires further examination and investigation.
Collapse
Affiliation(s)
- Roshanak Ghaffarian Zirak
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hurie Tajik
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Science, Shahrekord, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Jahanbakhsh Asadi
- Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Kukal S, Guin D, Rawat C, Bora S, Mishra MK, Sharma P, Paul PR, Kanojia N, Grewal GK, Kukreti S, Saso L, Kukreti R. Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci 2021; 78:6887-6939. [PMID: 34586444 PMCID: PMC11072723 DOI: 10.1007/s00018-021-03901-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/β-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Priya Sharma
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurpreet Kaur Grewal
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
MicroRNAs in Pancreatic Cancer and Chemoresistance. Pancreas 2021; 50:1334-1342. [PMID: 35041330 DOI: 10.1097/mpa.0000000000001934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading malignancies affecting human health, largely because of the development of resistance to chemotherapy/radiotherapy. There are many mechanisms that mediate the development of drug resistance, such as the transport of antineoplastic agents into cells, shifts in energy metabolism and environment, antineoplastic agent-induced DNA damage, and genetic mutations. MicroRNAs are short, noncoding RNAs that are 20 to 24 nucleotides in length and serve several biological functions. They bind to the 3'-untranslated regions of target genes and induce target degradation or translational inhibition. MicroRNAs can regulate several target genes and mediate PDAC chemotherapy/radiotherapy resistance. The detection of novel microRNAs would not only reveal the molecular mechanisms of PDAC and resistance to chemotherapy/radiotherapy but also provide new approaches to PDAC therapy. MicroRNAs are thus potential therapeutic targets for PDAC and might be essential in uncovering new mechanisms of the disease.
Collapse
|
11
|
Zhou L, Li L, Chen Y, Chen C, Zhi Z, Yan L, Wang Y, Liu B, Zhai Q. miR-190a-3p Promotes Proliferation and Migration in Glioma Cells via YOD1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:3957738. [PMID: 34527075 PMCID: PMC8437639 DOI: 10.1155/2021/3957738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION To investigate the function of miR-190a-3p on the proliferation and migration of glioma. METHODS Twenty glioma samples and 6 normal brain tissue samples were collected. Normal human glial cell line HEB and glioma cell lines were used for the experiments. We then used TargetScan to predict the target genes of miR-190a-3p. Dual-luciferase reporter assay was also used to validate. RESULTS Combined with dual-luciferase reporter experiment, we finally verified that YOD1 was the aim, and it was low-expressed in glioma. Besides, a series of mechanism experiments then proved that miR-190a-3p negatively regulates YOD1 expression. CONCLUSIONS Our research was the first to demonstrate the promoting function of miR-190a-3p in the proliferation and migration of glioma and provided new views for the treatment of glioma. miR-190a-3p was expected to be a new target for molecular therapy of glioma.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Lingzhi Li
- Department of ICU in Emergency Center, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Yan Chen
- Department of Neurology, Siyang Hospital of Traditional Chinese Medicine, Siyang, 223700 Jiangsu, China
| | - Chun Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Zhongwen Zhi
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Luxia Yan
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Yuqian Wang
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Bing Liu
- Department of Neurology, Siyang Hospital of Traditional Chinese Medicine, Siyang, 223700 Jiangsu, China
| | - Qijin Zhai
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| |
Collapse
|
12
|
The Role of miRNA in the Pathophysiology of Neuroendocrine Tumors. Int J Mol Sci 2021; 22:ijms22168569. [PMID: 34445276 PMCID: PMC8395312 DOI: 10.3390/ijms22168569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) represent a tumor group that is both rare and heterogeneous. Prognosis is largely determined by the tumor grading and the site of the primary tumor and metastases. Despite intensive research efforts, only modest advances in diagnostic and therapeutic approaches have been achieved in recent years. For patients with non-respectable tumor stages, prognosis is poor. In this context, the development of novel diagnostic tools for early detection of NETs and prediction of tumor response to therapy as well as estimation of the overall prognosis would greatly improve the clinical management of NETs. However, identification of novel diagnostic molecules is hampered by an inadequate understanding of the pathophysiology of neuroendocrine malignancies. It has recently been demonstrated that microRNA (miRNA), a family of small RNA molecules with an established role in the pathophysiology of quite different cancer entities, may also play a role as a biomarker. Here, we summarize the available knowledge on the role of miRNAs in the development of NET and highlight their potential use as serum-based biomarkers in the context of this disease. We discuss important challenges currently preventing their use in clinical routine and give an outlook on future directions of miRNA research in NET.
Collapse
|
13
|
Xia Q, Liu L, Li Y, Zhang P, Han D, Dong L. Therapeutic Perspective of Temozolomide Resistance in Glioblastoma Treatment. Cancer Invest 2021; 39:627-644. [PMID: 34254870 DOI: 10.1080/07357907.2021.1952595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GB) is the most lethal form of primary brain neoplasm. TMZ is the first-line standard treatment, but the strong resistance constrains the efficacy in clinical use. GB contains glioma stem cells (GSCs), which contribute to TMZ resistance, promote cell survival evolvement, and repopulate the tumor mass. This review summarizes the TMZ-resistance mechanisms and discusses several potential therapies from the conservative opinion of GSC-targeted therapy orientation to the current view of TMZ resistance-aimed efficacy, which will provide an understanding of the role of heterogeneity in drug resistance and improve therapeutic efficacy in general.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Chae YJ, Chang JE, Lee MK, Lim J, Shin KH, Lee KR. Regulation of drug transporters by microRNA and implications in disease treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00538-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Bozzato E, Bastiancich C, Préat V. Nanomedicine: A Useful Tool against Glioma Stem Cells. Cancers (Basel) 2020; 13:cancers13010009. [PMID: 33375034 PMCID: PMC7792799 DOI: 10.3390/cancers13010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
The standard of care therapy of glioblastoma (GBM) includes invasive surgical resection, followed by radiotherapy and concomitant chemotherapy. However, this therapy has limited success, and the prognosis for GBM patients is very poor. Although many factors may contribute to the failure of current treatments, one of the main causes of GBM recurrences are glioma stem cells (GSCs). This review focuses on nanomedicine strategies that have been developed to eliminate GSCs and the benefits that they have brought to the fight against cancer. The first section describes the characteristics of GSCs and the chemotherapeutic strategies that have been used to selectively kill them. The second section outlines the nano-based delivery systems that have been developed to act against GSCs by dividing them into nontargeted and targeted nanocarriers. We also highlight the advantages of nanomedicine compared to conventional chemotherapy and examine the different targeting strategies that have been employed. The results achieved thus far are encouraging for the pursuit of effective strategies for the eradication of GSCs.
Collapse
Affiliation(s)
- Elia Bozzato
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Chiara Bastiancich
- Institute Neurophysiopathol, INP, CNRS, Aix-Marseille University, 13005 Marseille, France;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Correspondence:
| |
Collapse
|
16
|
Knockdown of circular RNA CEP128 suppresses proliferation and improves cytotoxic efficacy of temozolomide in glioma cells by regulating miR-145-5p. Neuroreport 2020; 30:1231-1238. [PMID: 31599823 DOI: 10.1097/wnr.0000000000001326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Circular RNAs serve as key players in the development of tumorigenesis and chemoresistance. Circular RNA CEP128 has been reported to be involved in the development of chemoresistance. However, the role of circular RNA CEP128 in the resistance of glioma cells to temozolomide has not yet been characterized. METHODS The expression of circular RNA CEP128, miR-145-5p, and ATP-binding cassette super-family G member 2 was evaluated using quantitative real-time PCR and western blot. The effects of circular RNA CEP128 on glioma cell proliferation and chemoresistance were evaluated by cell count kit-8 assay and colony formation assay. Luciferase reporter assay was performed for target validation. RESULTS Circular RNA CEP128 was upregulated in glioma tissues and cell lines. Moreover, circular RNA CEP128 expression was higher in temozolomide-resistant glioma cells compared with that in their parental cells. Knockdown of circular RNA CEP128 inhibited cell proliferation, reduced the expression of ATP-binding cassette super-family G member 2, as well as reduced resistance to temozolomide in glioma cells. Additionally, miR-145-5p was underexpressed in glioma cells as well as temozolomide-resistant glioma cells. Also, miR-145-5p was identified as a target of circular RNA CEP128. Overexpression of miR-145-5p inhibited the proliferation of U251/temozolomide cells and reduced the expression of ATP-binding cassette super-family G member 2, however, these changes induced by miR-145-5p overexpression were blocked by circular RNA CEP128 overexpression. CONCLUSION Knockdown of circular RNA CEP128 suppresses cell proliferation and improves the cytotoxic efficacy of temozolomide in glioma cells by regulating miR-145-5p, suggesting that circular RNA CEP128 might be a promising target for overcoming the resistance of glioma cells to temozolomide.
