1
|
Zou Z, Zhong L. Anaplastic thyroid cancer: Genetic roles, targeted therapy, and immunotherapy. Genes Dis 2025; 12:101403. [PMID: 40271195 PMCID: PMC12018003 DOI: 10.1016/j.gendis.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 04/25/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) stands as the most formidable form of thyroid malignancy, presenting a persistent challenge in clinical management. Recent years have witnessed a gradual unveiling of the intricate genetic underpinnings governing ATC through next-generation sequencing. The emergence of this genetic landscape has paved the way for the exploration of targeted therapies and immunotherapies in clinical trials. Despite these strides, the precise mechanisms governing ATC pathogenesis and the identification of efficacious treatments demand further investigation. Our comprehensive review stems from an extensive literature search focusing on the genetic implications, notably the pivotal MAPK and PI3K-AKT-mTOR signaling pathways, along with targeted therapies and immunotherapies in ATC. Moreover, we screen and summarize the advances and challenges in the current diagnostic approaches for ATC, including the invasive tissue sampling represented by fine needle aspiration and core needle biopsy, immunohistochemistry, and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. We also investigate enormous studies on the prognosis of ATC and outline independent prognostic factors for future clinical assessment and therapy for ATC. By synthesizing this literature, we aim to encapsulate the evolving landscape of ATC oncology, potentially shedding light on novel pathogenic mechanisms and avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zhao Zou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linhong Zhong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Li Y, Dong J, Qin JJ. Small molecule inhibitors targeting heat shock protein 90: An updated review. Eur J Med Chem 2024; 275:116562. [PMID: 38865742 DOI: 10.1016/j.ejmech.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
As a molecular chaperone, heat shock protein 90 (HSP90) plays important roles in the folding, stabilization, activation, and degradation of over 500 client proteins, and is extensively involved in cell signaling, proliferation, and survival. Thus, it has emerged as an important target in a variety of diseases, including cancer, neurodegenerative diseases, and viral infections. Therefore, targeted inhibition of HSP90 provides a valuable and promising therapeutic strategy for the treatment of HSP90-related diseases. This review aims to systematically summarize the progress of research on HSP90 inhibitors in the last five years, focusing on their structural features, design strategies, and biological activities. It will refer to the natural products and their derivatives (including novobiocin derivatives, deguelin derivatives, quinone derivatives, and terpenoid derivatives), and to synthetic small molecules (including resorcinol derivatives, pyrazoles derivatives, triazole derivatives, pyrimidine derivatives, benzamide derivatives, benzothiazole derivatives, and benzofuran derivatives). In addition, the major HSP90 small-molecule inhibitors that have moved into clinical trials to date are also presented here.
Collapse
Affiliation(s)
- Yulong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
3
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
4
|
Li F, Fan Y, Zhou L, Martin DR, Liu Z, Li Z. Synthesis and characterization of 64Cu-labeled Geldanamycin derivative for imaging HSP90 expression in breast cancer. Nucl Med Biol 2024; 136-137:108929. [PMID: 38796925 DOI: 10.1016/j.nucmedbio.2024.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Heat shock protein 90 (HSP90) plays a crucial role in cancer cell growth and metastasis by stabilizing overexpressed signaling proteins. Inhibiting HSP90 has emerged as a promising anti-cancer strategy. In this study, we aimed to develop and characterize a HSP90-targeted molecular imaging probe, [64Cu]Cu-DOTA-BDA-GM, based on a specific HSP90 inhibitor, geldanamycin (GM), for PET imaging of cancers. GM is modified at the C-17 position with 1,4-butane-diamine (BDA) and linked to 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for 64Cu radiolabeling. We evaluated the probe's specific binding to HSP90-expressing cells using Chinese hamster ovary (CHO) cells and breast cancer cells including MDA-MB-231, MDA-MB-435S, MCF7, and KR-BR-3 cell lines. A competition study with non-radioactive GM-BDA yielded an IC50 value of 1.35 ± 0.14 nM, underscoring the probe's affinity for HSP90. In xenograft models of MDA-MB-231 breast cancer, [64Cu]Cu-DOTA-BDA-GM showcased targeted tumor localization, with significant radioactivity observed up to 18 h post-injection. Blocking studies using unlabeled GM-BDA and treatment with the anticancer drug Vorinostat (SAHA), which can affect the expression and activity of numerous proteins, such as HSPs, confirmed the specificity and sensitivity of the probe in cancer targeting. Additionally, PET/CT imaging in a lung metastasis mouse model revealed increased lung uptake of [64Cu]Cu-DOTA-BDA-GM in metastatic sites, significantly higher than in non-metastatic lungs, illustrating the probe's ability to detect metastatic breast cancer. In conclusion, [64Cu]Cu-DOTA-BDA-GM represents a sensitive and specific approach for identifying HSP90 expression in breast cancer and metastases, offering promising implications for clinical diagnosis and monitoring.
Collapse
Affiliation(s)
- Feng Li
- Department of Radiology, Houston Methodist Academic Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Yubo Fan
- Division of Physical Science & Processing Technology, Brazosport College, Lake Jackson, TX, USA
| | - Lan Zhou
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Diego R Martin
- Department of Radiology, Houston Methodist Academic Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Zhonglin Liu
- Department of Radiology, Houston Methodist Academic Institute, Houston Methodist Hospital, Houston, TX, USA.
| | - Zheng Li
- Department of Radiology, Houston Methodist Academic Institute, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
5
|
Xie X, Zhang N, Li X, Huang H, Peng C, Huang W, Foster LJ, He G, Han B. Small-molecule dual inhibitors targeting heat shock protein 90 for cancer targeted therapy. Bioorg Chem 2023; 139:106721. [PMID: 37467620 DOI: 10.1016/j.bioorg.2023.106721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Heat shock protein 90, also known as Hsp90, is an extensively preserved molecular chaperone that performs a critical function in organizing various biological pathways and cellular operations. As a potential drug target, Hsp90 is closely linked to cancer. Hsp90 inhibitors are a class of drugs that have been extensively studied in preclinical models and have shown promise in a variety of diseases, especially cancer. However, Hsp90 inhibitors have encountered several challenges in clinical development, such as low efficacy, toxicity, or drug resistance, few Hsp90 small molecule inhibitors have been approved worldwide. Nonetheless, combining Hsp90 inhibitors with other tumor inhibitors, such as HDAC inhibitors, tubulin inhibitors, and Topo II inhibitors, has been shown to have synergistic antitumor effects. Consequently, the development of Hsp90 dual-target inhibitors is an effective strategy in cancer treatment, as it enhances potency while reducing drug resistance. This article provides an overview of Hsp90's domain structure and biological functions, as well as a discussion of the design, discovery, and structure-activity relationships of Hsp90 dual inhibitors, aiming to provide insights into clinical drug research from a medicinal chemistry perspective and discover novel Hsp90 dual inhibitors.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - He Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Gu He
- Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Klieser E, Neumayer B, Di Fazio P, Mayr C, Neureiter D, Kiesslich T. HDACs as an emerging target in endocrine tumors: a comprehensive review. Expert Rev Endocrinol Metab 2023; 18:143-154. [PMID: 36872882 DOI: 10.1080/17446651.2023.2183840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION The pathogenic role of deregulated histone (de-)acetylation by histone deacetyles (HDACs) has been demonstrated in several human cancers. While some HDAC inhibitors (HDACi) have been approved for individual entities, for endocrine tumors such translation into clinical practice has not yet been achieved. AREAS COVERED Relevant results identified by structured searches in PubMed as well as in reference lists are summarized in a narrative review to discuss the current knowledge of HDAC involvement and their therapeutic relevance in endocrine tumors. For thyroid, neuroendocrine, and adrenal tumors, various oncogenic mechanisms of HDAC deregulation and effects of HDAC inhibitors (HDACi) have been identified in preclinical studies including direct cancer cell toxicity and modification of differentiation status. EXPERT OPINION Based on positive pre-clinical results, the research on HDAC (inhibition) in the various endocrine tumors should be intensified - yet, it needs to be considered that i) HDACs' oncogenic actions might constitute only a part of epigenetic mechanisms driving cancer, ii) individual HDAC has different roles in different endocrine tumor entities, iii) inhibition of HDACs might be especially attractive in combination with conventional or other targeted therapies, and iv) new HDAC-inhibiting drugs with improved specificity or functionally modified HDACi might further improve their efficacy.
Collapse
Affiliation(s)
- Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Bettina Neumayer
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Christian Mayr
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Tobias Kiesslich
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
| |
Collapse
|
7
|
Yuan J, Guo Y. Targeted Therapy for Anaplastic Thyroid Carcinoma: Advances and Management. Cancers (Basel) 2022; 15:cancers15010179. [PMID: 36612173 PMCID: PMC9818071 DOI: 10.3390/cancers15010179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare and highly fatal cancer with the worst prognosis of all thyroid carcinoma (TC) histological subtypes and no standard treatment. In recent years, the explosion of investigations on ATC-targeted agents has provided a new treatment strategy for this malignant condition, and a review of these studies is warranted. We conducted a comprehensive literature search for ATC-targeted drug studies and compiled a summary of their efficacy and adverse effects (AEs) to provide new insights. Multiple clinical trials have demonstrated the efficacy and safety of dabrafenib in combination with trametinib for the treatment of ATC, but vemurafenib and NTRK inhibitors showed limited clinical responses. We found that the previously valued therapeutic effect of lenvatinib may be unsatisfactory; combining tyrosine kinase (TK) inhibitors (TKIs) with other agents results in a higher rate of clinical benefit. In addition, specific medications, including RET inhibitors, mTOR inhibitors, CDK4/6 inhibitors, and Combretastatin A4-phosphate (CA4P), offer tremendous therapeutic potential. The AEs reported for all agents are relatively numerous but largely manageable clinically. More clinical trials are expected to further confirm the effectiveness and safety of these targeted drugs for ATC.
Collapse
Affiliation(s)
- Jiaqian Yuan
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yong Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310001, China
- Correspondence:
| |
Collapse
|
8
|
Chen C, Liu J. Histone acetylation modifications: A potential targets for the diagnosis and treatment of papillary thyroid cancer. Front Oncol 2022; 12:1053618. [DOI: 10.3389/fonc.2022.1053618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
Thyroid cancer is a common malignancy of the endocrine system, with papillary thyroid cancer (PTC) being the most common type of pathology. The incidence of PTC is increasing every year. Histone acetylation modification is an important part of epigenetics, regulating histone acetylation levels through histone acetylases and histone deacetylases, which alters the proliferation and differentiation of PTC cells and affects the treatment and prognosis of PTC patients. Histone deacetylase inhibitors induce histone acetylation, resulting in the relaxation of chromatin structure and activation of gene transcription, thereby promoting differentiation, apoptosis, and growth arrest of PTC cells.