Collapse
|
17
|
Zuberi M, Mir R, Khan I, Javid J, Guru SA, Bhat M, Sumi MP, Ahmad I, Masroor M, Yadav P, Vishnubhatla S, Saxena A. The Promising Signatures of Circulating microRNA-145 in Epithelial Ovarian Cancer Patients. Microrna 2020; 9:49-57. [PMID: 30799804 DOI: 10.2174/2211536608666190225111234] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/09/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Epithelial ovarian cancer continues to be a deleterious threat to women as it is asymptomatic and is typically detected in advanced stages. Cogent non-invasive biomarkers are therefore needed which are effective in apprehending the disease in early stages. Recently, miRNA deregulation has shown a promising magnitude in ovarian cancer tumorigenesis. miRNA-145(miR- 145) is beginning to be understood for its possible role in cancer development and progression. In this study, we identified the clinicopathological hallmarks altered owing to the downexpression of serum miR-145 in EOC. METHODS 70 serum samples from histopathologically confirmed EOC patients and 70 controls were collected. Total RNA from serum was isolated by Trizol method, polyadenylated and reverse transcribed into cDNA. Expression level of miR-145 was detected by miRNA qRT-PCR using RNU6B snRNA as reference. RESULTS The alliance of miR-145 profiling amongst patients and controls established itself to be conspicuous with a significant p-value (p<0.0001). A positive conglomeration (p=0.04) of miR-145 profiling was manifested with histopathological grade. Receiver Operating Characteristic (ROC) curve highlights the diagnostic potential and makes it imminent with a robust Area Under the curve (AUC). A positive correlation with the ROC curve was also noted for histological grade, FIGO stage, distant metastasis, lymph node status and survival. CONCLUSION Our results propose that miR-145 down-regulation might be a possible touchstone for disease progression and be identified as a diagnostic marker and predict disease outcome in EOC patients.
Collapse
Affiliation(s)
- Mariyam Zuberi
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Imran Khan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Columbia, SC, United States
| | - Jamsheed Javid
- Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sameer Ahmad Guru
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Musadiq Bhat
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Mamta Pervin Sumi
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Imtiyaz Ahmad
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Mirza Masroor
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Prasant Yadav
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | | | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| |
Collapse
|
18
|
Wang H, Liu G, Li T, Wang N, Wu J, Zhi H. MiR-330-3p functions as a tumor suppressor that regulates glioma cell proliferation and migration by targeting CELF1. Arch Med Sci 2020; 16:1166-1175. [PMID: 32864006 PMCID: PMC7444697 DOI: 10.5114/aoms.2020.95027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/24/2017] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Glioma is a common type of neoplasm that occurs in the central nervous system. miRNAs have been demonstrated to act as critical regulators of carcinogenesis and tumor progression in multiple cancers, but the molecular mechanism of miR-330-3p in glioma remained unclear. The purpose of the study was to explore the role of miR-330-3p in glioma cell reproduction and migration. MATERIAL AND METHODS The expression levels of miR-330-3p and CELF1 in 27 glioma tissue specimens and human glioma cell lines were examined by qRT-PCR and western blot. The TargetScan database was used to predict the relationship between miR-330-3p and CELF1. Then the target relationship was verified using dual-luciferase reporter assay. The effects of miR-330-3p/CELF1 on glioma cell proliferation were evaluated by MTT and colony formation assay. Wound healing assay was employed to measure the migration ability of glioma cells. RESULTS MiR-330-3p was found lowly expressed in glioma tissues and cells compared with adjacent tissues and normal astrocytes, while CELF1 expression was relatively high in the glioma tissues and cells. Dual-luciferase reporter assay confirmed that miR-330-3p could directly target CELF1. Furthermore, miR-330-3p could down-regulate the expression of CELF1, therefore suppressing glioma cell reproduction and migration. CONCLUSIONS MiR-330-3p inhibited the propagation and migration of glioma cells by repressing CELF1 expression.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Guijing Liu
- Department of Cardiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Tao Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Naizhu Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Jingkun Wu
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Hua Zhi
- Department of Cardiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| |
Collapse
|
19
|
Toraih EA, El-Wazir A, Abdallah HY, Tantawy MA, Fawzy MS. Deregulated MicroRNA Signature Following Glioblastoma Irradiation. Cancer Control 2019; 26:1073274819847226. [PMID: 31046428 PMCID: PMC6501491 DOI: 10.1177/1073274819847226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM), the most common and aggressive brain tumor in adults, shows resistance to treatment, particularly radiotherapy. One method for effective treatment is using a group of radiosensitizers that make tumor cells responsive to radiotherapy. A class of molecules whose expression is affected by radiotherapy is the microRNAs (miRNAs) that present promising regulators of the radioresponse. Eighteen miRNAs (miR-26a, -124, -128, -135b, -145, -153, -181a/b, -203, -21, -210, -212, -221/222, -223, -224, -320, and -590), involved in the pathogenesis of GBM and its radioresponsive state, were reviewed to identify their role in GBM and their potential as radiosensitizing agents. MicroRNAs-26a, -124, -128, -145, -153, -181a/b, -203, -221/222, -223, -224, -320, and -590 promoted GBM radiosensitivity, while microRNAs-135b, -21, -210, and -212 encouraged radioresistance. Ectopic overexpression of the radiosensitivity promoting miRNAs and knockdown of the radioresistant miRNAs represent a prospective radiotherapy enhancement opportunity. This offers a glimmer of hope for a group of the most unfortunate patients known to medicine.
Collapse
Affiliation(s)
- Eman A Toraih
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya El-Wazir
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda Y Abdallah
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed A Tantawy
- 3 Department of Hormones, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Manal S Fawzy
- 4 Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,5 Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
20
|
Breast Cancer Resistance Protein (BCRP/ ABCG2) Inhibits Extra Villous Trophoblast Migration: The Impact of Bacterial and Viral Infection. Cells 2019; 8:cells8101150. [PMID: 31561453 PMCID: PMC6829363 DOI: 10.3390/cells8101150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Extravillous trophoblasts (EVT) migration into the decidua is critical for establishing placental perfusion and when dysregulated, may lead to pre-eclampsia (PE) and intrauterine growth restriction (IUGR). The breast cancer resistance protein (BCRP; encoded by ABCG2) regulates the fusion of cytotrophoblasts into syncytiotrophoblasts and protects the fetus from maternally derived xenobiotics. Information about BCRP function in EVTs is limited, however placental exposure to bacterial/viral infection leads to BCRP downregulation in syncitiotrophoblasts. We hypothesized that BCRP is involved in the regulation of EVT function and is modulated by infection/inflammation. We report that besides syncitiotrophoblasts and cytotrophoblasts, BCRP is also expressed in EVTs. BCRP inhibits EVT cell migration in HTR8/SVneo (human EVT-like) cells and in human EVT explant cultures, while not affecting cell proliferation. We have also shown that bacterial-lipopolysaccharide (LPS)-and viral antigens-single stranded RNA (ssRNA)-have a profound effect in downregulating ABCG2 and BCRP levels, whilst simultaneously increasing the migration potential of EVT-like cells. Our study reports a novel function of BCRP in early placentation and suggests that exposure of EVTs to maternal infection/inflammation could disrupt their migration potential via the downregulation of BCRP. This could negatively influence placental development/function, contribute to existing obstetric pathologies, and negatively impact pregnancy outcomes and maternal/neonatal health.