Collapse
|
9
|
Ren X, Li T, Zhang W, Yang X. Targeting Heat-Shock Protein 90 in Cancer: An Update on Combination Therapy. Cells 2022; 11:cells11162556. [PMID: 36010632 PMCID: PMC9406578 DOI: 10.3390/cells11162556] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Heat-shock protein 90 (HSP90) is an important molecule chaperone associated with tumorigenesis and malignancy. HSP90 is involved in the folding and maturation of a wide range of oncogenic clients, including diverse kinases, transcription factors and oncogenic fusion proteins. Therefore, it could be argued that HSP90 facilitates the malignant behaviors of cancer cells, such as uncontrolled proliferation, chemo/radiotherapy resistance and immune evasion. The extensive associations between HSP90 and tumorigenesis indicate substantial therapeutic potential, and many HSP90 inhibitors have been developed. However, due to HSP90 inhibitor toxicity and limited efficiency, none have been approved for clinical use as single agents. Recent results suggest that combining HSP90 inhibitors with other anticancer therapies might be a more advisable strategy. This review illustrates the role of HSP90 in cancer biology and discusses the therapeutic value of Hsp90 inhibitors as complements to current anticancer therapies.
Collapse
Affiliation(s)
- Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Wei Zhang
- Departments of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Correspondence: (W.Z.); (X.Y.)
| | - Xuejun Yang
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing 102218, China
- Correspondence: (W.Z.); (X.Y.)
| |
Collapse
|
10
|
Design, synthesis, and biological evalution of bifunctional inhibitors against Hsp90-HDAC6 interplay. Eur J Med Chem 2022; 240:114582. [PMID: 35834905 DOI: 10.1016/j.ejmech.2022.114582] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/07/2023]
Abstract
HDAC6 and Hsp90, existing as a cytosolic complex play an important role in maintaining the protein homeostasis. The interplay of HDAC6 and Hsp90 has attracted wide attention due to their important role and promise as therapeutic targets in malignant cancers. Therefore, the discovery of dual inhibitors targeting HDAC6 and Hsp90 is of high importance. In the present study, we describe the design, synthesis, and biological evaluation of bifunctional inhibitors against HDAC6 and Hsp90 interplay. In particular, compound 6e shows a significant inhibitory activity against both HDAC6 and Hsp90 with IC50 values of 106 nM and 61 nM, respectively. Compound 6e promotes the acetylation of HDAC6 substrate proteins such as α-tubulin and Hsp90 via HDAC6 inhibition, and also induces the degradation of Hsp90 clients such as Her2, EGFR, Met, Akt, and HDAC6 via Hsp90 inhibition. Compound 6e consequently furnishes potent antiproliferative effect on gefitinib-resistant H1975 non-small cell lung cancer (NSCLC) with a GI50 value of 1.7 μM. In addition, compound 6e successfully achieved significant tumor growth inhibition in H1975 NSCLC xenograft model without noticeable abnormal behavior, body weight changes, and apparent ocular toxicity. We conclude that compound 6e constitutes an excellent tool as well as a valuable lead for assessment of Hsp90 and HDAC6 dual inhibition with a single molecule.
Collapse
|
11
|
Bonanni D, Citarella A, Moi D, Pinzi L, Bergamini E, Rastelli G. Dual Targeting Strategies On Histone Deacetylase 6 (HDAC6) And Heat Shock Protein 90 (Hsp90). Curr Med Chem 2021; 29:1474-1502. [PMID: 34477503 DOI: 10.2174/0929867328666210902145102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
The design of multi-target drugs acting simultaneously on multiple signaling pathways is a growing field in medicinal chemistry, especially for the treatment of complex diseases such as cancer. Histone deacetylase 6 (HDAC6) is an established anticancer drug target involved in tumor cells transformation. Being an epigenetic enzyme at the interplay of many biological processes, HDAC6 has become an attractive target for polypharmacology studies aimed at improving therapeutic efficacy of anticancer drugs. For example, the molecular chaperone Heat shock protein 90 (Hsp90) is a substrate of HDAC6 deacetylation, and several lines of evidence demonstrate that simultaneous inhibition of HDAC6 and Hsp90 promote synergistic antitumor effects on different cancer cell lines, highlighting the potential benefits of developing a single molecule endowed with multi-target activity. This review will summarize the complex interplay between HDAC6 and Hsp90, providing also useful hints for multi-target drug design and discovery approaches in this field. To this end, crystallographic structures of HDAC6 and Hsp90 complexes will be extensively reviewed in the light of discussing binding pockets features and pharmacophore requirements and providing useful guidelines for the design of dual inhibitors. The few examples of multi-target inhibitors obtained so far, mostly based on chimeric approaches, will be summarized and put into context. Finally, the main features of HDAC6 and Hsp90 inhibitors will be compared, and ligand- and structure-based strategies potentially useful for the development of small molecular weight dual inhibitors will be proposed and discussed.
Collapse
Affiliation(s)
- Davide Bonanni
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Andrea Citarella
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Davide Moi
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Elisa Bergamini
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia Via Campi 183, 41125 Modena, Italy
| |
Collapse
|
12
|
Expression level of long non-coding RNA colon adenocarcinoma hypermethylated serves as a novel prognostic biomarker in patients with thyroid carcinoma. Biosci Rep 2021; 41:228191. [PMID: 33792624 PMCID: PMC8056003 DOI: 10.1042/bsr20210284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The present study attempts to identify the prognostic value and potential mechanism of action of colorectal adenocarcinoma hypermethylated (CAHM) in thyroid carcinoma (THCA) by using the RNA sequencing (RNA-seq) dataset from The Cancer Genome Atlas (TCGA). The functional mechanism of CAHM was explored by using RNA-seq dataset and multiple functional enrichment analysis approaches. Connectivity map (CMap) online analysis tool was also used to predict CAHM targeted drugs. Survival analysis suggests that THCA patients with high CAHM expression have lower risk of death than the low CAHM expression (log-rank P=0.022, adjusted P=0.011, HR = 0.187, 95% confidence interval (CI) = 0.051–0.685). Functional enrichment of CAHM co-expression genes suggests that CAHM may play a role in the following biological processes: DNA repair, cell adhesion, DNA replication, vascular endothelial growth factor receptor, Erb-B2 receptor tyrosine kinase 2, ErbB and thyroid hormone signaling pathways. Functional enrichment of differentially expressed genes (DEGs) between low- and high-CAHM phenotype suggests that different CAHM expression levels may have the following differences in biological processes in THCA: cell adhesion, cell proliferation, extracellular signal-regulated kinase (ERK) 1 (ERK1) and ERK2 cascade, G-protein coupled receptor, chemokine and phosphatidylinositol-3-kinase-Akt signaling pathways. Connectivity map have identified five drugs (levobunolol, NU-1025, quipazine, anisomycin and sulfathiazole) for CAHM targeted therapy in THCA. Gene set enrichment analysis (GSEA) suggest that low CAHM phenotype were notably enriched in p53, nuclear factor κB, Janus kinase-signal transducer and activators of transcription, tumor necrosis factor, epidermal growth factor receptor and other signaling pathways. In the present study, we have identified that CAHM may serve as novel prognostic biomarkers for predicting overall survival (OS) in patients with THCA.
Collapse
|
13
|
Nepali K, Liou JP. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J Biomed Sci 2021; 28:27. [PMID: 33840388 PMCID: PMC8040241 DOI: 10.1186/s12929-021-00721-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic drug discovery field has evidenced significant advancement in the recent times. A plethora of small molecule inhibitors have progressed to clinical stage investigations and are being explored exhaustively to ascertain conclusive benefits in diverse malignancies. Literature precedents indicates that substantial amount of efforts were directed towards the use of epigenetic tools in monotherapy as well as in combination regimens at the clinical level, however, the preclinical/preliminary explorations were inclined towards the identification of prudent approaches that can leverage the anticancer potential of small molecule epigenetic inhibitors as single agents only. This review article presents an update of FDA approved epigenetic drugs along with the epigenetic inhibitors undergoing clinical stage investigations in different cancer types. A detailed discussion of the pragmatic strategies that are expected to steer the progress of the epigenetic therapy through the implementation of emerging approaches such as PROTACS and CRISPR/Cas9 along with logical ways for scaffold fabrication to selectively approach the enzyme isoforms in pursuit of garnering amplified antitumor effects has been covered. In addition, the compilation also presents the rational strategies for the construction of multi-targeting scaffold assemblages employing previously identified pharmacophores as potential alternatives to the combination therapy.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Biomedical Commercialization Center, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
14
|
Chan AM, Fletcher S. Shifting the paradigm in treating multi-factorial diseases: polypharmacological co-inhibitors of HDAC6. RSC Med Chem 2021; 12:178-196. [PMID: 34046608 PMCID: PMC8127619 DOI: 10.1039/d0md00286k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 01/20/2023] Open
Abstract
Multi-factorial diseases are illnesses that exploit multiple cellular processes, or stages within one process, and thus highly targeted therapies often succumb to the disease, losing efficacy as resistance sets in. Combination therapies have become a mainstay to battle these diseases, however these regimens are plagued with caveats. An emerging avenue to treat multi-factorial diseases is polypharmacology, wherein a single drug is rationally designed to bind multiple targets, and is widely touted to be superior to combination therapy by inherently addressing the latter's shortcomings, which include poor patient compliance, narrow therapeutic windows and spiraling healthcare costs. Through its roles in intracellular trafficking, cell motility, mitosis, protein folding and as a back-up to the proteasome pathway, HDAC6 has rapidly become an exciting new target for therapeutics, particularly in the discovery of new drugs to treat Alzheimer's disease and cancer. Herein, we describe recent efforts to marry together HDAC pharmacophores, with a particular emphasis on HDAC6 selectivity, with those of other targets towards the discovery of potent therapeutics to treat these evasive diseases. Such polypharmacological agents may supercede combination therapies through inherent synergism, permitting reduced dosing, wider therapeutic windows and improved compliance.