Collapse
|
21
|
Ngadiono E, Hardiany NS. Advancing towards Effective Glioma Therapy: MicroRNA Derived from Umbilical Cord Mesenchymal Stem Cells' Extracellular Vesicles. Malays J Med Sci 2019; 26:5-16. [PMID: 31496889 PMCID: PMC6719885 DOI: 10.21315/mjms2019.26.4.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/10/2018] [Indexed: 01/20/2023] Open
Abstract
A glioma, especially a grade IV glioblastoma, is a malignant tumour with a poor prognosis despite growing medical advancements. Researchers have been looking for better and more effective treatments targeting the molecular pathways of gliomas due to glioblastomas’ ability to develop resistance to chemotherapies. Moreover, glioma stem cells (GSC) contribute to maintaining the glioma population, which benefits from its ability to self-renew and differentiate. Recent research has reported that through the introduction of umbilical cord mesenchymal stem cells (UCMSC) into glioma cells, the growth and development of the glioma cells can be downregulated. It has more currently been found out that UCMSC release extracellular vesicles (EVs) containing miRNA that are responsible for this phenomenon. Therefore, this review analyses literature to discuss all possible miRNAs contained within the UCMSC’s EVs and to elaborate on their molecular mechanisms in halting gliomas and GSC growth. This review will also include the challenges and limitations, to account for which more in vivo research is suggested. In conclusion, this review highlights how miRNAs contained within UCMSC’s EVs are able to downregulate multiple prominent pathways in the survival of gliomas.
Collapse
Affiliation(s)
- Eko Ngadiono
- International Class Program, Faculty of Medicines Universitas Indonesia, Jakarta, Indonesia
| | - Novi Silvia Hardiany
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
22
|
Qian C, Wang B, Zou Y, Zhang Y, Hu X, Sun W, Xiao H, Liu H, Shi L. MicroRNA 145 enhances chemosensitivity of glioblastoma stem cells to demethoxycurcumin. Cancer Manag Res 2019; 11:6829-6840. [PMID: 31440081 PMCID: PMC6664422 DOI: 10.2147/cmar.s210076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The presence of glioma stem cells (GSCs) is thought to be a key factor responsible for development of the incurable glioblastoma multiforme (GBM). GSCs are often displayed during chemotherapy resistance, except for demethoxycurcumin (DMC), a component of curcumin, which has been previously confirmed to inhibit GSCs proliferation and induce apoptosis. Purpose: The objective of this study was to identify the main mechanism underlying anti-GSCs resistance by DMC. Patients and methods: qRT-PCR was used to determine the expression of miR-145 in glioma patients and GSCs, and GSCs were transfected with miR-145 overexpressed vectors. Then, functional analyses (in vitro and in vivo) were performed to confirm the role of miR-145 and DMC in GSCs. Finally, related proteins were tested by immunohistochemistry and Western blot. Results: miR-145 was atypically low-expressed miRNA in GSCs, and could enhance GSC chemosensitivity to DMC both in vitro and in vivo. Upregulation of miR-145 in GSCs resulted in increased cell growth inhibition and apoptosis to DMC. Further research on the mechanism demonstrated that the combined effects of miR-145 and DMC were involved in the miR-145/SOX2-Wnt/β-catenin pathway. Overexpression of SOX2 reduced GSC resistance to growth inhibition by miR-145+ DMC treatment. Conclusion: Our data strongly support an important role for miR-145 in enhancing GSC chemosensitivity to DMC by targeting the SOX2-Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Chunfa Qian
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Bin Wang
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, People's Republic of China
| | - Yuanjie Zou
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yansong Zhang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xinhua Hu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Wenbo Sun
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Lei Shi
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, People's Republic of China
| |
Collapse
|
23
|
Shi L, Wang B, Gu X, Zhang S, Li X, Zhu H. miR-145 is a potential biomarker for predicting clinical outcome in glioblastomas. J Cell Biochem 2019; 120:8016-8020. [PMID: 30485503 DOI: 10.1002/jcb.28079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
miR-145 has been found to be significantly downregulated in gliomas, and overexpression of miR-145 increases glioma cell apoptosis and enhances chemosensitivity or herpes simplex virus thymidine kinase gene therapy. However, the correlation between miR-145 and the clinical prognosis of glioblastomas has never been explored. In this study, a retrospective study was conducted in 86 cases of patients with glioblastoma after neurosurgery combined with chemoradiotherapy, and 36 cases with traumatic brain injury. Our results showed that miR-145 was significantly lower in glioblastoma tissues than that in normal brain tissue (P < 0.05). Furthermore, miR-145 was lower in patients with lower Karnofsky Performance Scale (KPS) scores than in patients with higher KPS scores ( P < 0.05). Cox Regression analysis showed that low miR-145 expression was associated with poor patient survival ( P < 0.05). These data suggested that patients with glioblastoma with lower miR-145 expression are prone to shorter overall survival.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, First People's Hospital of Kunshan, affiliated with Jiangsu University, Suzhou, China
| | - Bin Wang
- Department of Neurosurgery, First People's Hospital of Kunshan, affiliated with Jiangsu University, Suzhou, China
| | - Xiaoyan Gu
- Department of Rehabilitation, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Shuguang Zhang
- Department of Neurosurgery, First People's Hospital of Kunshan, affiliated with Jiangsu University, Suzhou, China
| | - Xiaoliang Li
- Department of Neurosurgery, First People's Hospital of Kunshan, affiliated with Jiangsu University, Suzhou, China
| | - Haifeng Zhu
- Department of Neurosurgery, Funing People's Hospital, Funing, China
| |
Collapse
|
24
|
Shen CH, Zhang YX, Zheng Y, Yang F, Hu Y, Xu S, Yan SQ, Ding Y, Guo Y, Ding MP. Expression of plasma microRNA-145-5p and its correlation with clinical features in patients with refractory epilepsy. Epilepsy Res 2019; 154:21-25. [PMID: 31022636 DOI: 10.1016/j.eplepsyres.2019.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE The potential of microRNAs (miRNAs) as biomarkers has been explored in various brain diseases, including epilepsy. In this study, we are aiming to analyze the aberrant expression of miRNA-145-5p in patients with refractory epilepsy, and to further explore the correlation with clinical features. METHODS The study cohort comprised 40 patients with refractory epilepsy and 42 healthy controls. MiRNA-145-5p expression levels in plasma were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Data analysis was performed using IBM SPSS Statistics 22.0. RESULTS Compared with healthy controls, the expression of miRNA-145-5p in plasma was downregulated significantly in the patients with refractory epilepsy (1.180 ± 1.036 vs. 1.541 ± 0.936, p = 0.033) and mesial temporal lobe epilepsy (MTLE) (0.517 ± 0.483 vs. 1.541 ± 0.936, p = 0.004). ROC analysis showed that the area under the curve (AUC) was 0.632 (95%CI: 0.508-0.755; P = 0.040) in refractory epilepsy and 0.829 (95%CI: 0.702-0.955; P = 0.001) in MTLE. Furthermore, the expression of miRNA-145-5p was positively correlated with earlier age at epilepsy onset, more frequent seizures and past history. CONCLUSIONS We suggested that decreased expression of miRNA-145-5p could be a potential non-invasive biomarker for early detection and clinical evaluation of refractory epilepsy. However, further studies are still required.