Collapse
Affiliation(s)
- Alexandria M Chan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N Pine St Baltimore MD 21201 USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N Pine St Baltimore MD 21201 USA
- University of Maryland Greenebaum Cancer Center 22 S Greene St Baltimore MD 21201 USA
| |
Collapse
|
15
|
Rodrigues Moita AJ, Bandolik JJ, Hansen FK, Kurz T, Hamacher A, Kassack MU. Priming with HDAC Inhibitors Sensitizes Ovarian Cancer Cells to Treatment with Cisplatin and HSP90 Inhibitors. Int J Mol Sci 2020; 21:ijms21218300. [PMID: 33167494 PMCID: PMC7663919 DOI: 10.3390/ijms21218300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer deaths. Chemoresistance, particularly against platinum compounds, contributes to a poor prognosis. Histone deacetylase inhibitors (HDACi) and heat shock protein 90 inhibitors (HSP90i) are known to modulate pathways involved in chemoresistance. This study investigated the effects of HDACi (panobinostat, LMK235) and HSP90i (luminespib, HSP990) on the potency of cisplatin in ovarian cancer cell lines (A2780, CaOV3, OVCAR3 and cisplatin-resistant sub-clones). Preincubation with HDACi increased the cytotoxic potency of HSP90i, whereas preincubation with HSP90i had no effect. Preincubation with HSP90i or HDACi 48h prior to cisplatin enhanced the cisplatin potency significantly in all cell lines via apoptosis induction and affected the expression of apoptosis-relevant genes and proteins. For CaOV3CisR and A2780CisR, a preincubation with HDACi for 48–72 h led to complete reversal of cisplatin resistance. Furthermore, permanent presence of HDACi in sub-cytotoxic concentrations prevented the development of cisplatin resistance in A2780. However, triple combinations of HDACi, HSP90i and cisplatin were not superior to dual combinations. Overall, priming with HDACi sensitizes ovarian cancer cells to treatment with HSP90i or cisplatin and has an influence on the development of cisplatin resistance, both of which may contribute to an improved ovarian cancer treatment.
Collapse
Affiliation(s)
- Ana J. Rodrigues Moita
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Jan J. Bandolik
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Finn K. Hansen
- Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany;
| | - Thomas Kurz
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Alexandra Hamacher
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Matthias U. Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
- Correspondence:
| |
Collapse
|
16
|
Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective. Biochem Pharmacol 2020; 182:114224. [PMID: 32956642 DOI: 10.1016/j.bcp.2020.114224] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic enzymes histone deacetylases (HDACs) are clinically validated anticancer drug targets which have been studied intensively in the past few decades. Although several drugs have been approved in this field, they are still limited to a subset of hematological malignancies (in particular T-cell lymphomas), with therapeutic potential not fully realized and the drug-resistance occurred after a certain period of use. To maximize the therapeutic potential of these classes of anticancer drugs, and to extend their application to solid tumors, numerous combination therapies containing an HDACi and an anticancer agent from other mechanisms are currently ongoing in clinical trials. Recently, dual targeting strategy comprising the HDACs component has emerged as an alternative approach for combination therapies. In this perspective, we intend to gather all HDACs-containing dual inhibitors related to cancer therapy published in literature since 2015, classify them into five categories based on targets' biological functions, and discuss the rationale why dual acting agents should work better than combinatorial therapies using two separate drugs. The article discusses the pharmacological aspects of these dual inhibitors, including in vitro biological activities, pharmacokinetic studies, in vivo efficacy studies, as well as available clinical trials. The review of the current status and advances should provide better analysis for future opportunities and challenges of this field.
Collapse
|
17
|
Zuo Y, Xu H, Chen Z, Xiong F, Zhang B, Chen K, Jiang H, Luo C, Zhang H. 17‑AAG synergizes with Belinostat to exhibit a negative effect on the proliferation and invasion of MDA‑MB‑231 breast cancer cells. Oncol Rep 2020; 43:1928-1944. [PMID: 32236631 PMCID: PMC7160548 DOI: 10.3892/or.2020.7563] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is one of the most common malignancies that threaten the health of women. Although there are a few chemotherapies for the clinical treatment of breast cancer, these therapies are faced with the problems of drug-resistance and metastasis. Drug combination can help to reduce the adverse side effects of chemotherapies using single drugs, and also help to overcome common drug-resistance during clinical treatment of breast cancer. The present study reported the synergistic effect of the heat shock protein 90 inhibitor 17-AAG and the histone deacetylase 6 inhibitor Belinostat in triple-negative breast cancer (TNBC) MDA-MB-231 cells, by detection of proliferation, apoptosis and cell cycle arrest following treatment with this combination. Subsequently, RNA sequencing (RNA-seq) data was collected and analyzed to investigate the synergistic mechanism of this combination. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways revealed by RNA-seq data analysis, a wound-healing assay was used to investigate the effect of this combination on the migration of MDA-MB-231 cells. Compared with treatment with 17-AAG or Belinostat alone, both the viability inhibition and apoptosis rate of MDA-MB-231 cells were significantly enhanced in the combination group. The combination index values were <1 in three concentration groups. Revealed by the RNA-seq data analysis, the most significantly enriched KEGG pathways in the combination group were closely associated with cell migration. Based on these findings, the anti-migration effect of this combination was investigated. It was revealed that the migration of MDA-MB-231 cells was significantly suppressed in the combination group compared with in the groups treated with 17-AAG or Belinostat alone. In terms of specific genes, the mRNA expression levels of TEA domain family proteins were significantly decreased in the combination group, whereas the phosphorylation of YY1 associated protein 1 and modulator of VRAC current 1 was significantly enhanced in the combination group. These alterations may help to explain the anti-migration effect of this combination. Belinostat has already been approved as a treatment for T-cell lymphoma and 17-AAG is undergoing clinical trials. These findings could provide a beneficial reference for the clinical treatment of patients with TNBC.
Collapse
Affiliation(s)
- Yu Zuo
- Department of Pharmacy, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Heng Xu
- Department of Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Zhifeng Chen
- Department of Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Fengmin Xiong
- Department of Pharmacy, School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bei Zhang
- Department of Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Kaixian Chen
- Department of Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Hualiang Jiang
- Department of Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Cheng Luo
- Department of Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Hao Zhang
- Department of Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| |
Collapse
|
18
|
Gentile D, Orlandi P, Banchi M, Bocci G. Preclinical and clinical combination therapies in the treatment of anaplastic thyroid cancer. Med Oncol 2020; 37:19. [DOI: 10.1007/s12032-020-1345-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022]
|
19
|
Lettini G, Pietrafesa M, Lepore S, Maddalena F, Crispo F, Sgambato A, Esposito F, Landriscina M. Heat shock proteins in thyroid malignancies: Potential therapeutic targets for poorly-differentiated and anaplastic tumours? Mol Cell Endocrinol 2020; 502:110676. [PMID: 31812782 DOI: 10.1016/j.mce.2019.110676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022]
Abstract
Thyroid cancer is the most common endocrine malignancy, with well-differentiated subtypes characterized by an excellent prognosis due to their optimal sensitivity to standard therapies whereas poorly differentiated and anaplastic tumours by chemo/radio-resistance and unfavourable outcome. Heat Shock Proteins (HSPs) are molecular chaperones overexpressed in thyroid malignancies and involved in crucial functions responsible for thyroid carcinogenesis, as protection from apoptosis, drug resistance and cell migration. Thus, HSPs inhibitors have been proposed as novel therapeutic agents in thyroid cancer to revert molecular mechanisms of tumour progression. In this review, we report an overview on the biological role of HSPs, and specifically HSP90s, in thyroid cancer and their potential involvement as biomarkers. We discuss the rationale to evaluate HSPs inhibitors as innovative anticancer agents in specific subtypes of thyroid cancer characterized by poor response to therapies with the objective to target single family chaperones to reduce, simultaneously, the expression/stability of multiple client proteins.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Alessandro Sgambato
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy; Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
20
|
Ojha R, Nepali K, Chen CH, Chuang KH, Wu TY, Lin TE, Hsu KC, Chao MW, Lai MJ, Lin MH, Huang HL, Chang CD, Pan SL, Chen MC, Liou JP. Isoindoline scaffold-based dual inhibitors of HDAC6 and HSP90 suppressing the growth of lung cancer in vitro and in vivo. Eur J Med Chem 2020; 190:112086. [PMID: 32058238 DOI: 10.1016/j.ejmech.2020.112086] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/01/2022]
Abstract
This study reports the synthesis of a series of 2-aroylisoindoline hydroxamic acids employing N-benzyl, long alkyl chain and acrylamide units as diverse linkers. In-vitro studies led to the identification of N-benzyl linker-bearing compound (10) and long chain linker-containing compound (17) as dual selective HDAC6/HSP90 inhibitors. Compound 17 displays potent inhibition of HDAC6 isoform (IC50 = 4.3 nM) and HSP90a inhibition (IC50 = 46.8 nM) along with substantial cell growth inhibitory effects with GI50 = 0.76 μM (lung A549) and GI50 = 0.52 μM (lung EGFR resistant H1975). Compound 10 displays potent antiproliferative activity against lung A549 (GI50 = 0.37 μM) and lung H1975 cell lines (GI50 = 0.13 μM) mediated through selective HDAC6 inhibition (IC50 = 33.3 nM) and HSP90 inhibition (IC50 = 66 nM). In addition, compound 17 also modulated the expression of signatory biomarkers associated with HDAC6 and HSP90 inhibition. In the in vivo efficacy evaluation in human H1975 xenografts, 17 induced slightly remarkable suppression of tumor growth both in monotherapy as well as the combination therapy with afatinib (20 mg/kg). Moreover, compound 17 could effectively reduce programmed death-ligand 1 (PD-L1) expression in IFN-γ treated lung H1975 cells in a dose dependent manner suggesting that dual inhibition of HDAC6 and HSP90 can modulate immunosuppressive ability of tumor area.