Collapse
Affiliation(s)
- Chun-Hong Shen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yang Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Fan Yang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yin Hu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Sha Xu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shen-Qiang Yan
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yao Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yi Guo
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mei-Ping Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
25
|
Macharia LW, Wanjiru CM, Mureithi MW, Pereira CM, Ferrer VP, Moura-Neto V. MicroRNAs, Hypoxia and the Stem-Like State as Contributors to Cancer Aggressiveness. Front Genet 2019; 10:125. [PMID: 30842790 PMCID: PMC6391339 DOI: 10.3389/fgene.2019.00125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play key regulatory roles in cancer acting as both oncogenes and tumor suppressors. Due to their potential roles in improving cancer prognostic, predictive, diagnostic and therapeutic approaches, they have become an area of intense research focus in recent years. Several studies have demonstrated an altered expression of several miRNAs under hypoxic condition and even shown that the hypoxic microenvironment drives the selection of a more aggressive cancer cell population through cellular adaptations referred as the cancer stem-like cell. These minor fractions of cells are characterized by their self-renewal abilities and their ability to maintain the tumor mass, suggesting their crucial roles in cancer development. This review aims to highlight the interconnected role between miRNAs, hypoxia and the stem-like state in contributing to the cancer aggressiveness as opposed to their independent contributions, and it is based in four aggressive tumors, namely glioblastoma, cervical, prostate, and breast cancers.
Collapse
Affiliation(s)
- Lucy Wanjiku Macharia
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Muriithi Wanjiru
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Valéria Pereira Ferrer
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
27
|
Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother 2018; 109:195-207. [PMID: 30396077 DOI: 10.1016/j.biopha.2018.10.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are post-transcriptional mediators of gene expression and regulation, which play influential roles in tumorigenesis and cancer metastasis. The expression of tumor suppressor miR-145 is reduced in various cancer cell lines, containing both solid tumors and blood malignancies. However, the responsible mechanisms of its down-regulation are a complicated network. miR-145 is potentially able to inhbit tumor cell metastasis by targeting of multiple oncogenes, including MUC1, FSCN1, Vimentin, Cadherin, Fibronectin, Metadherin, GOLM1, ARF6, SMAD3, MMP11, Snail1, ZEB1/2, HIF-1α and Rock-1. This distinctive role of miR-145 in the regulation of metastasis-related gene expression may introduce miR-145 as an ideal candidate for controlling of cancer metastasis by miRNA replacement therapy. The present review aims to discuss the current understanding of the different aspects of molecular mechanisms of miR-145 regulation as well as its role in r metastasis regulation.
Collapse
|
28
|
Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Mol Biol Rep 2018; 45:2913-2923. [DOI: 10.1007/s11033-018-4358-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
|
29
|
Chen L, Shi L, Wang W, Zhou Y. ABCG2 downregulation in glioma stem cells enhances the therapeutic efficacy of demethoxycurcumin. Oncotarget 2018; 8:43237-43247. [PMID: 28591733 PMCID: PMC5522142 DOI: 10.18632/oncotarget.18018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022] Open
Abstract
We analyzed the role of ABCG2, a drug transporter, in determining the sensitivity of glioma stem cells (GSCs) to demethoxycurcumin (DMC). We first demonstrated that ABCG2 is more highly expressed in GSCs than primary astrocytes. Modulation of ABCG2 levels in GSCs by transfection of ABCG2 shRNA or a lentiviral vector encoding ABCG2 revealed an inverse relation between ABCG2 levels and DMC-induced GSC growth inhibition. Suppressing ABCG2 increased DMC-induced apoptosis and G0/G1 cell cycle arrest in GSCs. It also increased levels reactive oxygen species (ROS) in GSCs treated with DMC, resulting in increased cytochrome C and caspase-3 activity. When GSCs transfected with ABCG2 shRNA or overexpressing ABCG2 were xenografted and the tumor-bearing, immunodeficient mice were treated with DMC, ABCG2 expression suppressed the tumor proliferation rate (T/C %). These findings demonstrate that ABCG2 expression is critical for DMC resistance in GSCs and is a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Long Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China.,Department of Neurosurgery, Traditional Chinese Medicine Hospital of Kunshan, Affiliated Nanjing University of Traditional Chinese Medicine, Suzhou 215300, P. R. China
| | - Lei Shi
- Department of Neurosurgery, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Suzhou 215300, P. R. China
| | - Wenhua Wang
- Department of Neurosurgery, Traditional Chinese Medicine Hospital of Kunshan, Affiliated Nanjing University of Traditional Chinese Medicine, Suzhou 215300, P. R. China
| | - Youxin Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
30
|
Xi Z, Wang P, Xue Y, Shang C, Liu X, Ma J, Li Z, Li Z, Bao M, Liu Y. Overexpression of miR-29a reduces the oncogenic properties of glioblastoma stem cells by downregulating Quaking gene isoform 6. Oncotarget 2018; 8:24949-24963. [PMID: 28212562 PMCID: PMC5421901 DOI: 10.18632/oncotarget.15327] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/23/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is the most common type of malignant primary brain tumor and has high recurrence and lethality rates. Glioblastoma stem cells (GSCs), a subpopulation of glioblastoma cells, may promote rapid tumor recurrence and therapy resistance. Because altered microRNA (miR) expression in GSCs may lead to glioblastoma progression, we assessed the effects of miR-29a expression on the oncogenic behavior of GSCs. MiR-29a expression was lower in GSCs than non-GSCs, and overexpression of miR-29a in GSCs inhibited cell proliferation, migration and invasion, but promoted apoptosis. MiR-29a directly inhibited the expression of Quaking gene isoform 6 (QKI-6) by binding to its 3'-UTR, and thus inhibited GSC malignant behavior. In addition, Wilms' tumor 1-associating protein (WTAP) was identified as a downstream target of QKI-6. Overexpression of miR-29a in GSCs inhibited expression of WTAP and suppressed both phosphoinositide 3-kinase/AKT and extracellular signal-related kinase pathways by downregulating QKI-6, thereby inhibiting cell proliferation, migration, and invasion but promoting apoptosis. We have characterized a novel miR-29a/QKI-6/WTAP axis in GSCs, which may provide theoretical support for the treatment of glioblastoma with miR-29a agomirs.
Collapse
Affiliation(s)
- Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Chao Shang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Min Bao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| |
Collapse
|
31
|
Chen YH, Cimino PJ, Luo J, Dahiya S, Gutmann DH. ABCG1 maintains high-grade glioma survival in vitro and in vivo. Oncotarget 2018; 7:23416-24. [PMID: 26981778 PMCID: PMC5029636 DOI: 10.18632/oncotarget.8030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/25/2016] [Indexed: 01/23/2023] Open
Abstract
The overall survival for adults with malignant glioma (glioblastoma) remains poor despite advances in radiation and chemotherapy. One of the mechanisms by which cancer cells develop relative resistance to treatment is through de-regulation of endoplasmic reticulum (ER) homeostasis. We have recently shown that ABCG1, an ATP-binding cassette transporter, maintains ER homeostasis and suppresses ER stress-induced apoptosis in low-grade glioma. Herein, we demonstrate that ABCG1 expression is increased in human adult glioblastoma, where it correlates with poor survival in individuals with the mesenchymal subtype. Leveraging a mouse model of mesenchymal glioblastoma (NPcis), shRNA-mediated Abcg1 knockdown (KD) increased CHOP ER stress protein expression and resulted in greater NPcis glioma cell death in vitro. Moreover, Abcg1 KD reduced NPcis glioma growth and increased mouse survival in vivo. Collectively, these results demonstrate that ABCG1 is critical for malignant glioma cell survival, and might serve as a future therapeutic target for these deadly brain cancers.
Collapse
Affiliation(s)
- Yi-Hsien Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick J Cimino
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonika Dahiya
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
32
|
Pan Y, Ye C, Tian Q, Yan S, Zeng X, Xiao C, Wang L, Wang H. miR-145 suppresses the proliferation, invasion and migration of NSCLC cells by regulating the BAX/BCL-2 ratio and the caspase-3 cascade. Oncol Lett 2018. [PMID: 29541201 PMCID: PMC5835894 DOI: 10.3892/ol.2018.7863] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although microRNA (miR)-145 has been identified to be a tumor suppressor in various types of tumor, it promotes the progression of non-small cell lung cancer (NSCLC). However, the precise underlying molecular mechanism of its action remains unclear. The present study investigated the effects of miR-145 on the proliferation, invasion, metastasis and apoptosis of the NSCLC A549 cell line and the underlying molecular mechanism of its action. In vitro cell proliferation, invasion, migration and apoptosis assays were employed, and the expression levels of matrix metalloproteinase (MMP)-2, MMP-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3and poly(ADP-ribose) polymerase (PARP) were evaluated by western blot analysis. The results demonstrated that ectopic expression of miR-145 inhibited the proliferation, invasion and migration of A549 cells, but promoted the apoptosis of A549 cells. Western blot analysis indicated that increased miR-145 levels led to a marked decrease in the expression of MMP-2, MMP-9 and Bcl-2. Upregulation of miR-145 expression increased the expression of Bax, thus increasing the Bax/Bcl-2 ratio. Additionally, the results indicated that miR-145 over expression promoted the cleavage of caspase-3 and PARP. Taken together, these results indicated that miR-145 suppresses the proliferative, invasive and migratory ability of A549 cells. Additionally, miR-145 upregulation induced apoptosis of A549 cells possibly by decreasing MMP-2 and MMP-9 expression, the Bax/Bcl-2 ratio and the activity of the caspase-3 cascade.
Collapse
Affiliation(s)
- Yi Pan
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Conglin Ye
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qingshan Tian
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Songxin Yan
- Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoping Zeng
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chu Xiao
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyun Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongmei Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
33
|
Wohl SG, Jorstad NL, Levine EM, Reh TA. Müller glial microRNAs are required for the maintenance of glial homeostasis and retinal architecture. Nat Commun 2017; 8:1603. [PMID: 29150673 PMCID: PMC5693933 DOI: 10.1038/s41467-017-01624-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/02/2017] [Indexed: 01/21/2023] Open
Abstract
To better understand the roles of microRNAs in glial function, we used a conditional deletion of Dicer1 (Dicer-CKOMG) in retinal Müller glia (MG). Dicer1 deletion from the MG leads to an abnormal migration of the cells as early as 1 month after the deletion. By 6 months after Dicer1 deletion, the MG form large aggregations and severely disrupt normal retinal architecture and function. The most highly upregulated gene in the Dicer-CKOMG MG is the proteoglycan Brevican (Bcan) and overexpression of Bcan results in similar aggregations of the MG in wild-type retina. One potential microRNA that regulates Bcan is miR-9, and overexpression of miR-9 can partly rescue the effects of Dicer1 deletion on the MG phenotype. We also find that MG from retinitis pigmentosa patients display an increase in Brevican immunoreactivity at sites of MG aggregation, linking the retinal remodeling that occurs in chronic disease with microRNAs.
Collapse
Affiliation(s)
- Stefanie G Wohl
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA
| | - Nikolas L Jorstad
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA.
| |
Collapse
|
34
|
Ding L, Wang L, Guo F. microRNA‑188 acts as a tumour suppressor in glioma by directly targeting the IGF2BP2 gene. Mol Med Rep 2017; 16:7124-7130. [PMID: 28901413 DOI: 10.3892/mmr.2017.7433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 06/09/2017] [Indexed: 11/06/2022] Open
Abstract
Glioma is the most common and aggressive human brain tumour and accounts for ~35‑61% of intracranial tumours. Despite considerable advances in treatments for glioma, the prognosis for patients with this disease remains unsatisfactory. MicroRNAs (miRNAs of miRs) are small regulatory RNA molecules that have been identified as being involved in the initiation and progression of human cancers, and represent novel therapeutic targets for anticancer treatments. The dysregulation of miR‑188 has been reported in various kinds of human cancer. However, its expression pattern, biological roles and potential mechanism in glioma remain unknown. Expression levels of miR‑188 in glioma tissues and cell lines were detected through reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Cell Counting Kit-8 assays and migration and invasion assays were used to explore the effects of miR‑188 on the proliferation, migration and invasion of glioma cells, respectively. Bioinformatics analysis and luciferase reporter assays were performed to examine insulin‑like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a target gene of miR‑188. RT‑qPCR and Spearman's correlation analysis were then performed to measure IGF2BP2 mRNA expression in clinical glioma tissues and its correlation with miR‑188 expression. The regulatory effect of miR‑188 on IGF2BP2 expression was also investigated through RT‑qPCR and western blotting analysis. Finally, the biological roles of IGF2BP2 in glioma cells were assessed. miR‑188 levels were significantly reduced in glioma tissues and cell lines compared with adjacent normal tissues and normal human astrocytes, respectively. In addition, miR‑188 overexpression suppressed cell proliferation, migration and invasion of glioma. The present study identified IGF2BP2 as a direct target of miR‑188 in glioma, and IGF2BP2 under‑expression served tumour‑suppressive roles in glioma growth and metastasis. Thus, miR‑188 had a similar role in glioma by inhibiting the action of its downstream target, IGF2BP2. Therefore, miR‑188 may be a potential therapeutic target for the prevention and treatment of patients with glioma.
Collapse
Affiliation(s)
- Li Ding
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Ling Wang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Feng Guo
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
35
|
Du Y, Li J, Xu T, Zhou DD, Zhang L, Wang X. MicroRNA-145 induces apoptosis of glioma cells by targeting BNIP3 and Notch signaling. Oncotarget 2017; 8:61510-61527. [PMID: 28977881 PMCID: PMC5617441 DOI: 10.18632/oncotarget.18604] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/22/2017] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in the pathogenesis of various human cancers. Here we show that miR-145 expression is decreased in human glioma samples, rat glioma tissues, and glioma cell lines, while expression of BNIP3 is increased. Over-expression of miR-145 or suppression of BNIP3 induced glioma cell apoptosis. BNIP3 is localized in the nucleus in glioma cells, and miR-145 inhibits BNIP3 expression by binding to the 3’ untranslated region of its mRNA. Interestingly, miR-145 and BNIP3 regulate glioma cell apoptosis by modulating Notch signaling. These results indicate that miR-145 increases glioma cell apoptosis by inhibiting BNIP3 and Notch signaling, and suggest that miR-145 may serve as a novel therapeutic target for malignant glioma.
Collapse
Affiliation(s)
- Yan Du
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Juan Li
- Anhui Provincial Hospital, Hefei 230032, China
| | - Tao Xu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Dan-Dan Zhou
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
36
|
Emery IF, Gopalan A, Wood S, Chow KH, Battelli C, George J, Blaszyk H, Florman J, Yun K. Expression and function of ABCG2 and XIAP in glioblastomas. J Neurooncol 2017; 133:47-57. [PMID: 28432589 PMCID: PMC5627495 DOI: 10.1007/s11060-017-2422-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/09/2017] [Indexed: 12/16/2022]
Abstract
Despite multimodal treatment that includes surgery, radiation and chemotherapy, virtually all glioblastomas (GBM) recur, indicating that these interventions are insufficient to eradicate all malignant cells. To identify potential new therapeutic targets in GBMs, we examined the expression and function of proteins that are associated with therapy resistance and cancer cell survival. We measured the expression of eight such proteins in 50 GBM samples by immunohistochemistry and analyzed patient survival. We report that GBM patients with high expression of ABCG2 (also called BCRP) or XIAP at the protein level had worse survival than those with low expression. The adjusted hazard ratio for ABCG2 was 2.35 and for XIAP was 2.65. Since glioma stem cells (GSCs) have been shown to be more resistant than bulk tumor cells to anti-cancer therapies and to express high levels of these proteins, we also sought to determine if ABCG2 and XIAP have functional roles in GSCs. We used small molecule inhibitors to treat patient-derived GBM tumorspheres in vitro and observed that inhibitors of ABCG2, Ko143 and fumitremorgin, significantly reduced self-renewal. These results suggest that ABCG2 and XIAP proteins may be useful indicators of patient survival and that inhibition of ABCG2 may be a promising therapeutic strategy in GBMs.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Brain Neoplasms/drug therapy
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Brain Neoplasms/radiotherapy
- Cells, Cultured
- Dacarbazine/analogs & derivatives
- Dacarbazine/therapeutic use
- Diketopiperazines/pharmacology
- Female
- Follow-Up Studies
- Glioblastoma/drug therapy
- Glioblastoma/metabolism
- Glioblastoma/mortality
- Glioblastoma/radiotherapy
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Humans
- Indoles/pharmacology
- Male
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Middle Aged
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Neoplasm Transplantation
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Temozolomide
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- Ivette F Emery
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.