Collapse
Affiliation(s)
- Ritu Ojha
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Chun-Han Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taiwan; Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taiwan
| | - Tung-Yun Wu
- Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Min-Wu Chao
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Mei-Jung Lai
- TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Han-Li Huang
- TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan
| | - Chao-Di Chang
- Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan; Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan
| | - Mei-Chuan Chen
- Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan; TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan; Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
21
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Lee SJ. Evodiamine in combination with histone deacetylase inhibitors has synergistic cytotoxicity in thyroid carcinoma cells. Endocrine 2019; 65:110-120. [PMID: 31102069 DOI: 10.1007/s12020-019-01885-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/25/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE The impact of evodiamine in combination with histone deacetylase (HDAC) inhibitors on survival of thyroid carcinoma cells was identified. METHODS TPC-1 and SW1736 human thyroid carcinoma cells were used. RESULTS After treatment with evodiamine and PXD101, cell viability, the percentage of viable cells and Bcl2 protein levels decreased, whereas cytotoxic activity, the percentage of apoptotic cells, the protein levels of γH2AX, acetyl. histone H3 and cleaved PARP, and reactive oxygen species (ROS) production increased. In cells treated with both evodiamine and PXD101, compared with PXD101 alone, decrement of cell viability, the percentage of viable cells, and Bcl2 protein levels as well as increment of cytotoxic activity, the percentage of apoptotic cells, the protein levels of γH2AX and cleaved PARP, and ROS production were significant, causing decrement of Bcl2/Bax ratio. Furthermore, all of the combination index values were <1.0, suggesting synergistic cytotoxicity of two agents. Wortmannin decreased cell viability and the percentage of viable cells, whereas it increased cytotoxic activity and the percentage of apoptotic cells without alteration in ROS production. The changes in cells treated with both evodiamine and suberoylanilide hydroxamic acid or trichostatin A were similar to those in cells treated with both evodiamine and PXD101. CONCLUSIONS Our results demonstrate that evodiamine synergizes with HDAC inhibitors in inducing cytotoxic activities by involving survival-related proteins and ROS in thyroid carcinoma cells. Moreover, repression of PI3K/Akt signaling synergistically reinforces cytotoxicity of evodiamine combined with HDAC inhibitors in thyroid carcinoma cells.
Collapse
Affiliation(s)
- Si Hyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jun Goo Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Chul Sik Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Hee Ihm
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Moon Gi Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Seong Jin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
22
|
Saini S, Tulla K, Maker AV, Burman KD, Prabhakar BS. Therapeutic advances in anaplastic thyroid cancer: a current perspective. Mol Cancer 2018; 17:154. [PMID: 30352606 PMCID: PMC6198524 DOI: 10.1186/s12943-018-0903-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer incidence is increasing at an alarming rate, almost tripling every decade. In 2017, it was the fifth most common cancer in women. Although the majority of thyroid tumors are curable, about 2-3% of thyroid cancers are refractory to standard treatments. These undifferentiated, highly aggressive and mostly chemo-resistant tumors are phenotypically-termed anaplastic thyroid cancer (ATC). ATCs are resistant to standard therapies and are extremely difficult to manage. In this review, we provide the information related to current and recently emerged first-line systemic therapy (Dabrafenib and Trametinib) along with promising therapeutics which are in clinical trials and may be incorporated into clinical practice in the future. Different categories of promising therapeutics such as Aurora kinase inhibitors, multi-kinase inhibitors, epigenetic modulators, gene therapy using oncolytic viruses, apoptosis-inducing agents, and immunotherapy are reviewed. Combination treatment options that showed synergistic and antagonistic effects are also discussed. We highlight ongoing clinical trials in ATC and discuss how personalized medicine is crucial to design the second line of treatment. Besides using conventional combination therapy, embracing a personalized approach based on advanced genomics and proteomics assessment will be crucial to developing a tailored treatment plan to improve the chances of clinical success.
Collapse
Affiliation(s)
- Shikha Saini
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
| | - Kiara Tulla
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL USA
| | - Ajay V. Maker
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL USA
| | | | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| |
Collapse
|
23
|
Celano M, Mio C, Sponziello M, Verrienti A, Bulotta S, Durante C, Damante G, Russo D. Targeting post-translational histone modifications for the treatment of non-medullary thyroid cancer. Mol Cell Endocrinol 2018; 469:38-47. [PMID: 28579118 DOI: 10.1016/j.mce.2017.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Genomic and epigenetic alterations are now being exploited as molecular targets in cancer treatment. Abnormalities involving the post-translational modification of histones have been demonstrated in thyroid cancer, and they are regarded as promising molecular targets for novel drug treatment of tumors that are resistant to conventional therapies. After a brief overview of the histone modifications most commonly associated with human malignancies, we will review recently published preclinical and clinical findings regarding the use of histone-activity modulators in thyroid cancers. Particular attention will be focused on their use as re-differentiating or anti-proliferating agents, the differential effects observed when they are used alone and in combination with other targeted drugs, and current prospects for their use in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Catia Mio
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Marialuisa Sponziello
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Antonella Verrienti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
24
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, Lee SJ. Gemigliptin, a novel dipeptidyl peptidase-IV inhibitor, exerts a synergistic cytotoxicity with the histone deacetylase inhibitor PXD101 in thyroid carcinoma cells. J Endocrinol Invest 2018; 41:677-689. [PMID: 29147952 DOI: 10.1007/s40618-017-0792-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/02/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE The influence of the dipeptidyl peptidase-IV inhibitor gemigliptin alone or in combination with the histone deacetylase inhibitor PXD101 on survival of thyroid carcinoma cells was investigated. METHODS SW1736, TPC-1, 8505C and BCPAP human thyroid carcinoma cells were used. To assess cell survival, cell viability, the percentage of viable cells and dead cells, cytotoxic activity, ATP levels and FACS analysis were measured. To validate the impact of gemigliptin combined with PXD101, the interactions were estimated by obtaining combination index in cells treated with two agents. RESULTS In cells treated with gemigliptin or PXD101, cell viability, the percentage of viable cells and ATP levels were reduced, and the percentage of dead cells and cytotoxic activity were elevated. In cells treated with both gemigliptin and PXD101, compared with PXD101 alone, cell death was augmented, and all of the combination index values were lower than 1.0, suggesting the synergism between gemigliptin and PXD101. The percentage of apoptotic cells, and the protein levels of Bcl2 and cleaved poly (ADP-ribose) polymerase were elevated, and the protein levels of xIAP and survivin were reduced. The protein levels of phospho-Akt and phospho-AMPK were elevated, and cell migration was reduced. CONCLUSIONS Our results demonstrate that gemigliptin induces cytotoxicity in thyroid carcinoma cells. Moreover, gemigliptin has a synergistic activity with PXD101 in the induction of cell death through involvement of Bcl2 family proteins, xIAP and survivin as well as mediation of Akt and AMPK in thyroid carcinoma cells.