| | - Archana Gopalan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Stephanie Wood
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Kin-Hoe Chow
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Chiara Battelli
- New England Cancer Specialists, 100 Campus Drive, Suite 108, Scarborough, ME, 04074, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Hagen Blaszyk
- Maine Medical Center Department of Pathology, 22 Bramhall Street, Portland, ME, 04102, USA
| | - Jeffrey Florman
- Maine Medical Center Neuroscience Institute, 22 Bramhall Street, Portland, ME, 04102, USA
| | - Kyuson Yun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Peak Center for Brain and Pituitary Tumors, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Synthetic miR-145 Mimic Enhances the Cytotoxic Effect of the Antiangiogenic Drug Sunitinib in Glioblastoma. Cell Biochem Biophys 2017; 72:551-7. [PMID: 25564360 DOI: 10.1007/s12013-014-0501-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although aggressive therapeutic regimen has been applied in the treatment of Glioblastoma (GBM), the prognosis of patients with GBM remains poor. Preclinical studies have demonstrated the efficacy of Suntinib in GBM both in vitro and in vivo. In this study, we showed that the cytotoxicity was enhanced by transfection with miR-145 mimic. In addition, we suggested that the enhanced cytotoxicity of Sunitinib by miR-145 mimic was mediated by inhibition of both P-gp and Bcrp.
Collapse
|
38
|
Zhao YD, Zhang QB, Chen H, Fei XF, Shen YT, Ji XY, Ma JW, Wang AD, Dong J, Lan Q, Huang Q. Research on human glioma stem cells in China. Neural Regen Res 2017; 12:1918-1926. [PMID: 29239340 PMCID: PMC5745848 DOI: 10.4103/1673-5374.219055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research on human glioma stem cells began early in the 21st century and since then has become a rapidly growing research field with the number of publications increasing year by year. The research conducted by our diverse group of investigators focused primarily on cell culture techniques, molecular regulation, signaling pathways, cancer treatment, the stem cell microenvironment and the cellular origin and function of glioma stem cells. In particular, we put forward our view that there are inverse or forward transformations among neural stem cells, glial cells and glioma stem cells in glioma tissues under certain conditions. Based on the background of the progress of international research on human glioma stem cells, we aim to share our progress and current findings of human glioma stem cell research in China with colleagues around the world.
Collapse
Affiliation(s)
- Yao-Dong Zhao
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Shanghai General Hospital, Shanghai, China
| | - Quan-Bin Zhang
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Shanghai 10th People's Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xi-Feng Fei
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Suzhou Kowloon Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Tian Shen
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao-Yan Ji
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jia-Wei Ma
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ai-Dong Wang
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jun Dong
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Lan
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qiang Huang
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
39
|
Zhao L, Ren Y, Tang H, Wang W, He Q, Sun J, Zhou X, Wang A. Deregulation of the miR-222-ABCG2 regulatory module in tongue squamous cell carcinoma contributes to chemoresistance and enhanced migratory/invasive potential. Oncotarget 2016; 6:44538-50. [PMID: 26517090 PMCID: PMC4792574 DOI: 10.18632/oncotarget.6253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022] Open
Abstract
Chemoresistance is often associated with other clinical characteristics such as enhanced migratory/invasive potential. However, the correlation and underlying molecular mechanisms remain unclear. The aim of this study was to elucidate the function of the miR-222-ABCG2 pathway in the correlation between cisplatin (DDP) resistance and enhanced cell migration/invasion in tongue squamous cell carcinoma (TSCC). Using TSCC cell lines and primary cultures from TSCC cases, we first confirmed the correlation among DDP resistance (measured by IC50 values and ABCG2/ERCC1 expression), migratory/invasive potential (assessed by migration/invasion assays) and miR-222 expression. In TSCC cells, siRNA-mediated ABCG2 knockdown led to enhanced DDP responsiveness and reduced migratory/invasive potential, whereas ABCG2 overexpression induced DDP resistance and enhanced cell migration/invasion. Luciferase assays revealed that ABCG2 is a direct target of miR-222. In addition to reducing cell migration/invasion, functional analyses in TSCC cells indicated that miR-222 can reduce expression of the ABCG2 gene and enhance DDP responsiveness. However, co-transfection with ABCG2 cDNA restored both DDP resistance and migration/invasion. Moreover, miR-222 mimics and ABCG2 siRNA inhibited tumor growth and lung metastasis in vivo. Thus, our results verified that DDP resistance is correlated with enhanced migratory/invasive potential in TSCC. ABCG2 is a direct target of miR-222,and deregulation of the miR-222-ABCG2 regulatory module in TSCC contributes to both DDP resistance and enhanced migratory/invasive potential.
Collapse
Affiliation(s)
- Luodan Zhao
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuexin Ren
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haikuo Tang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Sun
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Zhou
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
The microRNA expression profile of mouse Müller glia in vivo and in vitro. Sci Rep 2016; 6:35423. [PMID: 27739496 PMCID: PMC5064377 DOI: 10.1038/srep35423] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022] Open
Abstract
The profile of miRNAs in mature glia is not well characterized, and most studies have been done in cultured glia. In order to identify the miRNAs in adult and young (postnatal day 11/12) Müller glia of the neural retina, we isolated the Müller glia from Rlbp-CreER: Stopf/f-tdTomato mice by means of fluorescent activated cell sorting and analyzed their miRNAs using NanoStrings Technologies®. In freshly isolated adult Müller glia, we identified 7 miRNAs with high expression levels in the glia, but very low levels in the retinal neurons. These include miR-204, miR-9, and miR-125-5p. We also found 15 miRNAs with high levels of expression in both neurons and glia, and many miRNAs that were enriched in neurons and expressed at lower levels in Müller glia, such as miR-124. We next compared miRNA expression of acutely isolated Müller glia with those that were maintained in dissociated culture for 8 and 14 days. We found that most miRNAs declined in vitro. Interestingly, some miRNAs that were not highly expressed in adult Müller glia increased in cultured cells. Our results thus show the miRNA profile of adult Müller glia and the effects of cell culture on their levels.
Collapse
|
41
|
Qiu H, Yuan S, Lu X. miR-186 suppressed CYLD expression and promoted cell proliferation in human melanoma. Oncol Lett 2016; 12:2301-2306. [PMID: 27698793 PMCID: PMC5038478 DOI: 10.3892/ol.2016.5002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/11/2016] [Indexed: 01/08/2023] Open
Abstract
Previous studies have shown that microRNA-186 (miR-186) is overexpressed in various human cancers and is associated with the regulation of the carcinogenic processes. However, the underlying mechanisms of this microRNA in melanoma remain largely unknown. In the present study, the overexpression of miR-186 was identified in melanoma tissues and melanoma cells compared to the expression of miR-186 in the matched tumor adjacent tissues and normal human epidermal melanocytes. Overexpression of miR-186 promoted the proliferation and anchorage-independent growth of melanoma cells, whereas inhibition of miR-186 reduced this effect. Bioinformatics analysis also revealed cylindromatosis (CYLD), a putative tumor suppressor, to be a potential target of miR-186. Luciferase reporter assays showed that miR-186 directly targeted the 3'-untranslated regions of CYLD messenger RNA. Additional experiments showed that overexpression of miR-186 promoted the proliferation of melanoma cells, which was consistent with the inhibitory effects induced by knockdown of CYLD. In summary, the present study indicated that miRNA-186 plays a crucial role in melanoma growth and its oncogenic effect is mediated chiefly through the direct suppression of CYLD expression.
Collapse
Affiliation(s)
- Haijiang Qiu
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Suirong Yuan
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
42
|
Liu X, Wang S, Yuan A, Yuan X, Liu B. MicroRNA-140 represses glioma growth and metastasis by directly targeting ADAM9. Oncol Rep 2016; 36:2329-38. [PMID: 27498787 DOI: 10.3892/or.2016.5007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/18/2016] [Indexed: 11/05/2022] Open
Abstract
Glioma is the most frequent primary malignant tumor of the human brain. Recently, great progress has been made in the combined therapy of glioma. However, the clinical effects of these treatments and prognosis for patients with glioma remains poor. MicroRNAs (miRNAs) have been demonstrated to play important roles in the initiation and progression of various types of human cancers, also including glioma. The present study investigated the expression patterns of microRNA‑140 (miR-140) in glioma, and the roles of miR-140 in glioma cell proliferation, migration and invasion. The results showed that miR-140 was significantly downreuglated in glioma tissues and cell lines, and low expression levels of miR-140 were correlated with World Health Organization (WHO) grade and Karnofsky performance score (KPS) of glioma patients. Restoration of miR-140 obviously suppressed glioma cell proliferation, migration and invasion. In addition, a disintegrin and metalloproteinase 9 (ADAM9) was identified as a novel direct target gene of miR-140 in glioma. Furthermore, knockdown of ADAM9 simulated the tumor suppressor functions of miR-140, while overexpression of ADAM9 abrogated these suppressive effects induced by miR-140 in glioma cells. In conclusion, the present study demonstrated the expression and clinical roles of miR-140 in glioma and suggested that miR-140 inhibited proliferation, migration and invasion of glioma cells, partially at least via suppressing ADAM9 expression. Therefore, miR-140 may be a novel candidate target for the development of therapeutic strategies for patients with glioma.
Collapse
Affiliation(s)
- Xiaogang Liu
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Shanjun Wang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Aiqin Yuan
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Xunhui Yuan
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Bing Liu
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261030, P.R. China
| |
Collapse
|
43
|
Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, Roy A, Ramalinga M, Harris B, Blancato J, Verma M, Kumar D. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med 2016; 5:1917-46. [PMID: 27282910 PMCID: PMC4971921 DOI: 10.1002/cam4.775] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal cancer of the adult brain, remaining incurable with a median survival time of only 15 months. In an effort to identify new targets for GBM diagnostics and therapeutics, recent studies have focused on molecular phenotyping of GBM subtypes. This has resulted in mounting interest in microRNAs (miRNAs) due to their regulatory capacities in both normal development and in pathological conditions such as cancer. miRNAs have a wide range of targets, allowing them to modulate many pathways critical to cancer progression, including proliferation, cell death, metastasis, angiogenesis, and drug resistance. This review explores our current understanding of miRNAs that are differentially modulated and pathologically involved in GBM as well as the current state of miRNA-based therapeutics. As the role of miRNAs in GBM becomes more well understood and novel delivery methods are developed and optimized, miRNA-based therapies could provide a critical step forward in cancer treatment.
Collapse
Affiliation(s)
- Amanda Shea
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | | | - Zainab Afzal
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Juliet Chijioke
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Habib Kedir
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Shahnoza Dusmatova
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Arpita Roy
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Malathi Ramalinga
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Brent Harris
- Department of Neurology and PathologyGeorgetown UniversityWashingtonDistrict of Columbia20057
| | - Jan Blancato
- Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia20057
| | - Mukesh Verma
- Division of Cancer Control and Population SciencesNational Cancer Institute (NCI)National Institutes of Health (NIH)RockvilleMaryland20850
| | - Deepak Kumar
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
- Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia20057
| |
Collapse
|
44
|
Cioce M, Strano S, Muti P, Blandino G. Mir 145/143: tumor suppressor, oncogenic microenvironmental factor or ...both? Aging (Albany NY) 2016; 8:1153-5. [PMID: 27208668 PMCID: PMC4931860 DOI: 10.18632/aging.100965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 04/21/2023]
Affiliation(s)
- Mario Cioce
- Oncogenomic and Epigenetic Unit, Regina Elena, National Cancer Institute, Rome, 00144 Italy
| | - Sabrina Strano
- Oncogenomic and Epigenetic Unit, Regina Elena, National Cancer Institute, Rome, 00144 Italy
- Department of Oncology, Juravinski Cancer Center-McMaster University, Hamilton, Ontario, Canada
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center-McMaster University, Hamilton, Ontario, Canada
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Regina Elena, National Cancer Institute, Rome, 00144 Italy
- Department of Oncology, Juravinski Cancer Center-McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
45
|
de Los Reyes V AA, Jung E, Kim Y. Optimal control strategies of eradicating invisible glioblastoma cells after conventional surgery. J R Soc Interface 2016; 12:rsif.2014.1392. [PMID: 25833239 DOI: 10.1098/rsif.2014.1392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma, the most aggressive type of brain cancer, has median survival time of 1 year after diagnosis. It is characterized by alternating modes of rapid proliferation and aggressive invasion in response to metabolic stress in the microenvironment. A particular microRNA, miR-451, and its downstream signalling molecules, AMPK complex, are known to be key determinants in switching cell fate. These components form a core control system determining a balance between cell growth and migration which is regulated by fluctuating glucose levels in the microenvironment. An important factor from the treatment point of view is that low levels of glucose affect metabolism and activate cell migration through the miR-451-AMPK control system, creating 'invisible' migratory cells and making them inaccessible by conventional surgery. In this work, we apply optimal control theory to deal with the problem of maintaining upregulated miR-451 levels that prevent cell infiltration to surrounding brain tissue and thus induce localization of these cancer cells at the surgical site. The model also considers the effect of a drug that blocks inhibitive pathways of miR-451 from AMPK complex. Glucose infusion control and drug infusion control are chosen to represent dose rates of glucose and drug intravenous administrations, respectively. The characteristics of optimal control lead us to investigate the structure of optimal intravenous infusion regimen under various circumstances and predict best clinical outcomes with minimum expense possible.
Collapse
Affiliation(s)
- Aurelio A de Los Reyes V
- Institute of Mathematics, C.P. Garcia Street, U.P. Campus, Diliman, 1101 Quezon City, Philippines Department of Mathematics, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143701, Republic of Korea
| | - Eunok Jung
- Department of Mathematics, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143701, Republic of Korea
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143701, Republic of Korea Department of Mathematics, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
46
|
Yu AM, Tian Y, Tu MJ, Ho PY, Jilek JL. MicroRNA Pharmacoepigenetics: Posttranscriptional Regulation Mechanisms behind Variable Drug Disposition and Strategy to Develop More Effective Therapy. Drug Metab Dispos 2016; 44:308-19. [PMID: 26566807 PMCID: PMC4767381 DOI: 10.1124/dmd.115.067470] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
Knowledge of drug absorption, distribution, metabolism, and excretion (ADME) or pharmacokinetics properties is essential for drug development and safe use of medicine. Varied or altered ADME may lead to a loss of efficacy or adverse drug effects. Understanding the causes of variations in drug disposition and response has proven critical for the practice of personalized or precision medicine. The rise of noncoding microRNA (miRNA) pharmacoepigenetics and pharmacoepigenomics has come with accumulating evidence supporting the role of miRNAs in the modulation of ADME gene expression and then drug disposition and response. In this article, we review the advances in miRNA pharmacoepigenetics including the mechanistic actions of miRNAs in the modulation of Phase I and II drug-metabolizing enzymes, efflux and uptake transporters, and xenobiotic receptors or transcription factors after briefly introducing the characteristics of miRNA-mediated posttranscriptional gene regulation. Consequently, miRNAs may have significant influence on drug disposition and response. Therefore, research on miRNA pharmacoepigenetics shall not only improve mechanistic understanding of variations in pharmacotherapy but also provide novel insights into developing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Ye Tian
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Pui Yan Ho
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Joseph L Jilek
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
47
|
Xu G, Li JY. Differential expression of PDGFRB and EGFR in microvascular proliferation in glioblastoma. Tumour Biol 2016; 37:10577-86. [PMID: 26857280 DOI: 10.1007/s13277-016-4968-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the highly malignant glioma and exhibits microvascular proliferation. PCR mRNA arrays and immunohistochemical stains on tissue microarray demonstrated that the expression level of PDGFRB in GBM microvascular proliferation was significantly higher than that in GBM tumor cells while the expression level of EGFR was lower in microvascular proliferation than in GBM tumor cells. PDGFRB protein was selectively expressed in pericytes in GBM microvascular proliferation. By analyzing The Cancer Genome Atlas (TCGA) datasets for GBM, it was found that genomic DNA alterations were the main reason for the high expression of EGFR in GBM tumor cells. Our miRNA microarray data showed that microRNAs (miRNAs) (miR-193b-3p, miR-518b, miR-520f-3p, and miR-506-5p) targeting PDGFRB were downregulated in microvascular proliferation, which might be the most likely reason for the high expression of PDGFRB in GBM microvascular proliferation. The increase of several miRNAs (miR-133b, miR-30b-3p, miR-145-5p, and miR-146a-5p) targeting EGFR in GBM microvascular proliferation was one of the reasons for the lack of expression of EGFR in GBM microvascular proliferation. These findings implicated that miRNAs, such as miR-506, miR-133b, miR-145, and miR-146a, that target PDGFRB or EGFR, might be potential therapeutic agents for GBM. A new generation of targeted therapeutic agents against both EGFR and PDGFRB might be developed in the future.