Collapse
Affiliation(s)
- S H Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - J G Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - C S Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - S-H Ihm
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - M G Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - H J Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - S J Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
25
|
Ojha R, Huang HL, HuangFu WC, Wu YW, Nepali K, Lai MJ, Su CJ, Sung TY, Chen YL, Pan SL, Liou JP. 1-Aroylindoline-hydroxamic acids as anticancer agents, inhibitors of HSP90 and HDAC. Eur J Med Chem 2018; 150:667-677. [PMID: 29567459 DOI: 10.1016/j.ejmech.2018.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/28/2022]
Abstract
A series of 1-aroylindoline-hydroxamic acids have been synthesized in the present study. The results of the biological evaluation led to the identification of compound 12 as dual HDAC6/HSP90 inhibitor. Compound 12 displayed striking inhibitory effects towards the HDAC6 isoform and HSP 90 protein with IC50 values of 1.15 nM (HDAC6) and 46.3 nM (HSP90). Compound 12 also exhibited 113, 139 and 246 fold higher selectivity for HDAC6 over HDAC 1, HDAC 3 and HDAC 8 isoforms and was endowed with significant cytotoxic effects with GI50 values ranging 1.04-1.61 μM against lung A549, colorectal HCT116, leukemia HL60, and EGFR T790M mutant lung H1975 cell lines. Another interesting finding of the study was substantial cytotoxic effects of compounds particularly against lung H1975 (NSCLC) cell lines with IC50 = 0.26 μM which may be mediated through HSP90 inhibition. Compound 8 as such was devoid of HDAC inhibitory activity.
Collapse
Affiliation(s)
- Ritu Ojha
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Han-Li Huang
- TMU Biomedical Commercialization Center, Taipei, Taiwan
| | - Wei-Chun HuangFu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wen Wu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jung Lai
- Center for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Jou Su
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yi Sung
- Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Lin Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- TMU Biomedical Commercialization Center, Taipei, Taiwan; The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Biomedical Commercialization Center, Taipei, Taiwan; Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
26
|
Enhancement of pomalidomide anti-tumor response with ACY-241, a selective HDAC6 inhibitor. PLoS One 2017; 12:e0173507. [PMID: 28264055 PMCID: PMC5338861 DOI: 10.1371/journal.pone.0173507] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Abstract
Thalidomide-based Immunomodulatory Drugs (IMiDs®), including lenalidomide and pomalidomide, are effective therapeutics for multiple myeloma. These agents have been approved with, or are under clinical development with, other targeted therapies including proteasome inhibitors, αCD38 monoclonal antibodies, as well as histone deacetylase (HDAC) inhibitors for combination therapy. HDAC inhibitors broadly targeting Class I and IIb HDACs have shown potent preclinical efficacy but have frequently demonstrated an undesirable safety profile in combination therapy approaches in clinical studies. Therefore, development of more selective HDAC inhibitors could provide enhanced efficacy with reduced side effects in combination with IMiDs® for the treatment of B-cell malignancies, including multiple myeloma. Here, the second generation selective HDAC6 inhibitor citarinostat (ACY-241), with a more favorable safety profile than non-selective pan-HDAC inhibitors, is shown to synergize with pomalidomide in in vitro assays through promoting greater apoptosis and cell cycle arrest. Furthermore, utilizing a multiple myeloma in vivo murine xenograft model, combination treatment with pomalidomide and ACY-241 leads to increased tumor growth inhibition. At the molecular level, combination treatment with ACY-241 and pomalidomide leads to greater suppression of the pro-survival factors survivin, Myc, and IRF4. The results presented here demonstrate synergy between pomalidomide and ACY-241 in both in vitro and in vivo preclinical models, providing further impetus for clinical development of ACY-241 for use in combination with IMiDs for patients with multiple myeloma and potentially other B-cell malignancies.
Collapse
|
27
|
Yuan W, Zhang Y, Xiong Y, Tao T, Wang Y, Yao J, Zhang L, Yan G, Bao H, Lu H. Highly Selective and Large Scale Mass Spectrometric Analysis of 4-Hydroxynonenal Modification via Fluorous Derivatization and Fluorous Solid-Phase Extraction. Anal Chem 2017; 89:3093-3100. [DOI: 10.1021/acs.analchem.6b04850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wenjuan Yuan
- Shanghai
Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
- Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Ying Zhang
- Shanghai
Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Yun Xiong
- Shanghai
Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Tao Tao
- Shanghai
Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
- Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yi Wang
- Shanghai
Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Jun Yao
- Shanghai
Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Lei Zhang
- Shanghai
Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Guoquan Yan
- Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Huimin Bao
- Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Haojie Lu
- Shanghai
Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
- Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Key
Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|