Collapse
Affiliation(s)
- Guiyan Xu
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Hofstra Northwell School of Medicine, Northwell Health, Lake Success, NY, USA
| | - Jian Yi Li
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Hofstra Northwell School of Medicine, Northwell Health, Lake Success, NY, USA. .,Cancer Institute, Northwell Health, Lake Success, NY, USA.
| |
Collapse
|
48
|
Liang HL, Hu AP, Li SL, Xie JP, Ma QZ, Liu JY. MiR-454 prompts cell proliferation of human colorectal cancer cells by repressing CYLD expression. Asian Pac J Cancer Prev 2016; 16:2397-402. [PMID: 25824771 DOI: 10.7314/apjcp.2015.16.6.2397] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Previous studies have shown that miR-454 plays an important role in a variety of biological processes in various human cancer cells. However, the underlying mechanisms of this microRNA in colorectal cancer (CRC) cells remain largely unknown. In the present study, we investigated the miR-454 role in CRC cell proliferation. We found that miR-454 expression is markedly upregulated in CRC tissues and CRC cells compared with the matched tumor adjacent tissues and the FHC normal colonic cell line. Ectopic expression of miR-454 promoted the proliferation and anchorage-independent growth of CRC cells, whereas inhibition of miR-454 reduced this effect. Bioinformatics analysis further revealed cylindromatosis (CYLD), a putative tumor suppressor as a potential target of miR-454. Data from luciferase reporter assays showed that miR-454 directly binds to the 3'-untranslated region (3'-UTR) of CYLD mRNA and repressed expression at both transcriptional and translational levels. In functional assays, CYLD-silenced in miR-454-in-transfected SW480 cells have positive effect to promote cell proliferation, suggesting that direct CYLD downregulation is required for miR-454-induced CRC cell proliferation. In sum, our data provide compelling evidence that miR-454 functions as an onco-miRNA, playing a crucial role in the promoting cell proliferation in CRC, and its oncogenic effect is mediated chiefly through direct suppression of CYLD expression.
Collapse
Affiliation(s)
- Hong-Liang Liang
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, China E-mail :
| | | | | | | | | | | |
Collapse
|
49
|
Xu Z, Zeng X, Xu J, Xu D, Li J, Jin H, Jiang G, Han X, Huang C. Isorhapontigenin suppresses growth of patient-derived glioblastoma spheres through regulating miR-145/SOX2/cyclin D1 axis. Neuro Oncol 2015; 18:830-9. [PMID: 26681767 DOI: 10.1093/neuonc/nov298] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/11/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant brain tumor, and glioma stem cells (GSCs) are considered a major source of treatment resistance for glioblastoma. Identifying new compounds that inhibit the growth of GSCs and understanding their underlying molecular mechanisms are therefore important for developing novel therapy for GBM. METHODS We investigated the potential inhibitory effect of isorhapontigenin (ISO), an anticancer compound identified in our recent investigations, on anchorage-independent growth of patient-derived glioblastoma spheres (PDGS) and its mechanism of action. RESULTS ISO treatment resulted in significant anchorage-independent growth inhibition, accompanied with cell cycle G0-G1 arrest and cyclin D1 protein downregulation in PDGS. Further studies established that cyclin D1 was downregulated by ISO at transcription levels in a SOX2-dependent manner. In addition, ISO attenuated SOX2 expression by specific induction of miR-145, which in turn suppressed 3'UTR activity of SOX2 mRNA without affecting its mRNA stability. Moreover, ectopic expression of exogenous SOX2 rendered D456 cells resistant to induction of cell cycle G0-G1 arrest and anchorage-independent growth inhibition upon ISO treatment, whereas inhibition of miR-145 resulted in D456 cells resistant to ISO inhibition of SOX2 and cyclin D1 expression. In addition, overexpression of miR-145 mimicked ISO treatment in D456 cells. CONCLUSIONS ISO induces miR-145 expression, which binds to the SOX2 mRNA 3'UTR region and inhibits SOX2 protein translation. Inhibition of SOX2 leads to cyclin D1 downregulation and PDGS anchorage-independent growth inhibition. The elucidation of the miR-145/SOX2/cyclin D1 axis in PDGS provides a significant insight into understanding the anti-GBM effect of ISO compound.
Collapse
Affiliation(s)
- Zhou Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Jiawei Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Derek Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Xiaosi Han
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| |
Collapse
|
50
|
Liang SC, Yang CY, Tseng JY, Wang HL, Tung CY, Liu HW, Chen CY, Yeh YC, Chou TY, Yang MH, Whang-Peng J, Lin CH. ABCG2 localizes to the nucleus and modulates CDH1 expression in lung cancer cells. Neoplasia 2015; 17:265-78. [PMID: 25810011 PMCID: PMC4372652 DOI: 10.1016/j.neo.2015.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 01/06/2023] Open
Abstract
Breast cancer resistance protein [BCRP/ATP-binding cassette subfamily G member 2 (ABCG2)] is a member of the ATP-binding cassette transporter family. The presence of ABCG2 on the plasma membrane in many kinds of human cancer cells contributes to multidrug resistance during chemotherapy, and it has been used as the side population marker for identifying cancer stem cells in lung cancers. We report here that, in addition to the membranous form, ABCG2 proteins are also found inside the nucleus, where they bind to the E-box of CDH1 (E-cadherin) promoter and regulate transcription of this gene. Increased expression of ABCG2 causes an increase of E-cadherin and attenuates cell migration, whereas knockdown of ABCG2 downregulates E-cadherin and enhances cell motility. In mice, xenografted A549 cells that have less ABCG2 are more likely to metastasize from the subcutaneous inoculation site to the internal organs. However, for the cancer cells that have already entered the blood circulation, an increased level of ABCG2, and correspondingly increased E-cadherin, may facilitate circulating cancer cells to colonize at a distant site and form a metastatic tumor. We propose a novel role for nuclear ABCG2 that functions as a transcription regulator and participates in modulation of cancer metastasis.
Collapse
Affiliation(s)
- Shu-Ching Liang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Ju-Yu Tseng
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Hong-Ling Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Yi Tung
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Hong-Wen Liu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Yau Chen
- Department of Surgery, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Teh-Ying Chou
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Hematology-Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jacqueline Whang-Peng
- Division of Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan.
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan; Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|